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We consider social learning in a changing world. With changing states, societies can
be responsive only if agents regularly act upon fresh information, which significantly
limits the value of observational learning. When the state is close to persistent, a con-
sensus whereby most agents choose the same action typically emerges. However, the
consensus action is not perfectly correlated with the state, because societies exhibit in-
ertia following state changes. When signals are precise enough, learning is incomplete,
even if agents draw large samples of past actions, as actions then become too correlated
within samples, thereby reducing informativeness and welfare.

KEYWORDS: Social learning, herding, changing states, social consensus.

1. INTRODUCTION

THE LITERATURE ON SOCIAL LEARNING has extensively studied the extent to which agents
learn from others’ actions. In particular, it has been quite successful at understanding the
possible emergence of informational cascades, and conditions under which the consen-
sus that eventually forms over time is correct (see Bikhchandani, Hirshleifer, Tamuz, and
Welch (2024) for a recent survey). However, little attention has been drawn to the possi-
bility that the underlying state of nature might change over time.! Still, in several appli-
cations, for example, technology adoption or investment decisions, the optimal course of
action is likely to evolve, raising the question of whether social learning then efficiently
aggregates information.

The possibility of state changes provides new insights both from applied and theoretical
perspectives. For instance, the dynamics of learning may shed light on how societies react
to changes in the environment, and on how a dominant consensus may be replaced by a
new one.” From a theoretical perspective, the possibility of state changes creates a tension
between information aggregation and responsiveness to change. Indeed, while efficient
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'Exceptions are Moscarini, Ottaviani, and Smith (1998), Acemoglu, Nedic, and Ozdaglar (2008), Frongillo,
Schoenebeck, and Tamuz (2011), Huang (2022), Dasaratha, Golub, and Hak (2023). See Section 6 for more
detail.

2Examples of a change in the dominant technology abound, ranging from the “war of the currents” in the
late 19th century, the “quartz crisis” in watchmaking in the 1970s to Facebook overtaking MySpace as the
dominant social network.
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aggregation supposes that some agents safely rely on their peers to act, it also requires that
society reacts swiftly to a change in the environment, ruling out informational cascades.
The goal of this paper is to evaluate how this tension shapes equilibrium welfare.

To address this question, we analyze steady-state equilibria in a model where (a) the
state of nature follows a Markov chain and (b) in each period, a continuum of short-lived
agents draw a finite sample of past actions and have access to a (possibly costly) infor-
mative signal. Though unnecessary for our results, allowing for costly information makes
social learning even more desirable. Indeed, the potential welfare gains from learning
from others result not only from better-informed decisions, but also from savings on in-
formation costs.

Two forces drive equilibrium welfare at a steady state. The first one is reminiscent of
the Grossman-Stiglitz paradox: actions cannot be too informative about the state for oth-
erwise agents would have no incentive to acquire information. With changing states, this
logic imposes that some fresh information flows in every period at the steady state, and
thus puts a limit on equilibrium welfare. When agents sample at least two actions, a sec-
ond (countervailing) force comes into play. In that case, some agents will sample con-
flicting evidence, and rely entirely on their signals, while others will obtain unambiguous
evidence allowing them to possibly free-ride on the information acquired by the former.
This creates a intertemporal externality across samples, which can be expected to bring
welfare gains. This is exactly what happens in Banerjee and Fudenberg (2004), who show
in a fixed-state model that learning is eventually complete when agents sample as few as
two actions. In sharp contrast, our chief finding is that allowing for even arbitrarily rare
changes in the state typically results in incomplete learning.

We first analyze the case where agents sample at most two actions. In any equilibrium,
all agents must acquire (or make use of) information with positive probability, regardless
of their samples. Otherwise, indeed, the forces of imitation are so strong that all agents
within and across periods eventually play the same action. In a changing world, such an
uninformative, irreversible consensus is ruled out in equilibrium. Therefore, learning is
incomplete: agents never entirely rely on their peers, even when the state is arbitrarily
persistent. Not only observing two actions no longer ensures complete learning, but wel-
fare is typically worse than when only one action is sampled.

For larger samples, we focus on the case where the state is highly persistent. First, we
show that a consensus prevails. That is, in a steady-state equilibrium, most likely most
agents play the same action. However, this consensus must be fluctuating, and the popu-
lation oscillates over time following state changes. The dynamics following a state change
is characterized by two phases. Agents first stick to the current consensus unless their
sample conveys somewhat mixed evidence. But such conflicting evidence is unlikely in a
society where one action dominates, and there may be significant inertia in moving away
from an established consensus. Once the population displays some minimal dissent, the
fraction of agents acting against the old consensus quickly takes off, and the population
snowballs towards a new consensus. The efficiency of learning reflects responsiveness, that
is, how long it takes for society to escape an obsolete consensus when the state changes.

We next show that, when signals are binary, precise enough, and not too costly, there ex-
ists an equilibrium in which welfare is the same as in no-social-learning benchmark where
agents observe no past action. When signals get more precise, agents are more likely to
play the right action when acquiring information, and both the convergence toward a cor-
rect consensus and away from a wrong consensus get faster. However, it turns out that the
relative speed of convergence toward a correct consensus increases. As for samples of size
two, agents observing even unanimous samples must then acquire information to make
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sure that society remains responsive to change and does not get stuck in an irreversible
consensus. Intuitively, when signals are precise, the actions of agents acquiring informa-
tion are highly correlated to the state, hence among themselves. Actions are less diverse,
which curtails information aggregation and thereby welfare.

To prove this result, we exploit time-invariance equations for measures to provide
bounds on the beliefs for nonunanimous sample compositions. Intuitively, when state
changes are rare, equilibrium beliefs can be approximated in terms of time-average val-
ues of the dynamical systems that describe the evolution of the population’s behavior.
Perhaps surprisingly, these belief estimates point to the presence of belief reversal: seeing
one dissenting action within an otherwise unanimous sample should be taken as evidence
that the minority action is the correct one.?

The paper is organized as follows. We introduce the model in Section 2. Section 3 is de-
voted to small samples, and Section 4 provides results for larger samples in the persistent
limit case. Section 5 addresses robustness issues and extensions. We discuss the relation
to the literature in Section 6, and conclude in Section 7.

2. THE MODEL
2.1. States, Actions, and Payoffs

We consider a social learning model in discrete time with an evolving, binary state of
nature 0 € O := {0, 1}. In each period, there is a continuum of short-lived agents who
choose an action from the action set A := {0, 1} and obtain a utility of one when their
action matches the current state, and of zero otherwise.

Successive states (6,) follow a symmetric Markov chain over 0. The parameter A :=
P(6,.1 # 0|6, = 0) captures the degree of persistency. States are i.i.d. if A = 3, and fully

persistent if A = 0. We assume that A € (0, %) the state is persistent, but not fully.

2.2. Timing, Sampling, and Signals

At each date ¢, events unfold as follows. Each new-born agent (i) first observes a ran-
dom sample of n past actions, (ii) next decides whether or not to acquire additional infor-
mation about the current state 6, at cost ¢ > 0, (iii) finally picks an action a € A4.

We assume that sampled actions are drawn from the pool of actions played in the pre-
vious period, in proportion to their prevalence in the population (proportional sampling).
That is, the sample composition at date ¢, measured by the count of ones, follows a bino-
mial distribution B(n, x,_,), where x,_; is the fraction of agents playing action 1 in period
t — 1. Samples are independent across agents and private.

The additional information available to agents consists of a private signal that is in-
dependent across agents conditional on the current state. We let g denote the posterior
belief assigned to # = 1 given the signal under a uniform prior, and refer to g as a private
belief. We denote by H, the right-continuous cdf of g in state 6. Signal distributions are
assumed symmetric across states.* That is, the distribution of the posterior probability as-
signed to 6 conditional on the state being 6 is the same for both states. This corresponds

3In the Supplemental Appendix, we further leverage this approach to numerically investigate equilibrium
behavior and welfare in the case of samples of size three. For signals of low precision, equilibrium welfare may
be higher than in the no-social-learning case, unlike for precise signals. Yet, learning is always incomplete, in
line with the main message of the paper..

4The asymmetric case is discussed in Section 5.2.
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to Ho(q)- =1 — H, (1 — q) for each g € [0, 1]. We rule out uninformative signals, and
assume throughout that H,(q) < Hy(q) for some g € (0, 1). Finally, we denote by g the
supremum of the support of the unconditional distribution H := 1H, + 3 H,. By symme-
try, the infimum is 1 — g. Following the usual terminology, signals are unbounded if g = 1,
and bounded if g < 1.

2.3. Equilibrium Concept

We focus on equilibrium steady states in which all agents across and within periods
use the same decision rule ¢. The equilibrium notion requires that ¢ is optimal given
beliefs, and that beliefs are derived from the invariant joint distribution of states and
samples induced by ¢. In addition, we restrict attention to symmetric equilibria, that is,
we require that the equilibrium is unchanged when relabeling actions and states so that
the decisions given a sample n — k are the mirror images of those made with sample k.
A formal definition of equilibrium steady states is given in Section 4.1, together with an
existence result. At this stage, we simply denote by p, the (interim) probability that the
current state is 6 = 1 conditional on seeing a sample composed of k € {0, ..., n} ones.

2.4. Information Acquisition

Consider an agent who holds an interim belief p and contemplates acquiring in-
formation. Upon acquiring information and receiving a signal inducing a private be-
lief g, the agent chooses action 1 whenever the more likely state is 6 = 1, that is, if
pg>((1—-p)(—-q) < q=>1— p,with indifference if g=1— p.

Accordingly, the probability of playing the correct action a = 6 is given by

v(p):=p(l—H(1-p))+1-p)Hi(1- p). (1)

The function v is convex, increasing on [1, 1] and symmetric: v(p) = v(1 — p) for all p.

Instead, when information is not acquired, the agent’s action matches the state with
probability u(p) := max(p, 1 — p).

Since more information cannot hurt, u(p) < v(p) for all p; besides, the net value of
acquiring information v(p) — u(p) is maximal when p = 1. If ¢ > v(3) — u(3), agents
never acquire information and samples are not informative. We rule out this case and
assume throughout the following.

ASSUMPTION 1: v(3) —u(3) >c.

These properties imply the existence of a unique p € [3, 1] such that v(p) — ¢ > u(p)
iff p € (1 — p, p). As our analysis highlights, what ultimately matters is whether p < 1 or
not.

When signals are bounded (g < 1), one has v(p) = u(p) for p > g, hence p <1 ir-
respective of whether ¢ = 0 or ¢ > 0. When signals are unbounded, v(p) > u(p) for all
p€(0,1),hence p=1if c=0and p < 1if ¢ > 0. In what follows, we maintain the as-
sumption that p < 1 (the richer case), and defer the discussion of the easier case p =1 to
Section 5.1.

ASSUMPTION 2: p < 1.
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FIGURE 1.—Signals with unbounded strength.

Figures 1 and 2 illustrate two typical cases. In Fig. 1, signals are unbounded and ¢ > 0; in
Fig. 2, signals are binary with precision < 7 <1 (bounded). In that case, private beliefs
are either 1 — 7 or 7, and v(p) = max(p, 1 — p, 7), implying p =7 — c.

We conclude this section with a property that any equilibrium must satisfy, namely there
is no steady-state cascade.

LEMMA 1: In any equilibrium steady state, one has 1 — p < p; < p for some k.

PROOF: Assume instead that for some equilibrium and for each k, one has either p; <
1 — p or p, > p. Signals are never used, hence samples are uninformative at the steady
state and, therefore, p; = % for each k—a contradiction. O.E.D.

Lemma 1 imposes that private signals must be used with positive probability following
at least one sample realization in any steady-state equilibrium. Still, one may have p, ¢
[1— p, p] for some sample compositions. Upon observing such samples, agents play their
perceived best action without using further information.

,v(p)c

p=m—c—+ - —mmms

/'/ut)ﬂ =max(p,1—p)

DIl = e

FIGURE 2.—Binary signals with precision .
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3. SMALL SAMPLES

We discuss here small sample sizes (n < 2). The case n = 0 where agents do not sample
serves as a no-social-learning benchmark. In that case, the belief of all agents at a steady
state is given by the invariant distribution of (6,), which is uniform over ©. Agents acquire
information, and obtain an expected payoff of v(3) — c.

3.1. Samples of Size n =1

We assume here that n = 1. Equilibrium symmetry implies that p; =1 — p, and that all
agents acquire information with the same probability B8, with 8 > 0 by Lemma 1. We set

=_c 1 = =
A= 55197 < ;- Note that A, =0 when ¢ =0.

PROPOSITION 1: If n =1, there is a unique equilibrium steady state:
o If A\ < A,,onehas p,= pand B=1-22== ¢ (0,1).

c(1-21)
o IfA> A, ,onehas pye(1— p, p)and B=1.

PrROOF: Consider an agent A in period ¢ who samples the action a,_; of some player B.
In the steady state, both A and B hold either an interim belief p; or po =1 — p;, where
p1 obeys the following equation:

P =P(6, =1]a,, = 1)
= (1 — A)P(O[,] = 1|a,,1 = 1) + AP(Q,,] = O|a,,| = 1). (2)

Either, with probability 8, B acquired information and then played the right action with
probability v(p,), or did not, and matched the state with probability u(p,).

If 0 < B < 1, B’s indifference condition imposes p; = p. One therefore derives P(0, | =
l|la,—1 =1) = Bv(p) + (1 — B)u(p) = p + Bc. Substituting into (2) yields p = A + (1 —
2M)(p + Bc), hence B = )\C(zl’i_za). B < 1 then requires A < A,.

If B=1,one has P(0,_; =1|a,.; =1) =v(p,) and (2) now reads

pr=(1=2)v(p1) + M1 =v(p)). (€)

Since v'(p;) < 1 for p; < p and since v(3) — ¢ > 1, (3) has a (unique) solution in [3, p]
if and only if A > A,. Q.E.D.

When the state changes frequently, past actions cannot possibly be very informative
about the current state, and information is acquired with probability 1. As the state gets
more persistent, past actions potentially become informative, and 8 decreases. In the
persistent limit A — 0, agents acquire information with vanishing probability, hence most
likely replicate the action they sample. The equilibrium payoff increases from v(3) — ¢ to
p as A decreases from the i.i.d. case to the persistent limit. More generally, the equilibrium
payoff, hence welfare, is given as follows.

COROLLARY 1: The equilibrium welfare is v(p,) — c for A > A,, where p, is the solution
of (3),and p, = p for A < A,.
For binary signals with precision , the equilibrium welfare is = — ¢ = p, for each A > 0.
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3.2. Samples of Size n =2

When n = 1, private signals are always interim valuable in equilibrium, which limits
the informativeness of past actions. The situation is quite different with larger samples.
With n > 1, the efficiency of social learning can be improved if agents with some sample
k generate enough information that (future) agents with a different sample k' find it
optimal to herd, that is, if there exists (k, k") such that 1 — p < p, < p < py. Ultimately,
the equilibrium welfare is determined by the magnitude of such information externalities
across samples.

Let us look at how this discussion applies to the case n = 2. In this case, p; = %, by
symmetry: agents who sample conflicting actions are confused and acquire information.
The key question is whether the information produced by these agents is enough to ensure
that other agents can herd, that is, p, > p. Casual intuition suggests that this should be the
case when the state is sufficiently persistent. But, remarkably, this intuition is incorrect.

PROPOSITION 2: In any equilibrium, one has p, € [1 — p, p].

Proposition 2 implies that agents are always willing to acquire information when ¢ > 0.
For ¢ =0, it implies that it can never be strictly optimal to ignore one’s signal.

The logic works as follows. Assume that p, > p, so that agents acquire information
when sampling conflicting evidence only. By acquiring information, these agents are in-
strumental in moving toward a correct consensus. Sooner or later, society will reach such
a consensus, at which point there will be too few agents sampling mixed evidence, and the
population will no longer be responsive to changes in the state.

The complete proof of Proposition 2 is in Appendix A. We provide a sketch below.

PROOF SKETCH: We argue by contradiction and assume that p, > p in some equilib-
rium. Since p; = 3, agents with a balanced sample acquire information, and choose action
1 if their private belief exceeds , which has probability ¢, : =1 — H,(3) in state 6.

Denoting by x, ; the fraction of agents playing action 1 in period ¢ — 1, the probability
that a generic agent in period ¢ plays action 1 is thus given by x, =g, (x,-1), where

Z,(x) :=x* 4+ 2x(1 — x) .

Since ¢ > 1 > ¢, one has g,(x) > x > gy(x) for each x € (0, 1): the popularity x, of
action 1 increases over time when 6, = 1, and decreases otherwise, as shown in Figure 3.

For x close to 0, the ratio g,(x)/x is approximately equal to 2¢,. Thus, as long as
x, is close to zero, Inx, increases by In2¢; when 6, = 1, and decreases by In2¢, when
0, = 0. Since 4¢pgp; =4d (1 — ¢1) < 1, one has In2¢; < —In2¢y: step sizes are higher
when In x, decreases. This means that (x,) converges faster toward a consensus on action ()
when 6, = 0 than it moves away from this consensus when 6, = 1. Consequently, whenever
(x,) approaches either 0 or 1, there is a positive probability that the population will never
bounce away from this consensus, even following state changes.

Combined with the observation, obvious from Figure 3, that (x,) cannot stay bounded
away from 0 and 1 indefinitely, this implies that the sequence (x,) converges to either 0 or
1, almost surely: the population converges to a permanent consensus, although the state
of nature keeps changing. Thus, past actions are fully uninformative at the steady state,
hence p, = %—a contradiction. QE.D.



1946 R.LEVY, M. PESKI, AND N. VIEILLE
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FIGURE 3.—Population dynamics.

COROLLARY 2: When signals are binary, the equilibrium welfare is p foralln =0, 1, 2, all
A > 0and all ¢ > 0. When Hy has support [1 — q, q|, the equilibrium welfare is strictly lower
forn=2than forn=1if A <A,.

PROOF: By Proposition 2, acquiring information is always valuable with n = 2, so an
agent obtains a payoff v(p,) — ¢ for any sample realization k, where p; € [1 — p, p]. This
implies that welfare is no larger than p, that is, the welfare when n =1 in the case A < A,.

With binary signals with precision 7, v(p) = 7 for all p € [1 — p, p], and the equi-
librium payoff is then = — ¢ = p for every A > 0 and ¢ > 0, like in the cases n = 0 and
n=1.

When H, has support [1 — g, g], v is strictly convex on [1 — p, p], and v(p;) — ¢ =
v(3) —c < p. Q.E.D.

When signals are binary, social learning arises in equilibrium (some agents do herd),
yet there is no welfare gain over the benchmark case n = 0 where information is always
acquired. With richer signals, the equilibrium welfare is nonmonotonic for small A: it
increases from n =0 to n =1 and decreases from n =1 to n = 2. This is all the more
surprising as this holds when the state is highly persistent, that is, when the logic of obser-
vational learning acts most forceful.

3.3. Comparison to Fixed-State Models

We here relate these findings to the literature with a fixed state and known calendar
time. The relevant comparison is Banerjee and Fudenberg (2004) (henceforth BF), who
assume that in each period, a continuum of short-lived agents draw a random sample of
past actions and observe a signal for free.’ If n = 1, the analysis of BF implies the existence
of a continuum of steady states. In any such steady state, the fraction of agents who play
the correct action is constant over time, and equal to p; > p. In each period, all agents

3Although BF considers free signals while we allow for costly signals, this distinction is irrelevant: on the
one hand, our results apply to free signals without loss; on the other hand, the results of BF still hold with
costly signals (we provide a proof in the Supplemental Appendix (Levy, Peski, and Vieille (2024)).



STATIONARY SOCIAL LEARNING IN A CHANGING ENVIRONMENT 1947

ignore their signals, and replicate the action they sample.® This multiplicity is ruled out
with changing states, since it cannot be that agents systematically ignore their signals.

If n =2, our results sharply contrast with BE. For n > 2, BF shows that, under minimal
assumptions on signals (that are satisfied in our setup), learning is eventually complete:
actions converge to the correct one. As soon as the state may change, our analysis instead
shows that equilibrium payoffs do not exceed p, even as A — 0. Accordingly, allowing
for a changing state has a strong negative impact. In addition, the comparison between
samples of size 1 and 2 suggests that, while observing more actions compensates for a
limited signal quality when the state is fixed, this may exacerbate the inefficiency in a
changing world.

4. THE GENERAL CASE: EQUILIBRIUM ANALYSIS

The discussion on small samples illustrates a key complication. When only one action
is sampled, the interim belief at date ¢ involves only the expected value of x,_; in each
state, reflecting how often on average past agents play the correct action. This allows for
a closed form analysis. As soon as two actions are sampled, the interim belief p, also
involves the correlation of actions within samples.” Formally, the belief likelihood ratio is

P(6,_1 =1]k) /0 (1= x)"  dp(x)

P(6,_; =0[k) /01 x*(1 = x)"* d,uo(x)’

(4)

where w, is the distribution of x,_; in state 6, so that the formula for p, involves all /th
moments of x,_; for / < n; in addition, the evolution of xﬁ over time involves even higher
powers of x,, as can be checked.

Consequently, the equilibrium conditions involve the entire joint steady-state distribu-
tion of (6,, x,). This distribution is a complex object, leaving little hope for a tractable
analysis.® Accordingly, we focus on the persistent limit A — 0, which we view as the most
relevant case for a comparison with the usual fixed-state setup.

In Section 4.1, we provide a formal definition of strategies and equilibrium steady states.
In Section 4.2, we prove that the population is (asymptotically) always in consensus. Sec-
tion 4.3 discusses welfare and the extent to which the prevailing consensus is correct.

4.1. Strategies and Equilibrium

A strategy specifies whether or not to acquire information (if ¢ > 0) and which action
to choose. These decisions depend on the composition of one’s sample, and (wWhenever
relevant) on the signal. A strategy is thus a pair o = (83, @) of (measurable) maps, with
B:40,...,n} —[0,1]and «: {0, ..., n} x [0, 1] = A({0, 1}), with the understanding that
B(k) is the probability of acquiring information upon observing a sample composed of k
ones, and a(k, q) is the probability of playing action 1 upon drawing sample k£ and ob-
serving a private belief g € [0, 1]. Not acquiring information is informationally equivalent

®Notice that since there is a continuum of agents, not all agents play the same action.

7 Actions sampled in period ¢ are independent conditional on x,_;, but correlated ex ante.

8 Even in the much simpler case where states are i.i.d. and n = 1, extensive work has focused on the prop-
erties of the steady-state distribution of x. See, for example, Solomyak (1995) or Bhattacharya and Majumdar
(2007).
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to drawing an uninformative signal g = 1 for sure: an agent with sample & who does not
acquire information thus plays 1 with probability a(k, 1).

Conditional on the state being 6, an agent sampling k thus plays action 1 with proba-
bility

$006):= B8 [ etk at (@) + (1~ BO)a k.3 ©

The sample composition at date ¢ follows a Binomial distribution B(n, x,_;). It follows
that the fraction of agents choosing action 1 in period ¢ is

n

vi=gu )= Y () 510 = ) 0 ©)

k=0

For fixed o, the pair (6;, x,) follows a Markov chain over ® x [0, 1]. Over time, 6,
evolves independently of x,, and x, = g, (x,_1).

An equilibrium steady state is a pair (u, o) where u € A(O x [0, 1]) is an invariant mea-
sure for (6,, x,), and o is optimal given . The optimality condition on ¢ reads as C1 and
C2 below:

Cl1 B(k) =1if py € (1 — p, p) and B(k) =0if p ¢ [1— p, p’
C2 a(k,q)=1ifg>1—p,and a(k,q)=0if g <1 — p,.

We recall that the interim belief p, = P(6, = 1|k) is the belief on the current state. It is
related to the belief on the previous state through the equality p, = (1—A)P(0,_; = 1]k)+
AP(6,_, =0|k). The belief P(0,_; = 1|k) is itself related to the steady-state distribution u
through (4).

The condition that u is an invariant distribution for (6, x,) reads

C3 w0, X)=(1-u(6,g," (X)) +Aun(1— 6, g,' (X)) for all measurable X c [0, 1].

Since we focus on symmetric equilibria, we require in addition that u and o treat the
two states and actions symmetrically. Formally:

C4 B(k)=pB(n—k)and a(k,q)=1—a(n—k,1— q) for each k and q.
C5 p is invariant under the transformation (0, x) — (1 — 6,1 — x).

We denote by G(A) the game with transition parameter A. The proof of Theorem 1
below is in Appendix B.

THEOREM 1: The game G(A) has a symmetric equilibrium steady state.

4.2. Aggregate Behavior: A Consensus Result

We first derive a general result on the aggregate behavior in the population, and prove
that the actions of agents become highly correlated as the state gets close to persistent.

THEOREM 2: Let n > 2 and let (., o) be any equilibrium steady state of G()), for A > 0.
As A — 0, the marginal of ., over x € [0, 1] (weakly) converges to the uniform distribution
over the two-point set {0, 1}.

If ¢ = 0, condition C1 can be omitted. Indeed, if p; > p, it is optimal to play a = 1 for all ¢ so that
a(k, q) = 1. For such k, ¢4(k) = 1 irrespective of (k). Similarly, when p, <1 — p, ¢py(k) =0 for any B(k).
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According to Theorem 2, most likely most agents play the same action in any given pe-
riod. This consensus result implies in turn that most likely most agents draw a unanimous
sample k € {0, n} consisting only of zeroes or of ones.

PROOF: Let A and an equilibrium (u, o) of G(A) be given, and denote by «* the
(steady-state) average fraction of agents whose action matches the state. «* is weakly
higher than the equilibrium payoff w* because information acquisition costs are not ac-
counted for.

Let us list the actions within a generic agent’s sample in some random order
a®,...,a™. One available strategy o, is to simply imitate aV. The strategy o, would
yield a payoff of «* if the state were fixed. Accounting for state transitions, and assuming
aV =1 for concreteness, o yields

w(oy) :=P(6,=11aV =1)=(1 - )"+ A(1 — k") = k" — A,

and thus, w(o;) > w* — A. Since no strategy improves upon w*, this implies that the
marginal gain of observing a® is at most A.

In turn, this implies that ¢ and a® coincide with high probability when A is small.
Indeed, consider the alternative strategy o, consisting in playing a®" if the second action
confirms the first one (¢ = a®) and acquiring information otherwise () # a®). In the
latter case, the agent’s belief is 1/2, hence the agent’s payoff conditional on aV # a®
is v(1/2) — c. Therefore, the payoff w(o,) is a convex combination of v(1/2) — ¢ and of
P(9, = 1|aV) = a® = 1), where the weights are the conditional probabilities of a® =0
and of a® =1 given a® = 1.

On the other hand, the martingale property of beliefs ensures that P(6, = 1|aV) = 1)
(which is also w(a)) is a convex combination of the beliefs 1/2 and of P(6, = 1|a® =
a® = 1), with the same weights. Since v(1/2) — ¢ > u(1/2) = 1/2, and since w(o;) <
w* < w(ay) + A, it follows that the probability P(a'® = 0]a) = 1) that a® contradicts a”
is at most of the order of A.

To conclude, recall that ¢ and a® are independent draws from a Bernoulli distri-
bution with parameter x, where x is first drawn according to w. Since a® and a® co-
incide with high probability, it must be that x is quite close to 0 or to 1, with high u-
probability. Q.E.D.

According to Theorem 2, the population is in consensus in a typical period, with x,
being close to either 0 or 1. At the same time, the consensus must evolve over time in
response to changes in the state. This implies that the population alternates between the
two consensus, and that the transition periods are vanishingly short relative to the time
spent in consensus.

Let us briefly elaborate on the transition dynamics, assuming # = 2 and ¢ > 0 for con-
creteness. We denote by B := B(0) = B(2) > 0 the equilibrium probability of acquiring
information when sampling k € {0, 2}. Theorem 2 implies that, as A — 0, fewer and fewer
agents acquire information, hence 8 — 0. For A small, interim beliefs are p, =1— py = p
and p; = % Since agents either acquire information or herd, it can be checked that x,
evolves according to x, = gy, (x,_1), with

8o(x) =x" +2¢ox(1 —x) + B(Po(1 — x)* — ¢h1_px?), (7

where ¢, :=1 —He(%) and o :=1— Hy(p).
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Fix & > 0. Assume that the state switches to 6,, =1 at a time where the population has
settled on a near-consensus x,_; > 0. As long as x, < &, (7) implies that x,,; ~2¢x, +
B increases at a speed that hinges on 8. As A — 0, the equilibrium value of 8 converges
to zero, and x,,_; is (with high probability) close to zero, so that the number of periods
required until x, > ¢ increases. Once x, > &, since g; is bounded away from the diagonal
y = x on the interval [g, 1 — ], it takes only a finite number of stages, independent of A,
until x, > 1 — &.

The transition dynamics from one consensus to the other thus involves two different
phases. In a first phase, which grows longer as A — 0, the old consensus persists despite
the state change (inertia): most agents observe a unanimous sample and most likely herd,
which slows down society’s response. At some point, though, there is enough hetero-
geneity in the population, and sufficiently many agents draw more balanced samples—
enhancing information acquisition—and the society quickly switches to the new consen-
sus in bounded time: there is a domino effect whereby the popularity of the new action
snowballs.

Since, as A — 0, society is almost always in consensus, and information is acquired with
vanishing probability, the equilibrium welfare is equal to the fraction of time spent in
a correct consensus; in other words, it is directly linked to the duration of the phase of
inertia.

4.3. Equilibrium Welfare

We now focus on equilibrium welfare, and examine how our incomplete learning result
extends to larger samples. For simplicity, we assume here that signals are binary with
precision 7 > 2.

THEOREM 3: If p = 7 — c is high enough, and X is small enough, there exists an equilib-
rium in which py € [1 — p, p] for all k: acquiring information is always a best response.

PROOF SKETCH: We look for an equilibrium where B(k) =1 for all k ¢ {0, n} and
B := B(0) = B(n) € (0,1): agents always acquire information for sure unless they ob-
serve a unanimous sample, in which case they randomize between acquiring information
and herding on the observed action.'” We first show that, whenever n’w (1 — ) < 1, there
exists a B8 > O such that p, = 1— p, = p. We next show that, provided p is high enough, all
other interim beliefs are contained in the interval [1 — p, p], which completes the proof.

Using (5) and (6) for such strategies and binary signals, (x,) obeys x, = gy, (x,_1), with

g (x)=my+ (1= B){x"(1 —m) — (1 — x)"m}, where m =m=1-—m,.

If B =0, the analysis of the case n = 2 (which holds verbatim) implies that society is
eventually trapped in an irreversible consensus. This yields p, = po = %, which contradicts
B =0.If B = X" for an arbitrary m, p, — 1 as A — 0. Indeed, whenever the state switches
to 8 =1, (x,) jumps above g,(0) = B and then increases at a rate of nm > 1. It thus
escapes some fixed neighborhood of 0 in In | stages and next approaches 1 in bounded
time unless the state switches back to 6 = 0. For A small, state changes occur on average
every % > ln% stages; at the steady state, x, and 6, are then close to perfectly correlated.
This contradicts 8 > 0. By a continuity argument, there exists 8, such that p,=1— p, =

p-

0f ¢ = 0, B(k) are the probabilities of following one’s private signal.
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Such a B, is an equilibrium iff p, € (1 — p, p) for each k ¢ {0, n}. Our methodolog-
ical contribution consists in providing estimates of such p, as A — 0. Bayes rule writes

e = [nl—fk, with I, := fol Ui (x) dF,(x), where ¢, (x) = x*(1 — x)"* and F, is the in-
variant cdf conditional on 6—F,(x) = 2u(6, [0, x]) for each x. The argument relies on
approximating I, with A)_,_, ¥, (g1(x)), where g is the tth iterate of g, and (g{(x))z is
a doubly infinite orbit of g;. This sum is similar to the time average of ¢, during a visit to
state 6 = 1, hence this approximation is reminiscent of the law of large numbers.

The proof uses the following observation on F;. As A — 0, the probability of a state
switch in m periods is vanishingly small, hence the distribution F; around x € (0, 1) co-
incides with the push-forward measure (given g;) of F; around g/"(x) for any fixed m.
Specifically, we show that

lim % (Fi(y) = Fi(x) =lim % (Fi(8' () = Fi(gl'(x))) #0

for any x,y € (0, 1). This yields I; ~ )\fzgl(z) Y ez Vi(g1(x)) dFi(x) for some z. In the
limit A — 0, this leads to

ZW(%(@)
Dk teZ

< sup ————— foreach k ¢{0, n}, ®)
Pnk  xe(0,1) Z P (81(x))

teZ

where g,(-) is the function g(-) in the specific case where 8 = 0. It is straightforward to
show that the RHS in (8) is uniformly bounded, which guarantees that p, € (1 — p, p) for
all k£ ¢ {0, n}, provided p is high enough. Q.E.D.

Theorem 3 is reminiscent of the case n = 2 because information is acquired following
all sample realizations. The underlying reason is similar: if information was not acquired
at unanimous samples, society would converge toward a consensus faster than away, mak-
ing such consensus irreversible, hence uninformative. With n > 2, though, the chances of
observing a dissenting action in one’s sample are higher, which lowers the relative speed
of convergence toward the correct consensus. If 7 is large, though, convergence is still
too fast because signals are then more correlated with the true state, and hence, among
each other.!! Actions are then less diverse, accelerating convergence.

Equation (8) yields upper and lower bounds on py/p,_ (the latter comes from an up-
per bound on p,_/pi). These two bounds are quite close if n = 3, allowing for precise
estimates of p; and p,. These equilibrium values are depicted in the right panel of Fig-
ure 4, as a function of 7. Note that p,; > p,, which implies that beliefs are nonmonotonic
in the sample composition.

Some intuition can be found in the left and central panels of Figure 4 (in the case
7 = 0.99). The left panel features the functions g,. Note that g;(0) is close to 0, hence the
population converges quickly toward a consensus on action 0 when 6 = 0. The dynamics
away from 0 is not nearly as fast when 6 = 1. As a result, conditional on x being relatively
low, society is more likely to be transitioning away from 0 than toward 0. Hence, the

This is why Theorem 3 requires 7 to be large, unlike Proposition 2 (see the Supplemental Appendix for
more discussion). In addition, the assumption that c is low helps guarantee that p; € (1 — p, py) for k ¢ {0, n}.
No such condition is required in Proposition 2 since p; = 1.
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FIGURE 4.—Transition functions, densities, and beliefs for n = 3.

current state is more likely to be 6 = 1. This is further illustrated by the central panel,
where we plot the logs of (simulated) steady state, equilibrium densities in the limit A — 0.
We note that this belief reversal p; — p, increases with r, in line with the intuition that
convergence to the correct consensus gets relatively faster.

4.4. The Planner’s Problem

One key question is whether our incomplete learning result is an equilibrium feature
or an inescapable feature of the environment. It turns out that a social planner who could
dictate any strategy would attain a steady-state welfare of 1 in the persistent limit, so
the learning failure is an equilibrium phenomenon. Consider, for example, a (symmetric)
strategy in which the probability of acquiring information is of order A for k =0, is 1
for k = 5] and increases linearly with k € {0, ..., 5}. Such a strategy ensures that the
duration of the phase of inertia is of order In1/A and, therefore, negligible compared to
1/A. This ensures that the prevailing consensus is always correct in the limit A — 0. At the
same time, the expected fraction of agents acquiring information vanishes as A — 0 (see
Lévy, Peski, and Vieille (2022) for details).

5. DISCUSSION

In this section, we review the case p = 1, as well as extensions of our model to asym-
metric environments and to a continuum of actions. Other extensions are discussed in the
Supplemental Appendix.

5.1. The Case p =1

When p =1, that is, signals are free and unbounded, the prevailing consensus is asymp-
totically correct in the limit A — 0, as Proposition 3 shows. This result is in line with
the fixed-state literature (see, e.g., Smith and Sgrensen (2000), Banerjee and Fudenberg
(2004)), in contrast to the case p < 1.

PROPOSITION 3: Suppose p =1 and let n > 1 be arbitrary. For A > 0, let any equilibrium
steady state be given, with payoff w*. Then lim,_,ow* = 1.

PROOF: As before, we list the actions sampled by a typical agent in some random order
a®,...,a™. Let p® be the interim belief formed on the basis of aV) only. One strategy
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consists in replicating a®. Since @V matches yesterday’s state with probability w*, this
strategy yields a payoff u(p") = (1 —A)w*+A(1—w*) > w* — A. Another strategy consists
in ignoring all sampled actions except for a')) and using one’s (free) signal optimally. This
strategy yields a payoff v(p")), which is no larger than the equilibrium payoff w*. Thus,

u(p®) <v(p?) <w* <u(p®) +A. 9)

Since p =1, v(p) > u(p) forall p € (0, 1) and v(p) = u(p) = 1 for p € {0, 1}. Together
with (9), and using the continuity of the functions u and v, this implies lim, ., pV € {0, 1}
and lim,_,,w* = 1. O.E.D.

5.2. Asymmetric Case

The symmetry assumption made so far is quite convenient, but plays no specific role.
Consider a general setup where (a) the probabilities that the state changes from 6 =0 to
0 =1 and from 1 to 0 are Ap* and A(1 — p*), respectively, so that the invariant probability
of state 1is p* € (0, 1), (b) the utility is an arbitrary function u : {0, 1} x ® — [0, 1], and (c)
the (unconditional) distribution of private beliefs is an arbitrary distribution H € A([0, 1])
with expectation 3.

There exist cutoffs 0 < pg < pt <1 such that v(p) > u(p) iff p; < p < p;. The results
of the paper extend under the assumption that 0 < p§ < p* < p; < 1. This is a joint as-
sumption on all primitives of the model. The assumption that pj, pi € (0, 1) states that
signals are either bounded or costly (counterpart of Assumption 2). The assumption that
Py < p* < p; ensures that any steady-state equilibrium entails some information acqui-
sition (counterpart of Assumption 1). The detailed statements are in the Supplemental
Appendix.

5.3. Continuum of Actions

While we have considered binary actions so far, we provide suggestive evidence that the
discontinuity at the limit A — 0 could arise as well with a richer (infinite) action set.

For concreteness, assume A4 = [0, 1] and a square loss utility function u(a, ) =1 —
(a — 0)*. Note that, if ¢ =0, one has p = 1 even with bounded signals because actions
are responsive to any extra information; we thus assume ¢ > 0 to stick to the assumption
p<l1

In the fixed-state version where a continuum of new agents sample at least two actions
from the past, the distribution of actions converges over time to the correct action (see,
e.g., Lee (1993)). With an evolving state, Proposition 4 below shows that the average dis-
persion of actions in the population vanishes as A — 0, thereby extending the consensus
result of Theorem 2. The proof is in Appendix D.

PROPOSITION 4: Assume n > 2 and denote by a®, a® any two sampled actions. At any
equilibrium steady state, one has

E(a —a")] < .
where vy is independent of A and of the equilibrium.

A full-blown analysis of equilibrium behavior and welfare is highly challenging, and be-
yond the scope of the paper anyway. Without aiming at generality, we discuss here the
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example of perfect signals, which yields results consistent with our incomplete learning re-
sult. If the state is fixed, all agents acquire information in the first period and convergence
to the truth takes exactly one period. When the state is evolving, the population in period
t is described by the pair (6,, x,), where x, € A([0, 1]) is the distribution of actions in the
population. Accordingly, an equilibrium steady state is a distribution u € A(® x A([0, 1])).
We describe an equilibrium where all agents in period ¢ choose the same action a, €
[0, 1]: actions are perfectly correlated, and inferences are independent of the sample size
n.
In period ¢ + 1, agents then hold the interim belief f(a,) := (1 — A)a, + A(1 — a,). If
f(a,) ¢ [1— p, p], all agents choose the action a,,; = f(a,). If instead f(a,) € [1 — p, p],
all agents acquire information, learn the state, and choose a,,; = 6,,; € {0, 1}. Either way,
the consensus is preserved in period ¢ + 1. In this equilibrium, agents acquire information
periodically: when agents learn that the current state is, say, 6, = 1, their actions are a, =
1,a,.1 = f(1), etc., until they acquire information in period ¢+ M,, where M, := Li';gf ;BJ .
The marginal w, € A(A([0, 1])) over action distributions is uniform over the degenerate
distributions &8 m@ (0 <m < M,, 0 € ©).
As A — 0, u, weakly converges to a distribution concentrated over degenerate distribu-
tions 8,, a € [0, 1]. In the persistent limit, actions are perfectly correlated within periods,
and the consensus action @ has a density: there is no complete learning.'?

6. RELATION TO THE LITERATURE

Our paper especially connects to five themes in the literature on social learning.

Random sampling. Banerjee and Fudenberg (2004) and Smith and Sgrensen (2020)
also assume that agents draw a random (finite) sample from a continuum of past actions
and identify conditions under which learning is asymptotically complete when the state is
fixed. As these papers note, models with a continuum of agents inherently exhibit better
aggregative properties than those with a sequence of agents. Indeed, when agents observe
a common set of predecessors in one-agent models, some histories trigger an incorrect
cascade if signals are bounded. With a continuum of agents, instead, agents update beliefs
considering all possible (mutually exclusive) histories, weighted by their chances (Smith
and Sgrensen (2020)). In addition, as soon as agents observe two or more actions, they
will rely more on their private signals when their sample conveys mixed evidence, which
fosters learning. With a fixed state, this logic guarantees complete learning even when
signals are bounded and/or costly (Banerjee and Fudenberg (2004)), and our results thus
come in stark contrast.

Costly information acquisition. Our modeling of costly information acquisition relates
our work to Burguet and Vives (2000) and Ali (2018), who study within one-agent obser-
vational learning models whether costly private signals preclude (or not) complete learn-
ing when the state is fixed. Burguet and Vives (2000) endogenize the choice of precision,
and argue that complete learning arises when information is acquired at beliefs close to
certainty.'* Likewise, agents in Ali (2018) can choose from a set of experiments, at an
idiosyncratic cost. When costs are bounded away from zero, learning is incomplete as
soon as signals are bounded. Unlike these papers, we assume a continuum of agents. In

2One can check that this density is 2= (1(5,11(a) — 1jp,1-5;(a)) up to a normalization constant.

BFor more complete surveys of this literature, see Smith and Sgrensen (2011) and Bikhchandani et al.
(2024).

YThis is in line with our discussion of endogenous information structures, see the (Supplemental) Section H.
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this more favorable setup, learning is complete when the state is fixed if n > 2, even if
signals are costly (see our extension of Banerjee and Fudenberg (2004) to costly signals
in the Supplemental Appendix), in contrast to our main results. The example we analyze
in Section 5.3 of a model with a continuum of (responsive) actions reinforces our mes-
sage: costly signals do not preclude complete learning with a fixed state, but concur to
incomplete learning with changing states.

Changing states. Our paper also relates to a stream of papers on social learning in a
changing world. Moscarini, Ottaviani, and Smith (1998) show that cascades must end in
finite time, but arise for sure when the state is persistent enough. Based on their setup,
Huang (2022) shows that in the long run the frequency of action changes is higher than
that of state changes. In a different line of research, Ellison and Fudenberg (1995), Ace-
moglu, Nedic, and Ozdaglar (2008), and Frongillo, Schoenebeck, and Tamuz (2011) con-
sider non-Bayesian models in which agents follow specific heuristics.

Stationary analyses of social learning. Dasaratha, Golub, and Hak (2023) and Kabos and
Meyer (2021) also develop stationary analyses of social learning. Dasaratha, Golub, and
Hak consider a Gaussian environment where agents in a network learn from their neigh-
bors. They show that learning is improved when agents have heterogeneous neighbors
who have access to signals of different precision. While we rule out such heterogeneity,
our analysis also highlights the adverse welfare impact of an excessive correlation of ac-
tions between (symmetric) agents. Kabos and Meyer consider a Markovian environment
where past actions may be misrecorded, and investigate whether agents put too much
or too little weight on their private information, while we focus on providing bounds on
equilibrium welfare.

Rate of learning and the Grossman-Stiglitz paradox. Our results echo the well-known
Grossman-Stiglitz paradox (Grossman and Stiglitz (1980)) according to which agents
would ignore their individual signals if information was fully aggregated, precluding in-
formation aggregation in the first place. In a fixed-state world where asymptotic learning
is guaranteed, such a logic imposes that learning be necessarily slow, as shown in Vives
(1993). In a social learning context, Harel, Mossel, Strack, and Tamuz (2021) also estab-
lish slow social learning even if agents observe several actions, because the correlation in
the agents’ actions arising from social learning reduces the amount of information these
actions reveal about the state (see also Huang, Strack, and Tamuz (2024) on slow conver-
gence). While a high correlation reduces the speed of learning with a fixed state, it lowers
responsiveness, hence steady-state welfare, in our changing state environment.

7. CONCLUSION

We consider a general model of social learning with binary actions and states in which
states change over time, information is possibly costly, and agents draw finite samples of
past actions. We show that, under a wide range of situations, the possibility that the state
changes drastically limits the extent of social learning at the steady state, in crisp contrast
to what would happen in analogous fixed-state environments. Beyond this insight, the
methods we develop could pave the way to address interesting questions on how a planner
would optimally design the learning environment (sampling procedures, feedback given
to players, etc.) to foster the welfare gains from social learning.

APPENDIX A: THE CASE n = 2: PROPOSITION 2

We argue by contradiction and assume that p, > p for some equilibrium steady state.

Since agents who observe a balanced sample k = 1 hold the belief p; = 1 and acquire
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information, the fraction of agents choosing action 1 in period ¢ + 1 reads
Xip1 = X,Z + 2xt(1 - xt)‘f’ﬁm 5

where ¢y =1 — H,(3) is the probability of playing action 1 in state 6 when holding an
interim belief ;. Note that ¢; =1 — ¢ > 1.

LEMMA A.1: The sequence (x,) converges a.s., with lim,_, , , x, € {0, 1}.

PROOF: Choose (59 > ¢, such that (Z>0<l~51 < i, and gy > 0 such that 2¢4 + ¢y < 2q~59 for

each 6. Note that gy(x) < 2J>9x for x < &y. ‘
Let € < g be arbitrary. We define two interlacing sequences (77),, and (7°"),, of stop-
ping times. We first set

O

" =inf{t>0:x, <egand §,=0, orx,>1—eand §, =1},

and 7i" := inf{r > 79" : x, € [, 1 — &]}, with inf ) = +o0.
These are the ﬁrst exit and entry times in [e, 1 — ]."" For m > 1, we set

o ::inf{tz ™ :x, <eand §, =0, orx, > 1 — ¢ and 9,:1},

and i =inf{r > 70 1 x, €[e, 1 — €]}
Below we show that (x,) cannot remain indefinitely in the interval [g, 1 — &].

CLAIM 4: One has P(13%, < 4o0|Tt < +00) =1 for each m.

PROOF: For x, =x €[g,1 — €], one has

gi(x) —x=x—go(x) =2d —1)(x —x*) = 2 — 1) e(1 — ¢) (A1)
and, therefore, the difference x,.; — x, is bounded away from zero. With N :=
[m] and using (A.1), it follows that x, € [, 1 — ¢] implies x,,x ¢ [, 1 — ¢] as
soon as 0,,; = - - - = 6,, 5, Which has probability (1 — A)". This implies

P( out <t+N|Tm<t<Tom)Z(1—A)N

m+1
and, therefore,

P(r0% >t + jN|mh <t <" )5(1—(1—)\)N)j

m+1 m+1
for each j. The result follows when j — +o0. Q.E.D.
We show that the probability that x, ever reenters the interval [e, 1 — ¢] after it exits
from it, and is bounded away from 1. In the next statement, (#,), is the natural filtration

of (6,, x,); and H ou is the stopped filtration at time ;"

CLAIM 5: There exists a > 0 such that for each m, P(tit = +-00|H on) > a, wp. 1 on the
event TO" < +00.

SExcept for the extra condition on the exit state in the definition of 79!, which is for convenience.
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PROOF: Consider the event 70" = ¢. We assume for concreteness that x, < ¢ and 6, = 0.
By the Markov property, we may assume w.l.o.g. that t =0 and m = 1.

We define an auxiliary sequence (W) of random variables by W, =0 and W, =
W, + 1n2d>9r . for ¢ > 1. Since x,; < 2x,¢>9 1> one has W, > Inx, — In x, for each ¢. This
implies that 7" > inf{z > 1: W, > 0}, and P(7" < +00) < P(sup,., W; > 0). Introduce the
successive state changes o = 0 and ¢, := inf{t > ¢, : 6, # 6,_1}. Assuming 6, = 0,
0, = 1 whenever ,,,_1 <t < 5, for some m, and 0, = 0 otherwise.!®

ForieN,set X;:=W,, ., —W,,. Observe that W, — W,_, > 0 iff 6, =1, hence

supW, =20 <« sup(Xo+---+X;) = 0.
t i

Ther.v.’s (X;) are i.i.d. with E[X;] = 1 (In 2¢1+1n2¢,) < 0. The sequence (Xo+---+X;);
is therefore a simple random walk with negative drift, which implies

P(sgp(X1 + 1+ X)) > 0) <1—a forsomea>0. OED.

Claims 4 and 5 yield P(7%" < 400 and 7pn, | = 400 for some m) = 1. Hence, there is
a.s. finite random time 7, such that either x, < ¢ for all t > T;, or x, > 1 — ¢ for all
t>T,. Q.E.D.

LEMMA A.2: The only symmetric invariant measure for (0,, x,) is uniform over ® x {0, 1}.

PROOF: By Lemma A.1, any invariant measure is concentrated on @ x {0, 1}."” Since
the sets {x = 0} and {x = 1} are absorbing for (0,, x,), one has for a € {0, 1}

M(O, Cl) = P((0,+1, xt+1) = (0, a))
= (1= )P((6:, x,) = (0, a)) + AP((6,, x,) = (1, a))
=1 -0, a)+Au(l, a).

Hence, (0, a) = (1, a): w is a product distribution. Since w is symmetric, it is uniform.
Q.E.D.

The result follows. By Lemma A.2, p, = % — a contradiction.

APPENDIX B: EQUILIBRIUM EXISTENCE: THEOREM 1

We prove existence using a fixed-point argument. Define:

e M to be the set of distributions u € A(® x [0, 1]) that are invariant when permuting
the two states.

e B to be the set of b = (b,) € [0, 1] such that by =1 — b,_, for each s, with the
interpretation that by is the interim belief that 6 = 1 when sampling s.

e @ to be the set of ¢ = () € [0, 1]9*%" such that ¢o, =1 — ¢, for each s,
with the interpretation that ¢, , is the overall probability of playing action 1, when in
state 6 and sampling s.

161f 9y = 1, odd and even phases should be switched.
"Indeed, by the invariance property, u(® x [&,1 — &]) = P(x, € [, 1 — €]) for each ¢. By Lemma A.1, the
RHS converges to zero as t — +oo for each ¢ > 0.
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M is compact metric when endowed with the topology of weak convergence, and 3, :=
M x B x @ is convex compact with the product topology. We define a set-valued map
V:3 — 3 by V(u, b, d) = (d) x () x Y3(b), where iy, 2, 3 are defined below.

Definition and Properties of

Let ¢ € ® be given. It induces a (symmetric) Markov chain (6, x,) on Q :=0 x [0, 1],
with (x,) obeying the recursive equation

xm=0=p)x;+p Zbinn,x, (), s, withbin, (s):= (’;) x*(1—x)".

5s=0

We set ¢(¢p) :={n € M : p is invariant for (6,, x,)}.
LEMMA 2: The map i, is uhc, with nonempty convex values.

PROOF: The proof is standard and only sketched. For given ¢ € ®, denote Py (w, dw")
the one-step transition probability of (6,, x,). Note that the support of Py(w,dw’) is a
two-point set, for each w € (.

For fixed ¢ and f € C(Q), the map Tf(w) = [, f(w')Py(w, dw’) is continuous over ().
This implies that u € M +— uP, is continuous in the weak-* topology, and thus has a fixed
point by Tychonov theorem. Thus, ¢, () # @.

The same argument shows that (¢, u) € ® x M +— wP, is continuous as well and linear
in w. This completes the proof. Q.E.D.

Definition and Properties of s,

Fix w € M. The probability of sampling s € {0,1,...,n} in state 6 is Py(s|u) :=
Jio. binta < ($) e (dx), where puq is the conditional distribution of x given 6." Denote by
Y5 (w) the set of all beliefs b, € [0, 1] that are consistent with Bayesian updating, that is,

Y3 () = {b, € 0,11 Po(slm) (1 — b)) = Po(slm)b ),

and set
Pa(p) := {b € l_[ Y3(un):by=1—b,_ for each s}.
The proof of Lemma 3 below is straightforward.
LEMMA 3: The map i, : M — B is uhc, with nonempty convex values.

Definition and Properties of 5

Fix b € B. For given s, 6, we define ¢/3°(b,) as the probability of playing action 1 when
holding the belief b; in state 6. Formally,

o 20 (by) ={1}if by > p and ¢3°(b,) ={0}if b, < 1 — p.

o ¢3°(b,) =[1—Hy(1—by),1—Hy(1—by)—]if by (1 - p, p).

8By the symmetry assumption, @ is uniformly distributed under w, so the conditional distribution is well-
defined.
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o 93"(p):=[1—Hy(1-by), 1] and ¢3"(1 = p) :=[0, 1 = Hy(1 - b))—].
We next set

P3(b) :={ped:d,, € 3 (by) for each (6, s) and ¢g, =1 — ¢, ,_, for each s}

The proof of Lemma 4 is straightforward.
LEMMA 4: The map 5 : B — ® is upper hemicontinuous with nonempty convex values.

By Kakutani—Fan—Glicksberg theorem, W has a fixed point. By construction, the fixed
points of ¥ are the symmetric equilibrium steady states. We conclude by proving that
there is an equilibrium (o, p) such that u has no atom at 0 and 1."

LEMMA 5: Let (o, ) be an equilibrium. There exists an invariant distribution @' for o
with no atom at 0 nor 1, such that (o, w') is an equilibrium.

PROOF: We start with two observations. Let g4 : [0, 1] — [0, 1] describe the evolution
of x induced by o. If g4(x) =0 for some x € (0,1) and 6 € O, then this holds for all
(x, 0) €[0, 1] x O—contradicting the symmetry assumption. In addition, g,(0) = 0 if and
only if B(0) =0 (agents with a unanimous sample do not acquire information).

Assume that p has an atom at 0. Since gy(x) > 0 for all x € (0, 1), this implies that
g0(0) = 0 and, therefore, that B(0) = 0. Write u = p, . + (1 — p.)u’, where u, is the
uniform distribution over © x {0, 1} and w’ has no atom at 0 nor 1. Since 8(0) = B(n) =0,
W, is invariant for o and, therefore, u' as well. Since samples are a.s. unanimous under
M., the interim beliefs p, for k # 0 and k # n are the same, whether they are computed
using u or w'. In addition, p, is higher when computed with p than when computed with
. and is therefore even higher when computed using u', and a symmetric property holds
for p,. This implies that (o, n') is an equilibrium, as desired. Q.E.D.

APPENDIX C: NO SOCIAL LEARNING: THEOREM 3
C.1. Notation and Preliminaries

Slightly enriching the notation from the text, let us set
gh(x)=m+(1-B)x"(1—m) — (1 —x)"m} (withm =7m=1-m).

We note that g” is an increasing bijection from [0, 1] to [y, 7y + (1 — B)(1 — )], and
that there is a unique ¥4 such that gf (¥7) = x%. In addition, g is concave on [0, 1], (g7)’
is convex on [0, 1] and g (x) — x is decreasing on [5,1].

YWe note that whenever there is an equilibrium (o, u) with welfare w* > p, there is an additional, atomic
one with welfare p provided A is small. Indeed, if w* > p and A is small, agents do not acquire information with
a unanimous sample. Consider now the noninformative, uniform distribution w, over ® x {0, 1}. It is invariant
for o and, therefore, any convex distribution w, :=ru, + (1 — r)u as well. For k ¢ {0, n}, interim beliefs py(r)
inferred from w, are constant in r, while p,(r) is decreasing in . Thus, (o, u,) is also an equilibrium, provided
riss.t. p,(r) > p, and the welfare spans the interval [ p, w*]. We view this source of equilibrium multiplicity as
spurious. Indeed, such equilibria are ruled out when requiring that equilibrium distributions w have no atom
at 0 and 1 (such equilibria exist) with no impact on our results.
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We denote by hf : [gg(if), gg(if)] — [)'cff, )'cf] the inverse of gg on [gg(if), gg(X’f)]. We
will view 4% as a function defined on [%5, X/] by setting

hi(x)=x; forx>gf(¥) and h{(x)=x forx<g/(x}).

Given A, any invariant measure w, g for the strategy 8 is concentrated on 0 x (xF, x%).
We denote by F,"?(x) := 2u, ({6} x [0, x]) the cdf of the population state given 6.

To avoid clumsy notation, we henceforth omit the superscripts 8 and A and simply write
Xg, w, Fy, 89, ho, and py. The mth iterate of g, is denoted gJ'.

Given a (symmetric) invariant measure u for B8, time invariance implies that

Fy(x) = (1= A)Fy(ho(x)) + AF1_g(h1_e(x))
for each 6 € ® and x € [X, X4]. (C1)

LEMMA C.1: Foreach x € [Xy, X1] and 0 € O, one has
|Fo(x) — Fy(ho(x))| <A and |Fy(x) — Fy(go(x))| <A

PROOF: The first claim follows from (C.1), the second when applying the first to g,(x).
Q.E.D.

LEMMA C.2: Let &€ > 0 be given. There exists k such that for each B small enough, the
following holds. For each x > &, y € [x, g1(x)], A > 0, and m € N, one has

x (Fi(y) — Fi(x))| < mkA.

LE(E0) ~ R () —

A

In addition, for each x, y € (0, 1), one has
lim(Fy(y) — Fi(x)) =0.

PROOF: Let ¢ > 0, and assume that n7p < . There exists & s.t. g5 (g1(x)) < x, hence
ho(g1(x)) < ht™(x), for each x > e. By Lemma C.1,

Fo(ho()) < Fo(ho(g1(x)) < Fo(hg (x)) < Fo(ho(x)) + kA,
hence
Fy(ho(y)) — Fo(ho(x)) < kA. (C2)
Applying (C.1) repeatedly, we obtain
Fi(g7'(») = Fi(g1'(x))
=1 =N (Fi(er' () = Fi(g! ' (0)) + A(Fo(o(87' (1)) = Folho(87'(x))))
= (1= )" (F(y) = Fi(0)) + A 3 (1= (Fo(ha(81())) = Fo(ho(8} (1))

i=1

<Fi(y)-F((x)+ mkA?,
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where the last inequality follows from (C.2), since g\ (y) € [g}(x), g1(g}(x))] for each i.
Under the same conditions on B, for given x and y there exists m such that

y < g"(x). Using Lemma C.1, one has Fi(x) < F;(y) < Fi(x) + kA for each A >

0. Q.E.D.

C.2. The Choice of B
Given A small, we prove here the existence of a strategy 8, such that agents with a

unanimous sample are indifferent whether to acquire information.?

PROPOSITION C.1: For any m > 0 and A small enough, there exists B, < A", and an in-
variant measure for B,, such that p, =1— py= p.

The result follows from Lemmas C.3, C.4, and C.6, and from the fact that the set of
symmetric invariant measures is convex-valued and upper hemicontinuous as a function
of B €[0,1].

LEMMA C.3: Let B =0.Then p, = p, = 3, for each A.

PROOF: Since n*7(1 — ) < 1, the statements of Lemmas 2 and 3, and Claims 4 and
5 from Appendix A remain true verbatim. The only (symmetric) invariant measure is the
uniform distribution over ® x {0, 1}. Q.E.D.

LEMMA C.4: Let m > 0 be given. For A > 0, set B = \". Then lim,_, p, = 1.

PROOF: Observe that g;(Xo) > Bm = A”x. On the other hand, since g;(0) = (1 —
B)nm > 1, there exists ¢ > 0 and a, > 1 such that g;(x) > a,x for every x € [, €] and
A small enough. Hence, there exists some M independent of A such that gi(x,) > & for
each i > MIn 1. Using Lemma C.1, it follows that

(MIn 1

Fie) <FiE)+ Y Filgi(8) = Fi(gi() < MAIn

i=0

hence lim,_,¢ F;(¢) = 0. Using Lemma C.2, this implies lim, ., F;(x) = 0 for each x < 1
and by symmetry, lim, ., Fy(x) = 1 for each x > 0. The result follows. Q.E.D.

C.3. Estimates on F

From now on, we set B8 = ,. We here derive further estimates on the invariant mea-
sure.

LEMMA C.5: Foreach x € (0, 1), one has
1 .
hm (Fl(gl(x)) Fl(x)) = 2p —1.

XThe existence result requires no assumption on p, beyond p € (3, 1), but the value of B, of course depends
on p.
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PROOF: Let ¢ > 0 be given. By Lemma C.1, one has

lim(fol(l — x)"dFy(x) — Fg(g)) =0.

A—=0
1 n N
Since % == 1’7”, this implies that F,(e) is bounded away from zero as
o U= 0

Fi(e) _ 1-p
Fo(e) = p°

On the other 0hand, symmetry and Lemma C.1 imply that lim,.,Fi(e) =1 —
lim,_,¢ Fy(¢)). Thus, lim,_,Fi(e) = lim,(F;(x) =1 — p for each x € (0,1), and

lim,_( Fy(e) =lim,_( Fy(x) = p for each x € (0, 1). It follows that

A — 0, with lim,,

1 . .
lim (1 (21() ~ F1(0)) = lim(F (o) ~ () =25 -1 o p
LEMMA C.6: For each & > 0 and 0, one has limsup,_ ((Ae + A?)™" [ xdF,(x) < oo.

PROOF: Fix ¢ > 0, and assume for concreteness 6 = 0. The other case follows a similar
logic. Note first that [’ xdFy(x) < BaA™" + fﬁg“,l xdFy(x). Since B, < A%, the first integral
is at most A% for A small.

On the other hand, note that gy(x) < X, + (maxz, , g,) (x — Xo) for each x € [¥, X;].*!
Since g'(0) = (1 — By)n(1 — ) < 1, and provided ¢ is small enough, there exists some
ag < 1 independent of A such that g,(x) < agx for each x € [Xg, €] and A small. Using
Lemma C.1, one therefore has

/B L wRm< Y g@R ) - Folg ()]

A1
A mgf(s)>BAA~!

1
<A Z gg’(s)f)\Zag"esl_aO/\s.

migh! ()= A1

Q.E.D.

C.4. Estimates on Interim Beliefs

Proposition C.2 below is the central step. For k € {1, ..., n — 1}, we set ¢, (x) = x*(1 —

x)"*, and denote by g, the function g” in the limit case 8 = 0. Proposition C.2 relates
likelihood ratios to the average value of ¢, and ¢, along doubly infinite orbits of g;.

PROPOSITION C.2: Foreach k € {1,...,n — 1}, one has

Z i (81(x))

. Pk i€Z
lim sup =S . - (€3)
As0 Dok xe(1) Z ¥k (81(x))
ieZ

We emphasize that in this statement, the interim belief p, depends on the transition
rate A and the information acquisition strategy £3,.
. . . e i Pk~ Yiez Vi (8 (%))
Exchanging p, and p,_, yields the inequality liminf, ., o 2 inf,c(,1 ST

2In the case = 1, there is k such that g¥(x) > e for each x > BA~L.
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PROOF: Lete>0and k €{1,...,n— 1} be given. Given A, we choose m (independent
of A) such that g""'(g) > 1 — e and set & = 1 — g""' (&) < &. Note that

P _ /Olzpk(x)dFl(x)

1 . (C.4)
/0 Yoot (x) dF (x)

We write the numerator as
& 1-¢ 1
Ny ::/0 Ur(x)dF(x) -1—/'S Yr(x)dF (x) + /]‘6/ Yr(x)dF(x).

Because of Lemma C.6 and since [\, i (x) dF)(x) = f(f, ¥, (x) dFy(x) by symmetry,
there exists Cy < +oo such that for every A small, one has

+1 (&)

Ny =cp.Ae+ Z / Y (x) dFy (x), (C.5)

51(8)

for some ¢, , € [-C), Co]-
Let iy = max{i : g'(¢) < 3} and z = g"(&).”? For each i, the change-of-variable formula
for Stieltjes integrals yields

g ) 21(2) - -
/ () dF (x) = [ bl () dF (g7 ().

1(2)

Lemma C.2 and the continuous differentiability of ¢, and of g1 “ imply the existence
of C; < oo such that

g1(2) o o 81(2) i
/ be(g () dF (g7 (x)) = / W8] () dF, (x) + dy mkA°

for some d, , € [-C,, C,]. Plugging into (C.5), we get

1 m—io 81(2)
_Nk =cy.&+d) mkA+ Z / «(81(x)) dFi(x). (C.6)

i=—Ip
For fixed &, we deduce from (C.6) and its counterpart for N,_, that

m-—1i

1 8@
Cr,c€ + d)\,emk)\ + < / |:Z lpk gl(z) :| dF] (x)
I==1

Pk _ (C.7)

Pn—k ) : 1 [a@[mzio ‘
C,.&+d, mkX+ 1 /z Z tﬁn_k(gl(z)) dF;(x)
for suitable constants ¢, , and d .

i=—ig

2Note that for A small, iy does not depend on A.
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We note that Lemma C.5 implies that for a € {k, n — k}, the expression

81(2)
1/ W (x)dF(x) >< min ¢/ (x)) X min ]}\(Fl(gl(z)) — Fi(x))

A gi1(l— zele,g1(s)

is bounded away from zero as A — 0.
It thus follows from (C.7) that

M7i0

81(2)
/ [Z lﬁk(gi(z))} dF,(x)

i=—iy

+ C(e+ mk)) (C.8)

P
m i(]

<
Pn—k 81(2) -
>

l:*io

lﬁn—k(gi(Z))} dFy(x)

for some constant C. We now note that

m—iy

g1(2) M~
/ S (g1 (x) dF (x) > he(gi(@)
: " < sup i — (C.9)

gi1(z) M1 ) xelz,81(2)] mTh .
[ ) ane > k(8 ()

i=—ig i=—ig

For fixed & (and hence fixed m and i), the right-hand side of (C.9) converges to

Vn*io

> (8 (x)) > (&)
i=—io i€Z
sup , T
x€[2,81(2)] ey _ Y i(g (x))
Z ‘pn—k (gl (x)) ,GZZ I
i=—iy
as A — 0. Taking first the limit A — 0, then & — 0 in (C.8) yields the result. Q.E.D.

C.5. Conclusion

We have shown that given p, there is Ay such that for A < A, there is a strategy 8, for
which p, =1— p, = p. To complete the proof, we need to show that provided p is high
enough, all interim beliefs p, (k =1,...,n — 1) are such that p, < p for A small. This
follows from Proposition C.2 and Lemma C.7 below.

LEMMA C.7: One has sup, Y ., ¥« (8 (x)) < +ooand inf, >, , ¥, (g (x)) > 0.

PROOF: For the lower bound, note that inf, Y, , ¥« (8} (x)) > minxe[%’gl(%)l Yr(x) > 0.

For the upper bound, let ¢ > 0 be such that a; := miny, g (x) > 1 and a, :=
maxp, ) 8,(x) <1,andlet mbes.t. g7"(e) > 1 — &.
Then, for each x € (0, 1), one has

Zwk §i(x)) < Z P (81 (x)) + Z P (81 (x)) + Z P g1(x))

i€Z i8] L(x)<e zgl(x)e(s 1-¢) zgl(x)zl &
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< Y EWt+m+ Y (1-giw)

i3} (x)<e i3} ()=1-¢

<

a;
1—¢)= .
al—18+k+1—a0( g)=C<o0 Q.E.D.

APPENDIX D: CONTINUUM OF ACTIONS: PROPOSITION 4

Denote by p,n and p,u,e the interim beliefs after sampling one or two actions. The
action a® coincides with the posterior belief of the sampled agent, hence E[u(aV)] is
an upper bound on the welfare and E[u(p,0,0)] < E[u(aV)]. On the other hand, taking
transitions into account, one has

pa = (1= 1)a + A(1—a) (D.1)

and, therefore, E[u(p,0,2)] < E[u(p,0)] + A
Since u is quadratic, u(p) = u(q) + (p — q)u'(q) + (p — q)* for each p and g, so that

E[u(p,0,0)] —E[u(p.m)] =E[(Psv.» — P0) 2P, — D] +E[(Pav,o — Pav)’]-

By iterated conditional expectations, the first expectation on the RHS is zero, so that
E[(p,0m.0 — P.0)*] < A and similarly, E[(p,0,0 — p.»)*] < A. Using the inequality (x —
y)? <2(x* +y?), we get E[(p,0) — p.@)?] < 2A. The result follows from (D.1).
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