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Abstract. Two players bargain over a single indivisible good and a transfer, with
one-sided incomplete information about preferences. Both players can offer arbi-
trary mechanisms to determine the allocation. We show that there is a unique
perfect Bayesian equilibrium outcome. In the equilibrium, one of the players pro-
poses a menu that is optimal for the uninformed player among all menus, such that
each type of the informed player receives at least her payoff under complete informa-
tion. The optimal menu can be implemented with at most three allocations. Under
a natural assumption on the uninformed player’s beliefs, the optimal menu coincides
with the Myerson’s neutral solution to the bargaining problem in this environment.

In a standard model of bargaining, one party proposes an allocation of the bar-
gaining surplus and the other party either accepts or rejects it. However, offers made
during real-world negotiations are often much more complex. Instead of a single al-
location, parties may offer menus of allocations for the other party to choose from.1
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1See Jackson et al. (2020) for real-world and experimental examples. I had an opportunity to
observe bargaining over a pension plan reform that took place in 2016-18 between three Ontario
universities and the representatives of faculty and staff. Among other issues, the parties negotiated
the size of the spousal benefit, early retirement options, inflation indexation, etc. While the uni-
versities only cared about the total actuarial cost, the preferences of the labor side were uncertain,
mostly due to its heterogeneity (for instance, the staff, but not the faculty, valued early retirement
more than the spousal benefit). Ultimately, the universities proposed a menu of options, and the
labor side chose an option from this menu.
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They may offer to settle the dispute with an arbitrator.2 They may offer to alter
the bargaining protocol, for example, by dividing the dispute into smaller areas and
settling them separately, or by establishing deadlines.3 We teach our students (and
our children) that a fair cake division can be found through procedures like “I divide
and you choose.”4 All such offers can be represented as a mechanism, the outcome
of which determines the final allocation. The goal of this paper is to study the role
of mechanisms as offers in a strategic model of bargaining by addressing the follow-
ing questions: Does expanding the scope of offers to general mechanisms affect the
way in which parties bargain? Which mechanisms are offered in equilibrium? Is the
equilibrium efficient?

A natural setting for studying mechanisms as offers is one in which there is incom-
plete information about player preferences. To stay as close as possible to the exist-
ing literature, we consider a version of multi-round random proposer model (Okada
(1996)). There are two players, Alice and Bob, who decide who should get a sin-
gle indivisible good. Probabilistic allocation as well as transfers are allowed. Bob’s
value for the good is known. Alice’s value is her private information. In each period,
a randomly chosen player is given an opportunity to offer a mechanism, which the
other player accepts or rejects. A mechanism is defined as an arbitrary game, where
players’ choices determine the final allocations. When the offer is accepted, the mech-
anism is implemented and the bargaining ends. We study perfect Bayesian equilibria
(PBE), with the only restriction being that Bob’s off-path beliefs about Alice’s types
do not change after his actions. By varying the probability with which the proposer
is chosen, the model can span a whole range of bargaining games, including those
where all offers are made by either the informed or the uninformed player.

2During the 2019-2020 dispute between the Ontario government and teacher unions, both parties
called upon the other to accept mediation but could not agree on the same mediator (Rushowy
(2020), Moodie (2019)).

3EU accession negotiations typically take the form of independent bargaining over 30-40 areas.
4An example of such mechanism is the Texas shootout clause used in the dissolution of a part-

nership: one partner names a price and the other partner is obliged to either sell her shares or buy
the shares of the first partner at the price. I am grateful to T. Tröger for this example.



BARGAINING WITH MECHANISMS 3

Any strategic model of bargaining under incomplete information must deal with
the following problems. Due to a screening problem, Bob’s offer may be acceptable to
some but not all types of the opponent. This may lead to a delay and a new offer for
the remaining types, which may change the incentives to accept the original one. Due
to a signaling problem, by making or rejecting an offer, Alice reveals some private
information, which may hurt her and benefit Bob in future bargaining rounds. Due to
a “belief punishment” problem, Alice may accept or make an unfavorable offer because
off-path deviations are punished with beliefs that lead to a low continuation payoff.
The signaling and belief-threat problems typically lead to multiplicity of equilibria,
which can sometimes be resolved through equilibrium refinements.

This paper shows that when players are allowed to offer arbitrary mechanisms, the
problems have a satisfactory solution. The main result is that Bob’s PBE payoff is
unique and Alice’s payoff is generically unique. In the equilibrium, one of the players
proposes a screening menu that is optimal for Bob, subject to the constraint that
each of Alice’s types receives at least her complete information payoff. The menu
has a natural interpretation: Bob gets a fraction of the probability of receiving the
good equal to his bargaining power and either purchases the remaining fraction from
Alice at the price equal to his valuation or sells his own fraction at optimal (for him)
price. The final outcome is interim efficient, but not ex-post efficient. The solution
has natural comparative statics with respect to information: Bob is better off when
his information improves. When Bob’s beliefs converge to certainty, the outcome
converges to the complete information Nash solution.

The proof of the uniqueness parallels the argument for the uniqueness of the sub-
game perfect equilibrium payoffs in Rubinstein’s alternating-offer game. We develop
step-by-step bounds to contain the equilibrium payoffs and show that the lower and
upper bounds converge to the same outcome. Two types of mechanisms play a role
in the proof. On the one hand, Bob’s ability to offer menus (of allocations, for Alice
to choose) allows him to screen among Alice’s types without them worrying about
revealing information. On the other hand, Alice’s ability to offer menus (for Bob to
choose) of menus (of allocations, for Alice to choose) allows her to protect herself from
the “punishment with beliefs.” To see a simple intuition for the latter point, suppose
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that Alice considers an off-path deviation to one of two mechanisms m ∈ {m1,m2}
with the property that, for each of Bob’s beliefs, one of the two mechanisms would
be acceptable to Bob, but none of them is acceptable across all his beliefs. She can
be stopped from such a deviation if, after off-path offer m, Bob’s beliefs will change
so that m is unacceptable for him, leading to rejection and a costly delay. Such pun-
ishment with beliefs would not be possible if she were able to offer a menu {m1,m2}
of mechanisms and let Bob choose whichever mechanism he prefers.

The main result is significant for multiple reasons. First, because both the informed
and uninformed agents design mechanisms, our model is an example of a dynamic
informed principal problem (Myerson (1983)). The uniqueness without any equilib-
rium refinement is a rare result in the informed principal literature where, typically,
multiple equilibria can be supported by belief punishment threats (Mylovanov and
Tröger (2012)).

The availability of sophisticated offers plays an important role for uniqueness. If
players are only able to offer simple allocations, bargaining games with both the
informed and uninformed players making offers typically have multiple equilibria
(Ausubel and Deneckere (1989), Gul and Sonnenschein (1988)). The uniqueness can
sometimes can be restored by equilibrium refinements (Grossman and Perry (1986b)).

Second, although assumptions explicitly disallow commitment across periods, the
equilibrium outcome is the same as if Bob could commit himself to any mechanism
subject to the constraint that each Alice type receives at least her complete infor-
mation payoff. When the bargaining power of the two agents is equal, the latter is
equal to the Nash solution. The constraint is clearly a consequence of the connection
between the random-proposer bargaining model and the Nash solution.

To make the point about commitment starker, consider a special case of our model
in which the uninformed party makes all the offers. In this case, the unique outcome is
that Bob offers to sell the good to Alice at a price that maximizes his static monopoly
profits or his commitment payoff. The outcome is inefficient if Alice’s valuation is
between Bob’s and the monopoly price. This result can be contrasted with the Coase
conjecture, which predicts that the uninformed player sells at the price equal to the
lowest possible value of the informed player, and the equilibrium is efficient. In
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the bargaining literature, the Coase conjecture has been typically associated with the
“gap case” of the durable monopoly problem, with offers made only by the uninformed
party (Fudenberg et al. (1985), Gul et al. (1986)), but the Coasian forces play a role
also in alternating-offer models (Gul and Sonnenschein (1988)).

An important assumption of our model is that once the mechanism is offered and
accepted, the players are committed to its implementation. Although our assumption
is shared by the Coasian bargaining literature, and also the more recent literature on
dynamic mechanism design with limited commitment (e.g., Skreta (2006), Doval and
Skreta (2018), Liu et al. (2019)), we also allow for a wider range of mechanisms than
this literature typically considers. For example, an agreement on negotiation protocol
may force players to restrict their future options, set a deadline, or choose an ex-post
inefficient outcome. In other words, we allow players to commit jointly. Our model
is applicable in situations in which such a commitment is possible, either because the
nature of dividing the surplus makes it impossible to divide it again, renegotiation is
costly, or the agreement is enforced by an arbitrator or a court.

In order to test the robustness of the commitment result, we discuss a version of
the model where, if both players are willing, each agreement can be renegotiated. We
show that, unexpectedly, renegotiation cannot decrease Bob’s equilibrium payoffs,
which remain not smaller than the commitment payoffs.

Third, when bargaining powers of the two players are equal and Bob’s beliefs sat-
isfy a natural assumption, we show that the equilibrium outcome is equivalent to
Myerson’s neutral solution (Myerson (1984)). The neutral solution is defined as an
incentive compatible revelation mechanism that satisfies probability invariance, ex-
tension, and random dictatorship axioms. Myerson’s characterization considers a
maximization problem to maximize the weighted welfare of privately known types,
then uses it to derive virtual valuations and finds weights such that the welfare max-
imizing outcome balances virtual valuations across players. The belief assumption is
closely related to increasing virtual utility assumption well-known from the mecha-
nism design literature.

This result contributes to the Nash program (originated in Nash (1953)), which
studies strategic foundations of cooperative games. Apart from ours, the only other
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paper to implement Myerson’s solution in a strategic game is de Clippel et al. (2020).
That paper proposes a simple bargaining that implements neutral solution in a general
class of environments but under the assumption that types are ex-post verifiable. In
contrast, our paper works with a particular environment, random-proposer multi-
round bargaining with mechanisms, and ex-post verifiability is not required.

Ours is not the first paper to use sophisticated offers in bargaining. Mechanisms as
offers have been considered in axiomatic theories of bargaining in Harsanyi and Selten
(1972), Myerson (1979), and Myerson (1984). Certain mechanisms, like menus, also
appear in some work on strategic bargaining under one-sided incomplete information.
With the exception of Jackson et al. (2020), all related papers that we are aware of
work solely with two types. Sen (2000) (see also Inderst (2003)) studies a two-type
alternating offer game, where players can offer menus but not general mechanisms,
and demonstrates the existence of a unique outcome in a refinement of PBE (perfect
sequential equilibrium due to Grossman and Perry (1986a)). The equilibrium behav-
ior depends on whether the high type prefers her own complete information Nash
payoff, or the Nash allocation of the low type. In a similar bargaining environment,
Wang (1998) studies the Coasian bargaining model with Bob making all the offers.
He shows that, in the unique equilibrium, Bob separates Alice’s two types with an
optimal screening contract. In particular, the Coase conjecture fails, as Bob retains
all power subject to the incentive compatibility constraints. More recently, Strulovici
(2017) assumes that, instead of ending the game, any accepted offer becomes the
status quo for future bargaining. In that setting, in the unique equilibrium, the unin-
formed player is unable to offer an inefficient payoff to type u in order to screen out
the more extreme type u′.

Jackson et al. (2020) considers a general bargaining environment. Although the
authors allow for incomplete information on both sides, they make a strong assump-
tion that the total value of bargaining surplus is commonly known. This assumption
implies that there are no incentive problems that stop agents from truthfully reveal-
ing their information. In the unique equilibrium, the agents use menus to implement
information revelation in a single round of bargaining. The result is robust to small
perturbations of the common knowledge assumption.
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1. Model

1.1. Environment. There are two agents, Alice and Bob, who jointly decide on an
allocation of a single indivisible good. Once the decision is reached, the good is
immediately consumed and cannot be re-traded. An allocation is a pair (q, t), where
q is the probability that Alice gets the good, and t is a transfer from Alice to Bob.
Let X = {(q, t) : q ∈ [0, 1] , t ∈ R}be the space of allocations. Allowing for allocations
where none of the agents gets the good with a positive probability would not change
any of the results (such allocations would play no role in the equilibrium).

Alice’s payoff from an allocation is equal to qu − t, where u ≥ 0 is her preference
parameter. Bob’s payoff is equal to (1− q) v + t, where v > 0. (All results extend to
v = 0, but the proofs require minor modification to handle the possibility of 0 payoffs
for Bob.) Bob’s preference parameter v is commonly known. Alice’s parameter u is
privately known by her. Bob has beliefs µ ∈ ∆U over Alice’s types in U = [umin, umax],
where max (v, umin) < umax. Note that this case incorporates both the “gap” and “no-
gap” cases from the literature on the Coasian bargaining.

1.2. Bargaining game. In each period, the proposer is chosen randomly: Alice with
probability β and Bob with probability 1−β. As usual, β is interpreted as a measure
of Alice’s bargaining power. The proposer chooses a mechanism m from the set of
mechanismsM and the other player either accepts or rejects. If the offer is accepted,
mechanism m is implemented in the same period, the allocation is determined in a
continuation equilibrium of the mechanism, and the game ends with players receiving
their respective payoffs from the allocation. The mechanisms and their equilibria
are formally defined in the next subsection. If the offer is rejected, the game moves
onto the next period. All actions (mechanism choices and acceptance decisions) are
perfectly observed. For the sake of the proof of the equilibrium existence, we also
assume that, at each instance, the players observe an independent public randomiza-
tion device and are able to send cheap talk messages from a sufficiently large space.
(The randomization device and cheap talk play a role in the proof of the existence of
equilibria.) The players discount with a common factor δ < 1.
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The solution concept is a perfect Bayesian equilibrium (or, simply, equilibrium), in
which (a) the players best respond to the opponent’s strategy, and, in Bob’s case,
given his beliefs, and (b) at each decision point, Bob updates his beliefs through
Bayes’s formula after almost all of Alice’s decisions, where almost all is with respect
to her strategy in the given period. The requirement that the beliefs are updated
only after Alice’s moves would be satisfied in a sequential equilibrium.5 The precise
definition of an equilibrium is postponed till the Appendix (section B.5; see also the
next subsection).

An equilibrium payoff outcome (y, yB) is a (measurable) function y : U → R and
a payoff yB ∈ R, with the interpretation that y (u) is the expected payoff of Alice’s
type u, and yB is the expected payoff of Bob. Let E (δ, µ) be the set of expected
equilibrium payoff outcomes in a game where the discount factor is equal to δ, and
Bob’s beliefs are equal to µ.

1.3. Mechanisms. A mechanism is any normal-form or extensive-form game such
that the action choices determine the final allocation inX. Formally, a mechanism is a
tuple m =

((
Ski
)k≤K
i=A,B

, χ
)
, where K ≤ ∞ is the number of rounds in the mechanism,

Ski is the set of actions for player i in period t, and χ : ∏K
i S

k
i → X is an allocation

function. Examples include:
• simple offers: players do not make any choices and receive a predetermined
allocation;
• menus for Alice: Alice chooses an allocation x ∈ Y from a compact set of
allocations Y ⊆ X. Let Y be the space of all menus;
• menus for Bob of menus for Alice: Bob chooses one of menu for Alice Y ∈ W
from a (Hausdorff topology) compact set of menus W ⊆ Y , followed by Alice
who chooses an allocation from the menu;
• original bargaining game, or any alteration of the bargaining protocol of the
original game.

The details of a mechanism are less important than equilibrium payoffs outcomes that
can be attained in the mechanism. For instance, if Y ⊆ X is a menu, then Alice type

5Because the space of actions is very large, the right notion of completely mixed strategies and
the right definition of a sequential equilibrium in this game are not clear.
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u’s equilibrium payoffs are uniquely equal to

y (u;Y ) = max
(q,t)∈Y

qu− t.

Bob’s expected payoff is derived by integrating over Alice’s optimal choices, with the
caveat that a non-generic (but possibly positive measure) type might be indifferent
between two choices with different payoff consequences for Bob. More generally, the
next result provides a partial characterization of equilibrium payoffs.

Lemma 1. Fix an equilibrium payoff outcome (y, yB) of a mechanism m with beliefs
µ. Then, y is increasing and convex, with bounded subdifferentials ∂y(u) ⊆ [0, 1]. Let

π (u; y) = v − y (u) + (u− v) ·

max ∂y (u) u ≥ v

min ∂y (u) u < v
and

Π (µ; y) =
ˆ
π (u; y) dµ (y) .

Then, yB ≤ Π (µ; y). Moreover, there is a menu Y ⊆ X such that y = y (.;Y ).

The Lemma is standard. Its first part is essentially the envelope theorem. The
second part shows that all equilibrium payoffs can be attained in some menu. It is a
version of the revelation principle for our environment.6 The proof constructs menu
Y as the set of expected discounted allocations that each type receives in equilibrium.

It must be emphasized that, as in informed principal models, the revelation prin-
ciple does not capture the full role of a mechanism. The reason is that Bob’s beliefs
may change whenever a mechanism is offered or accepted by Alice. This is especially
important for off-path choices, where, in equilibrium, a “belief-punishment” threat
might stop Alice from proposing a mechanism. A lower bound on Alice’s payoffs will
depend on her ability to design mechanisms that forestall such threats.

In order to fully describe the relevant aspects of a mechanism, its equilibrium
correspondence is needed. For each mechanism m, let E (µ;m) be the set of perfect
Bayesian equilibrium payoff outcomes (y, yB) in mechanism m given Bob’s beliefs µ.

6The representation of bargaining outcomes as an incentive-compatible mechanism goes back to
Myerson (1979) and Ausubel and Deneckere (1989).
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Assume that the space of beliefs is equipped with weak* topology and the space of
payoff outcomes RU ×R has a topology of uniform convergence. A mechanism is Kaku-
tani if the correspondence E (.;m) : ∆U ⇒ RU ×R is u.h.c., compact-, convex- and
non-empty valued. In particular, by requiring that the correspondence is non-empty,
we require that a Kakutani mechanism always has an equilibrium. The Appendix B
shows that each simple offer, menu, menu of menus, as well as the entire bargaining
game are Kakutani (Corollary 1 and Appendix B.6).

LetM be the space of mechanisms available to players. We assume thatM con-
tains all menus and menus of menus and it only consists of Kakutani mechanisms.
The statement of the main result refers only to menus. The proof relies heavily on
the availability of menus of menus of a particular kind. Whether M contains any
other mechanisms is irrelevant for the results and proofs (as long as the game remains
well-defined after inclusion of additional, possibly non-Kakutani, mechanisms). The
restriction to Kakutani mechanisms plays a role in the proof of the existence of equi-
librium in Section 3.

We briefly comment on the definition and the existence of equilibrium in Appen-
dices B and C. We define an equilibrium in a menu of mechanisms game, where
one player observes public randomization, chooses a mechanism and makes a cheap
talk announcement, and then a continuation equilibrium in the chosen mechanism is
played. The definition of the equilibrium in the bargaining game is derived from the
one just described, where, at each stage, we interpret the continuation game followed
by an action choice as a mechanism. The definition of equilibrium assumes the mea-
surability of strategies, posterior beliefs, and continuation payoffs within each stage,
but not necessarily joint measurability of strategies across different stages. Public
randomization is used to convexify the payoffs.

In order to prove the existence of equilibrium, we show the equivalence between
an equilibrium with measurable strategies, beliefs, and continuation payoffs, and an
equilibrium in a distributional strategies, where players announcement matches the
belief induced by the action and the announcement. The existence of equilibrium in
distributional strategies follows from a fixed point type-of result.
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We emphasize that public randomization or cheap talk are used only to prove the
existence of equilibrium, and play no other role in this paper. We do not know if the
existence can be attained without any of the two assumptions.

1.4. Complete information. Under complete information, Alice’s parameter is known
to be u. In this case, the ability to offer general mechanisms plays no role and the
model becomes analogous to classic models of bargaining (Okada (1996), Rubin-
stein (1982)) with surplus equal to max (u, v). It is well-known that the equilibrium
is unique and the payoffs for Alice and Bob are (βmax (u, v) , (1− β) max (u, v)).
When β = 1/2, complete information payoffs are equal to the Nash solution (Nash Jr
(1950)).

2. Main result

2.1. Optimal screening menus. For each of Bob’s belief µ, define the optimal
screening price

P (µ) = arg max
p
µ {u : u ≥ p} (p− v) .

The optimal screening price is generically unique, and if it is not, let p∗ (µ) =
maxP (µ) be the largest solution to the maximization problem. If umin ≥ v, sell-
ing at price(s) P (µ) would maximize Bob’s payoffs if Bob was allowed to unilaterally
choose mechanism (Bulow and Roberts (1989)).

For each α ∈ [0, 1], define a three-allocation menu for Alice:

Yα,p = {(0,−αv) , (α, 0) , (1, (1− α) p)} .

Under this menu, Alice gets the good with probability α, and she may either sell her
probability share at (per-unit) price v to Bob, do nothing, or purchase the remaining
1 − α probability from Bob at price p. This mechanism has a flavor of the Texas
shootout clause described in Footnote 4.

The outcome of mechanism Yα,p is not efficient for types u such that v < u < p. In
such a case, the mechanism allocates the good to Alice with probability α, whereas
it is efficient to give it to Alice with probability 1.
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Note for future reference that, although menus Yα,p for p ∈ P (µ) lead to the same
expected payoff for Bob, Alice (weakly) prefers the lowest price. All the types above
the lowest price have the strict preference for such an outcome.

A straightforward extension of Bulow and Roberts (1989) shows that menu Yα,p for
each p ∈ P (µ) is a solution to Bob’s optimal mechanism problem under the constraint
that Alice’s utility is at least equal to αmax (u, v). To simplify the notation, write
yα,p instead of y (., Yα,p).

Lemma 2. For each α, µ, and p ∈ P (µ),

Π (µ; yα,p) = (1− α) Π (µ; y0,p) = max
Y :∀uy(u;Y )≥αmax(u,v)

Π (µ; y (u;Y )) =: Π∗α (µ) . (2.1)

The last equality defines the value of the optimization problem subject to α-
constraint. Note that Bob’s payoff is decreasing in α. If α = β, then the constraint
in the optimization problem (2.1) ensures that each type of Alice receives her com-
plete information payoff (see Section 1.4). The assumption that v > 0 ensures that
Π∗0 (µ) = Π (µ; y0,µ) > 0 for any belief µ.

2.2. Main result. We are ready to state the main result of this paper:

Theorem 1. Bob’s perfect Bayesian equilibrium payoffs in the bargaining game with
beliefs µ are unique and equal to Π∗β (µ) . For each p ∈ P (µ), there is an equilibrium
with Alice’s payoffs yβ,p.

Bob’s equilibrium payoff is unique and it is equal to the expected payoff from his
optimal screening menu among all menus that ensure each of Alice’s types receives
her complete information payoff. The same payoff would be obtained if Bob were able
to commit to an optimal mechanism subject to the complete information constraint.
If the optimal screening menu is unique, the payoff of each of Alice’s types is also
unique.

The optimal payoff is convex in µ. An implication is that it has a natural compar-
ative statics with respect to information: Bob is better off if his information improves
in the sense of Blackwell’s ordering. In particular, Bob is worse off due to his incom-
plete information about Alice’s preferences. Each of Alice’s types is either the same
or better off under incomplete information.
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Bob’s optimal payoff is continuous in his beliefs. In particular, when µ → δu for
some Alice type u, Bob’s payoff converges to (1− β)u, i.e., his complete information
payoff against type u. This stands in contrast to the Coase conjecture literature,
where the durable monopolist payoff in the limit δ → 1 typically depends on the
support of its beliefs, and may change discontinuously with beliefs (see also Section
5.2 for further discussion on the relation to the Coasian conjecture.)

2.3. Proof intuition. The proof of the Theorem is divided into two parts. Section
3 presents a partial construction of the equilibrium. In the equilibrium, if player i is
chosen to be the proposer, the player offers menu Yαi,p, where αA = 1−δ+δβ, αB = δβ

and p is one of the optimal prices given Bob’s beliefs. Such offer is immediately
accepted. The incentives for Bob come from the fact that, because Alice expects to
receive at least δβmax (u, v) = αB max (u, v) in the continuation bargaining game,
due to Lemma 2 Bob’s payoff given this constraint cannot be improved relative to
menu YαB ,p. The incentives for Alice are provided by a mixture of a similar argument
as well as a belief threat that ensures that she gets no more than αA max (u, v) in
the continuation game after off-path offer (see Lemma 3 below). The equilibrium
construction is only partial because in two subgames, the beliefs and behavior are
obtained as a solution to some fixed-point problem.

The only mechanisms used in the equilibrium (other than off-path deviations) are
menus Yαi,p′ for i = A,B and any price p′ ∈ U . In particular, the equilibrium remains
an equilibrium if no other mechanisms are available. The menus play two roles. First,
they address the screening problem described in the introduction: players are able to
attain equilibrium payoffs for all types of Alice without a costly delay. They also help
with the signaling problem, as they make it possible for Alice to reveal her private
information only when it is too late for Bob to benefit from it.

Section 4 shows that there cannot be any other equilibrium payoff outcome. The
basic idea is to modify arguments from the complete information bargaining literature:
if other payoffs could have been attained, one of the players would have a profitable
deviation.

More specifically, if Bob’s payoffs are lower than Π∗β (µ) for some belief, we first
identify his “worst possible payoff” by finding the largest αmax such that his payoffs
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are equal to Π∗αmax (µ) for some belief µ. If αmax > β, we consider an equilibrium that
implements such payoffs. There is a possible deviation for Bob, where, whenever he
is chosen as the proposer, he offers menu Yδαmax,p, where p ∈ P (µ). Due to αmax > β

(and the complete information logic of the game), if accepted with probability 1,
such an offer would increase Bob’s expected payoffs strictly above the purported
equilibrium payoffs, which would lead to a contradiction with the original payoff
being derived in equilibrium.

To show that such a menu will indeed be accepted, notice first that there must be
Alice’s types in the support of Bob’s beliefs who receive at most αmax (u, v) in the
continuation game (this is a consequence of the choice of αmax and Lemma 2). Due
to the discounting, such types should accept the offer of yδαmax,p (u) ≥ δyαmax,p (u)
today. The other types will accept as well, due to an unraveling logic - if Bob’s
continuation beliefs assign probability 1 only to the types that rejected his offer, the
same argument applies and some of those types will receive αmax max (u, v) in the
continuation game. But then, due to the discounting, they should have accepted the
offer in the first place. The details can be found in Section 4.1.

Similarly, we show that each of Alice’s type must receive a payoff at least βmax (u, v).
If not, we first identify the lowest possible αmin such that there is an equilibrium
and Alice’s type u who receives a payoff at least αmin max (u, v). If µ are Bob’s
beliefs in the equilibrium that implements such payoffs, Bob’s payoffs cannot be
higher than Π∗αmin (µ) due to Lemma 2. Consider Alice’s deviation, where, when-
ever she is a proposer, she offers menu Y1−δ(1−αmin),p. If Bob does not change his
beliefs upon seeing such an offer, the expected payoff from such a menu is equal to
δ (1− αmin) Π∗0 (µ) = δΠ∗αmin (µ), which is the same as Bob can expect from reject-
ing Alice’s offer. Hence Bob should accept it, and the complete information logic of
αmin < β implies that such a deviation would increase Alice’s payoffs.

Of course, Bob may update his beliefs following Alice’s offer to ψ ∈ ∆U for which
p /∈ P (ψ) and menu Y1−δ(1−αmin),p does not guarantee possible continuation payoff
δΠ∗αmin (ψ). If so, Bob could reject Alice’s offer, which could stop Alice from making it.
To deal with such a belief threat, Alice can instead offer a menu

{
Y1−δ(1−αmin),p : p ∈ U

}
of menus. If the menu of menus is accepted, Bob, with beliefs ψ, can choose a menu



BARGAINING WITH MECHANISMS 15

from the menu of menus to maximize his expected payoff. Alice’s offer is constructed
in such a way that Bob can choose menu Y1−δ(1−αmin),p∗(ψ) to guarantee himself pay-
off δΠ∗αmin (ψ). The menu of menus protects Alice from “belief punishment” threat,
as whatever are Bob’s post-offer beliefs, Bob is able to choose a menu that is both
satisfactory for him and for Alice.

The proof requires that all menus and menus of menus are available. The results
of (Ausubel and Deneckere (1989)) for alternating-offer bargaining imply that when
players are only able to propose single offers, the bargaining game has multiple equi-
libria. We do not know if the theorem also holds if M contains only menus but no
menus of menus. However, in such a case, our proof shows that Π∗β (µ) is a lower
bound on Bob’s equilibrium payoffs.

When β = 0, Bob makes all the offers, and the outcome of the bargaining game is
equivalent to Bob’s optimal screening menu (without any constraints). In this case,
our result extends Wang (1998) from two types to a continuum. Wang (1998) assumes
that Bob can offer menus, but not menus of menus nor any other mechanism. As
we mentioned above, the availability of menus is sufficient to show that Π∗β (µ) is the
lower bound on Bob’s payoffs.

3. Equilibrium

We are going to show that for each beliefs µ, and each price p ∈ P (µ), there is an
equilibrium with payoffs

(
yβ,p,Π∗β (µ)

)
. Further equilibrium payoffs (for Alice) can be

obtained by using a public randomization device.
This equilibrium beliefs, actions, and continuation payoffs are illustrated in Figure

3.1. The thick solid lines describe the equilibrium behavior. The thick dashed lines
mean that the equilibrium actions depend on the state of the game.

Let αA = 1 − δ + δβ and αB = δβ. The constants are chosen so that (a) β is the
expected value of αi, where i is the random proposer, (b) Alice is indifferent between
receiving αB = δβ now and waiting one period for β, and (c) Bob is indifferent
between receiving 1 − αA = δ (1− β) now and waiting one period for 1 − β. In
the equilibrium, the proposing player j offers menu Yαj ,p for some (any) p ∈ P (µ).
The offer is accepted. Because of (a), the expected equilibrium payoffs before the
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Alice (beliefs µ)

Bob

yαA,p,Π∗αA (µ)

Accept

δyβ,p, δΠ∗β (µ)

Reject

YαA,p

Bob

(y(.), yB) ∈ E(µm;m),
st. yB ≥ Π∗αA (µm) and

y(u) ≤ αA max(u, v) for each u

Accept

δyβ,P (µm), δΠ∗β (µ)

Reject

m 6= YαA,p : µ→ µm

Bob (beliefs µ)

Alice

yαB ,p,Π∗αB (µ)

Accept

δyβ,umax , δΠ∗β (δumax)

Reject: µ→ δumax

YαB ,p

Alice

(y(.), yB) ∈ E(µAm;m),
st. y(u) ≥ αB max(u, v) for each u

Accept: µ→ µAm

δyβ,P ∗(µR
m), δΠ∗β

(
µRm
)

Reject: µ→ µRm

m 6= YαB ,p

Figure 3.1. Equilibrium strategies and beliefs.

proposer is chosen are equal to Π∗β (µ) for Bob and yβ,p for Alice. If the equilibrium
offer is rejected, the game moves to the next period. Additionally, if Alice is the one
rejecting the offer (i.e., j = B), Bob updates his beliefs so that they are concentrated
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on type umax. Under such beliefs, the optimal price is umax and Alice’s expected
continuation payoffs are equal to αB max (u, v) = δβmax (u, v). Because of (b) and
(c), if j = A, then Bob is indifferent between accepting or rejecting the offer (note
that 1− αA = δ (1− β)), and, if j = B, then Alice is either indifferent (types u ≤ p)
or prefers to accept the offer (types u > p).

If Alice offers mechanism m 6= Yαj ,p, Bob’s beliefs, his best response decision, and
the continuation payoffs depends on mechanism m.

Lemma 3. For each α and each m, if m is a Kakutani mechanism, then there exists
µm ∈ ∆U and (y, yB) ∈ E (µm;m) st. either y (u) ≤ αmax (u, v) for each u, or
yB ≤ Π∗α (µm).

Lemma 3 is a counterpart to Lemma 2, in the sense that it shows that either there
are a belief and continuation payoffs that are worse for Bob than the optimal screening
menu subject to α-constraints, or there are a belief and continuation payoffs such that
each of Alice’s type fails the α-constraints. The identified belief has a two-element
support. The proof of the Lemma is essentially a fixed point result. Because the
relevant space of beliefs is one-dimensional, the proof is elementary.

After Alice offer m 6= YαA,p, Bob updates his beliefs to µm, where µm, y, and
yB are as in the Lemma for α = αA. If yB > Π∗αA (µm) = δΠ∗β (µm) (hence y (u) ≤
αmax (u, v) for each u), the offer is accepted. Otherwise, the offer is rejected. Because
Bob accepts the offer only if y (u) ≤ αA max (u, v) for each u, none of Alice’s types
strictly prefers to offer a mechanism that is going to be accepted. Because the rejection
leads to strictly lower payoffs than the equilibrium payoffs, Alice does not want to
offer a mechanism that is rejected. Hence each type of Alice (weakly) prefers to offer
YαA,p.

If Bob offers a mechanism m 6= YαB ,p, Alice chooses her behavior optimally by
comparing the payoffs yA in a continuation equilibrium of the accepted mechanism(
yA, yAB

)
∈ E

(
µAm;m

)
with continuation payoffs from the bargaining game after rejec-

tion δyµR
m,P (µR

m). The probability of acceptance, the updated beliefs after acceptance,
µAm, and after rejection, µRm, as well as the continuation payoffs in the accepted mecha-
nism or, if rejected, the bargaining game are determined in equilibrium. The existence
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of these objects is proven in the appendix (section B.6). Importantly, their exact val-
ues do not matter from the point of view of providing Bob with incentives not to
deviate to m. Notice that Alice’s continuation payoffs after rejection are not smaller
than

(
δβαA + δ (1− β)αB

)
max (u, v) = δβmax (u, v) = αB max (u, v) for each type

u. In equilibrium, this must also be a lower bound on her payoff after accepting the
mechanism, as well as her expected payoffs after Bob proposes m. Treating the sub-
game following Bob’s proposal as a mechanism, Lemma 2 together with the second
half of Lemma 1 shows that Bob’s expected payoffs from m cannot be larger than
Π∗αB (µ). Hence Bob (weakly) prefers to offer menu YαB ,p.

4. Payoff bounds

This sections shows that no other equilibrium has different payoffs for Bob. The first
part shows that Bob’s payoffs cannot be lower than Π∗β (µ). The second part shows
that for each of Alice’s types, her expected payoffs cannot be lower than βmax (u, v).
Lemma 2 implies that Bob’s payoff cannot be higher than Π∗β (µ). This shall conclude
the proof of Theorem 1.

In both cases, we show that if the respective player’s lowest equilibrium payoffs are
lower than they should be, the player has a profitable deviation.

4.1. Lower bound on Bob’s equilibrium payoffs. This subsection shows that for
all beliefs µ and all payoff outcomes (y, yB) ∈ E (δ, µ), Bob’s payoffs are not smaller
than yB ≤ Π∗β (µ). To restate the claim in a more convenient way, define

αmax = sup {α : ∃ (µ, y, yB) ∈ E (δ) st. yB ≤ Π∗α (µ)} .

The goal is to show that αmax ≤ β.
Two simple preliminary results are needed. The first one shows that for each equilib-

rium payoff outcome, there must be some types with payoffs close to αmax max (u, v).

Lemma 4. For each belief µ and payoff outcome (y, yB) ∈ E (δ, µ), and for each
η > 0, there exists type u ∈ suppµ such that y (u) < (αmax + η) max (u, v).

Proof. On the contrary, suppose that there exists η > 0, belief µ, and payoff outcome
(y, yB) ∈ E (δ, µ) such that y (u) ≥ (αmax + η) max (u, v) for each u ∈ suppµ.
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Consider payoff function y′ (u) = max (y (u) , (αmax + η) max (u, v)). We are go-
ing to show that π (u; y′) ≥ π (u; y) for each u ∈ suppµ (see the definition of π
in Lemma 1). Note that for any such u, either y (u) > (αmax + η) max (u, v) or
y (u) = (αmax + η) max (u, v). In the former case, ∂y (u) = ∂y′ (u) and π (u; y) =
π (u; y′). In the latter case, if u ≤ v, then min ∂y′ (u) = 0 ≤ min ∂y (u), and if
u ≥ v, max ∂y′ (u) = max (∂y (u) ∪ {αmax}) ≥ max (∂y (u)), which implies that
max ∂y (u) ≤ max ∂y′ (u). In both cases, π (u; y) ≤ π (u; y′).

Hence Π (µ; y) ≤ Π (µ; y′) ≤ Π∗αmax+η (µ), where the second inequality comes from
Lemma 2. But this contradicts the definition of αmax. �

The second result shows that, if α > β, then Bob has a proposal that is better for
him than Π∗α (µ) and that Alice would prefer to accept rather than wait one period
for αmax (u, v).

Lemma 5. If α0 > β, then there is ε > 0 such that for each α ≥ α0, there is menu
Y ′ such that

y (u, Y ′) ≥ δαmax (u, v) + εmax (u, v) and (4.1)

βδΠ∗α (µ) + (1− β) Π (µ; y (u, Y ′)) ≥ (1 + ε) Π∗α (µ) .

Proof. Let ε ≤ (α0−β)(1−δ)
2−β−α0

. Let Y ′ = Yδα+ε,p for any p ∈ P (µ) and notice that

y (u, Yδα+ε,p) = yδα+ε,p ≥ δαmax (u, v) + εmax (u, v) .

Take α ≥ α0 > β. Due to Lemma 2,

βδΠ∗α (µ) + (1− β) Π (µ; yδα+ε,p)− (1 + ε) Π∗α (µ)

=Π∗0 (µ) [βδ (1− α) + (1− β) (1− δα− ε)− (1 + ε) (1− α)]

=Π∗0 (µ) [(α− β) (1− δ)− ε (2− β − α)] ≥ 0,

where the last inequality follows from the choice of ε. �

Suppose, by contradiction, that αmax > β. Fix α0 so that β < α0 < αmax and choose
ε as in Lemma 5. By the definition of αmax, for each η > 0, one can find equilibrium
beliefs µ and payoff outcome (y, yB) ∈ E (δ, µ) such that Π (µ; y) < Παmax−η (µ).
From now on, assume that η is small enough so that η < αmax − α0, 2η ≤ ε and
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ε (1− (αmax − η)) > βδη. By the choice of ε, there exists menu Y ′ such that (4.1)
holds for α = αmax − η.

Consider an equilibrium that implements (y, yB) under Bob’s beliefs µ. If Bob is
chosen as the proposer, consider Bob’s strategy (possibly, a deviation), in which he
offers Y ′. We claim that almost all of Alice’s types in the support of Bob’s beliefs
will accept such an offer.

Indeed, if not, let ψ be the beliefs and (z, zB) be the payoff outcome associated with
the continuation equilibrium after Alice rejects Y ′. It must be that ψ is absolutely
continuous wrt µ, hence suppψ ⊆ suppµ. By Lemma 4, there are types u ∈ suppψ,
for whom the expected payoff from rejection, δz (u), is strictly smaller than

δ (αmax + η) max (u, v) ≤ δ (αmax − η) max (u, v) + 2ηmax (u, v) ≤ y (u, Y ′) ,

or payoffs from accepting Y ′ (the last inequality comes from the choice of η and menu
Y ′). Because the payoffs are continuous in types, there must be a strictly positive
ψ-mass of types who have strictly higher payoffs from accepting Y ′, which leads to a
contradiction with rejection of Y ′ being a best response for almost all rejecting types.

Compute the expected payoff from such a strategy before the proposer is chosen.
If Alice is chosen to be the proposer, Bob’s expected payoff is not lower than

δΠ∗αmax (µ) = δ (1− αmax) Π∗0 (µ) = δ (1− (αmax − η)) Π∗0 (µ)− δηΠ∗0 (µ)

= δΠ∗αmax−η (µ)− δηΠ∗0 (µ)

due to the choice of αmax. If Bob is chosen, his expected payoff from (accepted with
probability 1) offer Y ′ is Π (µ; y (.;Y ′)). Hence the overall expected payoff is at least

βδΠ∗αmax−η (µ)− βδηΠ∗0 (µ) + (1− β) Π (µ;Y ′)

≥ (1 + ε) Π∗αmax−η (µ)− βδηΠ∗0 (µ) = ((1 + ε) (1− (αmax − η))− βδη) Π∗0 (µ)

≥ (1− (αmax − η)) Π∗0 (µ) + (ε (1− (αmax − η))− ηβδ) Π∗0 (µ)

>Π∗αmax−η (µ) > Π (µ; y) ,

where the last inequality follows from the choice of equilibrium beliefs µ and pay-
off outcome (y, yB). The inequality contradicts (y, yB) being an equilibrium payoff
outcome for the game with beliefs µ. The contradiction shows that αmax = β.
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4.2. Lower bound on Alice’s payoffs. This subsection shows that Alice type u’s
equilibrium payoffs are not smaller than βmax (u, v). To restate the claim in a more
convenient way, define

αmin = inf {α : ∃µ, (y, yB) ∈ E (δ, µ) , and u st. y (u) ≤ αmax (u, v)} .

The goal is to show that αmin ≥ β.
Let

Wα = {Yα,p : p ∈ U}

be a menu of menus Yα,p across all possible prices p.
If Wα is offered by Alice and accepted by Bob, Bob’s expected continuation equi-

librium payoff from such a menu is unique and equal to Π∗α
(
µW

)
, where µW is Bob’s

belief after being offered menu Wα. To see that, notice first that Bob cannot receive
a higher payoff due to Lemma 2. The payoff is attained in the equilibrium, in which
Bob chooses menu Yα,p for some p ∈ P

(
µW

)
and whatever Bob’s choice is, when

indifferent, Alice always picks the allocation that is more favorable to Bob. Finally,
there are no other equilibria. To see why, notice that the potential multiplicity is
due to atomic Alice’s types u = p, who are indifferent between the two allocations
in menu Yα,p. If such a type plans to make a choice that is not favorable to Bob,
Bob can always offer a menu Yα,p−d for some small d > 0. Then, the atom u = p has
a strict preference to choose the better allocation, and the lowest possible expected
payoff in such a menu converges to the highest payoff in menu Yα,p as d→ 0.

On the contrary to our claim, suppose that αmin < β. Let η be such that 0 <

η ≤ 1
1+β (β − αmin) (1− δ). By the definition of αmin, for each η > 0, one can find

a belief µ, an equilibrium payoff outcome (y, yB) ∈ E (δ, µ), and a type u, such that
y (u) < (αmin + η) max (u, v). Consider an equilibrium that implements (y, yB). If
Alice is chosen as the proposer, consider Alice’s strategy (possibly a deviation), in
which she offers menu of menus W1−δ(1−αmin)−η. Then, Bob will accept such a menu
of menus with probability 1. Indeed, let µW be Bob’s belief after Alice’s proposal
and let yW be her continuation payoff. As we have checked above, Bob’s payoff from
accepting is equal to

Π∗1−δ(1−αmin)−η

(
µW

)
= δ (1− αmin) Π∗0

(
µW

)
+ ηΠ∗0

(
µW

)
> δΠαmin

(
µW

)
,
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which, due to the definition of αmin and Lemma 2, is an upper bound on Bob’s
equilibrium continuation payoffs after rejecting Alice’s offer.

Anticipating Bob’s acceptance, the payoff from such a strategy to Alice’s type
u > v, if she is the proposer, is equal to (1− δ (1− αmin)− η) max (u, v). If Bob is
the proposer, her payoff cannot be smaller than δαmin max (u, v). Hence her expected
payoff at the beginning of the period is not smaller than

β ((1− δ (1− αmin)− η) max (u, v)) + (1− β) δαmin max (u, v)

= (β − βδ + δαmin − βη) max (u, v)

= (αmin + η) max (u, v) + ((β − αmin) (1− δ)− (1 + β) η) max (u, v)

≥ (αmin + η) max (u, v) > y (u) ,

where the inequalities are due to the choice of η. But this leads to a contradiction
with y being equilibrium payoff.

5. Comments

5.1. Neutral solution. The neutral solution is an axiomatic solution concept for
bargaining problems with incomplete information proposed in Myerson (1984). It
is defined as the minimal set of incentive-compatible outcomes that satisfies three
axioms: (a) probability invariance axiom that ensures that solution is robust to a
change in the problem parameters that does not affect its decision-theoretic structure,
(b) extension axiom than connects solutions to related bargaining problems, and
(c) random-dictatorship axiom that defines a fair and natural mechanism in simple
division games. Myerson’s characterization shows that that the neutral solution is an
allocation that equalizes virtual valuations of the two players, where the valuations
are derived from a welfare optimization problem.

We are going to show that, under a natural assumption on Bob’s beliefs, the optimal
screening menu Y1/2,p∗(µ), belongs to the neutral solution.7 Thus, our results (Theorem
1) applied to the case of equal bargaining powers β = 1

2 contribute to the Nash
program. In order to explain the result without unnecessary technicalities, assume

7This result has been known to Roger Myerson since the 80s (private communication), but, as
far as I know, it has not been published anywhere.
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that Bob’s beliefs have finite support and that umin ≥ v. Let fu = µ (u) be the

probability of type u. Let q∗u =

1 u ≥ p∗ (µ)

1/2 u < p∗ (µ)
and t∗u =

p
∗ (µ) u ≥ p∗ (µ)

0 u < p∗ (µ)
be

the allocation mappings from mechanism Y1/2,p∗(µ). We are going to show that (q∗. , t∗. )
satisfies the sufficient and necessary conditions for the neutral solution from Myerson
(1984).

Consider an optimization problem, which maximizes the sum of Bob’s utility and
weighted utilities of each of Alice’s types:

max
q.,t.

∑
u∈suppµ

λu (quu− t) du+
∑

u∈suppµ
((1− qu) v + tu) fu

s.t.quu− tu ≥ qu′u− tu′ for each u, u′.

Coefficients λu ≥ 0 are weights assigned to type u. The constraints ensure that
the allocation is incentive compatible. Standard arguments show that it is w.l.o.g.
to consider only immediate downward incentive constraints, i.e., constraints for u
and u′ = u−, where u− = max {u′ ∈ suppµ : u′ < u}. (Similarly, define u+ =
min {u′ ∈ suppµ : u′ > u}.) To obtain the Lagrangian, one multiplies the incentive
constraints for u and u− by factor αu ≥ 0 and adds them up to the objective function:

∑
u∈suppµ

∑
i=A,B

Vi (qu, tu, u, λ, α) , (5.1)

where αu is the Lagrange multiplier associated with constraint and Vi are virtual
evaluations:

VA (q, t, u, λ, α) = (λu + αu) (qu− t)− αu+ (qu+ − t) ,

VB (q, t, u, λ, α) = ((1− q) v + t) fu.

If (q., t.) is a neutral solution, then, informally, it is (a) a solution to the optimization
problem (5.1) for some weights λ, where (b) the weights are chosen so that the virtual
utilities of the two players are equal (at least for the types with a strictly positive
weight λu).
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To see why it is the case for (q∗. , t∗. ), notice first that the first-order conditions for
transfers t require that for each u,

−λu − αu + αu+ + fu = 0.

Because q∗u = 1
2 for u < p∗ (µ), the first-order conditions for allocation probabilities

for such types hold with equality and imply that

(λu + αu)u− αu+u+ − vfu = 0.

The two equations imply that λu + αu = fu + αu+, and αu+ (u+ − u) = fu (u− v).
Hence

VA (q∗, t∗, u, λ, α) = (fu + αu+) 1
2u− αu+

1
2u+

= 1
2fuu−

1
2αu+ (u+ − u)

= 1
2fuv = VB (q∗, t∗, u, λ, α) .

The above calculations verify only (some) necessary conditions. The sufficient
conditions are established under an additional assumption on Bob’s beliefs. The
assumption on the beliefs is closely related to the well-known requirement that that
a virtual value is increasing.8

Proposition 1. Suppose that the support of µ is finite, p∗ (µ) is the unique solution to
the screening problem (2.1), and that (u− v) fu

(u+−u) −
∑
u′≥u+ fu′ is strictly increasing

in u ∈ suppµ. Then, (q∗. , t∗. ) is a neutral bargaining solution.

It is not clear at this moment whether the relation between the neutral solution and
the optimal constrained screening menu is just a pure coincidence or if it extends to
other bargaining environments. Note that the existence of transfers and the associated
first-order condition are crucial for this argument. An earlier version of the paper
studied an environment without transfers in which the optimal constrained screening
mechanism differs from the neutral solution.

8In our setting, the virtual value from the mechanism design literature is equal to u−v−
∑

u′≥u
fu′

fu/(u+−u) .



BARGAINING WITH MECHANISMS 25

5.2. Comparison to the Coasian bargaining. When β = 0, or all the offers are
made by the uninformed agent, our model becomes similar to seller-only bargaining
models studied intensively in the durable-good monopolist literature. A famous result
from this literature is the Coasian conjecture: in the gap case, the monopolist must
price the good at the lowest possible value of the buyer (Gul et al. (1986)). This
solution exhibits three features: (a) it is ex-post efficient, (b) the uninformed agent’s
payoff is as if he faces an informed player type that is worst for him, and (c) each type
of the informed agent is able to mimic the behavior of the type that would maximize
her payoffs.

In contrast, in our bargaining model, when β = 0, Bob offers the optimal screening
menu Y0,µ, which is accepted. Bob’s payoff is higher than if he sold the good at Alice’s
lowest value. The outcome is also not efficient.

In order to explain why the Coase conjecture fails in our paper, recall the basic
logic of the Coasian bargaining literature. First, the uninformed player is not able to
commit to not offering a trade to a low type in the future. He may want to postpone
the transaction with the low type in order to reach a better deal with a higher type
first. Because such a deal would be unacceptable to the low type, a rejection would
convince the uninformed player that he is facing the low type, rendering him more
inclined to offer a trade that is acceptable to such a type in the next period. Because
any offer that is acceptable to the low type is highly attractive to the high type, if the
delay between offers is not costly enough, the high type has an incentive to imitate
the low type and reject the initial offer, which in turn destroys the equilibrium.

In our setting, by choosing an appropriate menu, Bob can simultaneously make an
offer that is acceptable to high and low types. Because both types are expected to
accept it, its rejection does not generate any information, and, in particular, it does
not have to be interpreted as evidence that Bob is facing the “low” type. 9

A companion paper, Peski (2019), studies war-of-attrition bargaining in a similar
environment, except that players have the additional ability to commit to their offers

9A similar mechanism is at play in Board and Pycia (2014) which considers a Coasian bargaining
model, but with the informed player having access to an outside option. In equilibrium, the low types
prefer to exit the market, and the rejection of an offer is not meaningful in itself unless reinforced
by exit.



26 MARCIN PĘSKI

due to reputational types. Interestingly, more commitment leads to a Coasian-type
result: in the unique (rational and patient limit) equilibrium, Bob proposes a menu C
of all allocations that give him at least his worst possible complete information payoff.
Bob is typically strictly worse off under C than under the optimal menu Yα,P (µ); Alice
types are better off, some of them strictly so. The disparity between standard and
reputational versions of the model is striking to a reader familiar with Abreu and Gul
(2000).

5.3. Renegotiation. So far, we have assumed that allocations determined by an
accepted mechanism are final and cannot be renegotiated. At first glance, it may
seem that the ability to commit jointly is responsible for Bob’s high constrained-
commitment payoff, and that allowing for renegotiation might introduce forces that
would reduce Bob’s payoff.

In order to examine the effect of renegotiation, we consider the following modifi-
cation of the basic model. Suppose that after a mechanism is implemented and an
allocation is chosen, one of the players can request renegotiation and the other player
either accepts or rejects. (Who requests the renegotiation is not relevant, but the
decision to renegotiate must be made jointly.) If the renegotiation request is rejected,
the game ends, and the original allocation prevails. If the request is accepted, the
previous agreement is forgotten, and the players restart the bargaining game (with a
possibility for future renegotiation(s)) in the next period.

We claim that Bob’s equilibrium payoff under renegotiation cannot be lower than
the payoff without renegotiation Π∗β (µ). The argument described in Section 4.1 re-
mains valid under the following modification:

A potential complication due to renegotiation is that, if Bob offers a menu Y ′ and it
is accepted, the payoffs of the agents depend not only on the payoffs in Y ′, but possibly
also on the continuation game in which renegotiation occurs. In particular, Alice
may choose a sub-optimal allocation because she anticipates it to be renegotiated.
However, we claim that the problem is not relevant here, and, with probability 1,
Alice accepts Y ′, chooses an allocation optimal for her type, and refuses any further
renegotiation (if requested). On the contrary, suppose that Alice accepts the menu,
one of the players requests renegotiation, which is, in turn, accepted.
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Let ψ and (z, zB) be the beliefs and the payoff outcome associated with the contin-
uation equilibrium after Alice rejects or agrees to renegotiate Y ′. It must be that ψ
is absolutely continuous wrt µ, hence suppψ ⊆ suppµ. By Lemma 4, there are types
u ∈ suppψ, for whom the expected payoff from rejection, δz (u), is strictly smaller
than

δ (αmax + η) max (u, v) ≤ δyαmax,µ (u) + 2ηmax (u, v) ≤ y (u, Y ′) ,

or payoffs from accepting Y ′ (the last inequality comes from the choice of menu Y ′).
Because the payoffs are continuous in types, there must be a strictly positive ψ-mass of
types who could have obtained strictly higher payoffs from (truthfully) implementing
Y ′, which leads to a contradiction with a rejection or renegotiation of Y ′ being a best
response for almost all rejecting or renegotiating types.

Hence, Y ′ is accepted, Alice behaves as if it is final, she chooses optimally, and
the outcome is not renegotiated. The rest of the argument from Section 4.1 remains
unchanged.

We do not know the upper bound on Bob’s payoff. The argument in Section 4.2 is
not valid under renegotiation due to the problem that was outlined above. In partic-
ular, if Bob accepts Alice’s counter-offer, Alice’s behavior in the menu of menus may
be suboptimal, and lead to subsequent renegotiation. If the payoff from the contin-
uation game is sufficiently low, Bob will reject Alice’s counter-offer in equilibrium,
which may lead Alice to accept Bob’s offer in the previous period.

The fact that a reduction in commitment abilities does not reduce the uninformed
party’s bargaining power is surprising. At the same time, we note that there are al-
ternative ways of modeling renegotiation, in which Coasian-type forces may dominate
and reduce Bob’s payoff. We leave these investigations for future research.

Appendix A. Remaining proofs

A.1. Proof of Lemma 1. The properties of function y follows from standard ar-
guments based on the envelope theorem. For each mechanism and an equilibrium
that implements payoff outcome (y, yB), let q (u) be the equilibrium probability
that Alice gets the good if she is type u and let t (u) be the expected transfer of
type u. The standard arguments imply that q (u) is increasing and that ∂y(u) ∈
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[limu′↗u q (u′) , limu′↘u q (u′)]. Because y (u) = q (u)u− t (u), Bob’s payoff from inter-
action with type u is equal to

v (1− q (u)) + t (u) = −y (u) + q (u) (u− v) + v ≤ π (u; y) ,

where the last inequality follows from the fact that q (u) ≥ 0 for each u. For the last
claim, construct menu Y = cl {(q (u) , t (u)) : u ∈ U} (taking closure does not change
the incentive compatibility of allocation mapping q, t).

A.2. Proof of Lemma 2. For the first equality, notice that

π (u; yα,p) =


v − αv if u ≤ v

α (u− v) + v − αu if u ∈ (v, p)

(u− v) + v − (u− (1− α) p) if u ≥ p

= (1− α) π (u; y0,p) .

We show the second equality. Assume (w.l.o.g.) that umin ≤ v. (This is w.l.o.g.
because umin is a lower bound on the belief support and the smaller it is, the more
general the model is.) By Lemma 1, the value of the optimization problem Π∗α (µ) is
equal to

max
y:y satisfies α-constraints

Π (µ; y) ,

where α-constraints mean that y is increasing, convex, and ∂y (u) ∈ [0, 1] and y (u) ≥
αmax (u, v) for each u. We are going to show that (a) Π∗α (µ) ≤ (1− α) Π∗0 (µ) and
that (b) Π∗α (µ) ≥ (1− α) Π∗0 (µ).

For (a), we are going to take arbitrary y that satisfies α-constraints and use it
to construct y′ that satisfies 0-constraints and such that Π (µ; y) ≤ (1− α) Π (µ; y′).
Take any y st. y (u) ≥ αmax (u, v). Define

y0 (u) =

αv if u ≤ v

y (u)− (y (v)− αv) if u ≥ v
.

Then, y0 (u) satisfies the α-constraints. Moreover, for each u ≤ v, min ∂y (u) ≥ 0 =
∂y0 (u) and y (u) ≥ αv = y0 (u). Hence, π (u; y) ≤ π (u; y0) for each u ≤ v. For each
u ≥ v, ∂y (u) = ∂y0 (u) and y (u) ≥ y0 (u), hence π (u; y) ≤ π (u; y0). It follows that
Π (µ; y) ≤ Π (µ; y0).
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Notice that

Π (µ; y0) =
umaxˆ
umin

π (u; y0) dµ (u) =
umaxˆ
v

π (u; y0) dµ (u) .

Because y0 (u) ≥ αu for each u ≥ v, it must be that α ∈ ∂y0 (v) and ∂y0 (u) ≥ α for
each u > v. Let y′ (u) = 1

1−α (y0 (u)− αmax (u, v)). Then, y′ satisfies 0-constraints.
Moreover,

Π (µ; y0) =
umaxˆ
v

[(max ∂y0 (u)) (u− v) + v − y0 (u)] dµ (u)

=
umaxˆ
v

[((1− α) (max ∂y′ (u)) + α) (u− v) + v − y0 (u)] dµ (u)

=
umaxˆ
v

[(1− α) (max ∂y′ (u)) (u− v) + (v − αv)− (y0 (u)− αu)] dµ (u)

= (1− α)
umaxˆ
v

[(max ∂y′ (u)) (u− v) + v − y′ (u)] dµ (u) = (1− α) Π (µ; y′) .

For (b), we are going to take arbitrary y that satisfies 0-constraints and use it to
construct y′ that satisfies α-constraints and such that Π (µ; y′) ≥ (1− α) Π (µ; y).
Take any y that satisfies 0-constraints. By the above argument, we can assume that
y (0) = 0. Define y′ so that for each u, y′ (u) = αmax (u, v) + (1− α) y (u). Then,
similar calculations to those above show that Π (µ; y′) = (1− α) Π (µ; y).

Finally, Bulow and Roberts (1989) shows that for each p ∈ P (µ),

max
y:y satisfies 0-constraints

Π (µ; y) = Π (µ; y0,p) .

Hence, Π∗0 (µ) = Π (µ; y0,p). This concludes the proof of the second equality.

A.3. Proof of Lemma 3. The identified belief has a two-element support: µm =
µρ = ρδumax + (1− ρ) δu∗min

, where δ is the Dirac’s delta, u∗min = max (v, umin), and
the weight ρ that the belief puts on umax is yet to be determined. We restrict the
possible choices of ρ to ρ ≥ ρ∗ = u∗min−v

umax−v . Because the payoff from selling at p = u∗min

is u∗minand the payoff from selling at p = umax is equal to v + ρ (umax − v), restriction
ρ ≥ ρ∗ implies that the latter is higher and p∗ (µρ) = {umax}. It follows that Alice’s
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payoffs in the optimal screening menu subject to α-constraint are exactly equal to
the constraint, i.e., yα,umax = αmin (u, v) for each u. Moreover,

Π∗α (µρ) = (1− α) Π∗0 (µρ) = (1− α) (ρ (umax − v) + v) .

In the course of the proof, we are going to provide an upper bound on Bob’s payoffs
yB as a function of Alice’s payoffs y (see Lemma 1):

yB ≤Π (y;µρ)

= (1− ρ) [max ∂y (u∗min) (u∗min − v) + v − y (u∗min)]

+ ρ [max ∂y (umax) (umax − v) + v − y (umax)] .

Due to the convexity of y, max ∂y (u∗min) ≤ y(umax)−y(u∗min)
umax−u∗min

= q and max ∂y (umax) ≤ 1.
Hence the above is not larger than

≤ (1− ρ) [q (u∗min − v)− y (u∗min)] + ρ [umax − v − y (umax)] + v.

Define sets of payoff functions

Y0 =
{
y ∈ RU : y (u∗min) ≥ αu∗min and y (umax) ≤ αumax

}
,

Y1 =
{
y ∈ RU : either y (u∗min) ≤ αu∗min or y (umax) ≥ αumax

}
.

The two sets roughly correspond to payoff functions that do not grow too much (Y0)
and the rest. The two sets cover the entire space of payoff functions Y0 ∪ Y1 = RU .
For each i = 0, 1, let

Bi = {ρ ∈ [ρ∗, 1] : there is (y, yB) ∈ E (µρ;m) st. y ∈ Yi}

be a set of belief weights such that set Yi contains equilibrium payoffs associated with
those beliefs. Then, because an equilibrium exists for each belief, [ρ∗, 1] ⊆ B0 ∪ B1.
Because E (.;m) is u.h.c. (as mechanism m is Kakutani), sets Bi are closed. Hence,
the following three cases are exhaustive. In each of the cases, we find ρ and (y, yB) ∈
E (δ, µρ) such that either y (u) ≤ αmax (u, v) for each u, or yB ≤ Π∗α (µρ).

• [ρ∗, 1] ⊆ B0, which implies that ρ∗ ∈ B0: Let ρ = ρ∗ = u∗min−v
umax−v and take any

(y, yB) ∈ E (µρ;m) such that y ∈ Y0, i.e., y (u∗min) ≥ αu∗min or y (umax) ≤
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αumax. In this case, q = y(umax)−y(u∗min)
umax−u∗min

≤ α. Because y (umax) = y (u∗min) +
q (umax − u∗min), Bob’s expected payoffs are not higher than

yB ≤ (1− ρ) [q (u∗min − v)− y (u∗min)] + ρ [(umax − v)− y (umax)] + v

≤ (1− ρ) q (u∗min − v) + ρ [(umax − v)− q ((umax − v)− (u∗min − v))] + v − y (u∗min)

=q (u∗min − v) + ρ (1− q) (umax − v) + v − y (u∗min)

=q (u∗min − v) + (1− q) (u∗min − v) + v − y (u∗min)

=u∗min − y (u∗min) ≤ (1− α)u∗min

= (1− α) ((u∗min − v) + v) = (1− α) (ρ (umax − v) + v) = Π∗α (µρ) .

• [ρ∗, 1] ⊆ B1, which implies that 1 ∈ B1: Take ρ = 1 and let (y, yB) ∈ E (µρ;m)
be such that y (u∗min) ≤ αu∗min or y (umax) ≥ αumax. There are two subcases:
– If y (umax) ≤ αumax, then y (u∗min) ≤ αu∗min and, due to monotonicity and
convexity, y (u) ≤ αmax (u, v) for each u ∈ U .

– If y (umax) ≥ αumax, then Bob’s expected payoff is not higher than

yB ≤ (1− ρ) [q (u∗min − v)− y (u∗min)] + ρ [(umax − v)− y (umax)] + v

≤ (1− α)umax = (1− α) (umax − v + v) = Π∗α (µ1) .

• Neither [ρ∗, 1] ⊆ B0 nor [ρ∗, 1] ⊆ B1, which, due to sets Bi being closed and
covering the interval [ρ∗, 1], implies that there is ρ ∈ B0 ∩B1 ∩ [ρ∗, 1].
Let (yi, yiB) ∈ E (µρ;m) be such that yi ∈ Y i for each i = 0, 1. Because
sets Y i cover the entire space of payoff functions, and because E (µρ;m) is
convex (due tom being Kakutani), there exists a convex combination (y, yB) =
γ (y1, y1

B) + (1− γ) (y0, y0
B) such that (y, yB) ∈ bdY 0 ∩ bdY 1. There are two

subcases:
– If y (u∗min) = αu∗min and y (umax) ≤ αumax, then due to monotonicity and
convexity, y (u) ≤ αmax (u, v) for each u ∈ U .
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– If y (u∗min) ≥ αu∗min and y (umax) = αumax, then q ≤ α and Bob’s expected
payoffs are not higher than

yB ≤ (1− ρ) [q (u∗min − v)− y (u∗min)] + ρ [(umax − v)− y (umax)] + v

≤ (1− ρ) [α (u∗min − v)− αu∗min] + ρ [(1− α)umax − v] + v

≤− (1− ρ)αv + ρ [(1− α) (umax − v)]− ραv + v

= (1− α) [ρ (umax − v) + v] = Π∗α (µρ) .

A.4. Proof of Proposition 1. The proof verifies the necessary conditions of for
neutral equilibria from Myerson (1984). For convenience, we reproduce the relevant
result (restated for the problem at hand) below:

Theorem 2. (Myerson (1984))(q., t.) is a neutral bargaining solution if and only if
(qu, tu)u∈U is incentive compatible and there exist sequences (λεu)u∈U , (αεu)u∈U , (ωεu)u∈U ,and
(ωεB) for ε→ 0 such that

• (8.1) λεu > 0, αεu ≥ 0 for each ε and each u,
• (8.2) for each ε,(

(λεu + αεu)ωεu − αu+ω
ε
u+

)
= 1

2 max
q,t

(VA (q, t, u, λε, αε) + VB (q, t, u, λε, αε)) for each u, and

ωεB = 1
2
∑
u

max
q,t

(VA (q, t, u, λε, αε) + VB (q, t, u, λε, αε)) ,

• (8.3) lim supε→0ω
ε
u ≤ quu−tu for each u and lim supε→0ω

ε
B ≤

∑
u fu [v (1− qu) + tu].

The difficulty is to make sure that all λs are strictly positive. (Myerson (1984)
describes “almost equivalent” necessary conditions that do not require strict positivity
for all λs).

For each u ∈ suppµ, let
Ru =

∑
u′≥u

fu′ (u− v)

be the expected revenue from fixed price u. (Here and below, the summation takes
place over elements of the support suppµ.) Then, by definition, Ru is maximized at
u = p∗ (µ). let

ru = 1
u+ − u

(
Ru+ −Ru

)
=

∑
u′≥u+

fu′ −
1

(u+ − u) (u− v) fu.



BARGAINING WITH MECHANISMS 33

An interpretation of ru is the marginal revenue at price u. The belief assumption
implies that ru is decreasing. Due to the definition and the uniqueness of p∗ (µ) as
the highest optimal price, we have rp∗(u) < 0 , and rp∗(µ)− > 0. Moreover, because ru
is decreasing, ru < 0 for each u ≥ p∗ (µ).

Take any ε > 0 such that ε < 1
|suppµ|rp∗(µ)− and, for each u, ε < 1

|suppµ|fu . Define,
for each u,

λεu =


ε if u > p∗ (µ)

rp∗(µ)− − ε |{u ∈ suppµ : u > p∗ (µ)}| if u = p∗ (u)

ru− − ru if u < p∗ (u) ,

And
αεu =

∑
u′≥u

fu −
∑
u′≥u

λεu for each u.

The properties of r and the choice of ε imply that λεu > 0 for each u. The choice of ε
ensures that αεu ≥ 0 for each u > p∗ (µ). For u ≤ p∗ (µ),

αεu =
∑
u′≥u

fu − ru− = 1
(u− u−) (u− − v) fu− ≥ 0.

It follows that conditions (8.1) are satisfied.
Let

ωεu = 1
2u ≤ q∗uu− t∗u where the inequality is strict only for u ≥ p∗ (µ) ,

ωεB = 1
2v + 1

2
∑

u≥p∗(µ)
(fu (p∗ (u)− v)) + 1

2ε
∑

u>p∗(µ)
(u− p∗ (µ)) .

Conditions (8.3) follow from the fact that limωεB = 1
2v + 1

2
∑
u≥p∗(µ) (fu (p∗ (u)− v)),

which is Bob’s expected payoff in the mechanism (q∗. , t∗. ).
For each q and t,

VA (q, t, u, λε, αε) + VB (q, t, u, λε, αε)

= (λεu + αεu) (qu− t)− αεu+ (qu+ − t) + ((1− q) v + t) fu

=
(
fu + αεu+

)
(qu− t)− αεu+ (qu+ − t) + ((1− q) v + t) fu

=q
[
fu (u− v)− αεu+ (u+ − u)

]
+ vfu.
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Notice that, for each ε and each u, λεu + αεu = fu + αεu+ and that

• for each u < p∗ (µ), by definition,

fu (u− v)− αεu+ (u+ − u)

=fu (u− v)−
(
fu+ − λεu+ + αεu++

)
(u+ − u)

=fu (u− v)−
(

fu
u+ − u

(u− v)
)

(u+ − u) = 0, and

• for each u ≥ p∗ (µ),

fu (u− v)− αεu+ (u+ − u) ≥ fu (u− v)−
∑
u′≥u+

fu′ (u+ − u) > 0.

Hence VA (q, t, u, λε, αε) + VB (q, t, u, λε, αε) is maximized by t∗u and q∗u for each u.
Equation (8.2) for Alice’s type u is given by:

2
(
(λεu + αεu)ωεu − αεu+ω

ε
u+

)
=
(
fu + αεu+

)
u− αεu+u+

=vfu +
[
fu (u− v)− αεu+ (u+ − u)

]
= max

q,t
VA (q, t, u, λε, αε) + VB (q, t, u, λε, αε)

Equation (8.2) for Bob comes from
1
2
∑
u

VA (q, t, u, λε, αε) + VB (q, t, u, λε, αε)

=1
2v + 1

2
∑

u≥p∗(µ)

(
fu (u− v)− αεu+ (u+ − u)

)

=1
2v + 1

2
∑

u≥p∗(µ)
(fu (p∗ (u)− v)) + 1

2
∑

u≥p∗(µ)
(fu (u− p∗ (u)))− 1

2
∑

u>p∗(µ)
(u− p∗ (µ))

(
αεu − αεu+

)

=1
2v + 1

2
∑

u≥p∗(µ)
(fu (p∗ (u)− v)) + 1

2ε
∑

u>p∗(µ)
(u− p∗ (µ)) = ωεB.

where the last equality comes from the fact that αu − αu+ = fu − ε for u > p∗ (µ)

Appendix B. Equilibrium and Existence

This part of the Appendix develops a theory of equilibrium existence in a class of
abstract games called menus of mechanisms. In each such a game, one player (Alice
or Bob) chooses among infinitely many mechanism; next, beliefs are updated, the
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choice is implemented and players receive payoffs according to one of the continua-
tion equilibria in the chosen mechanism. The main result, Proposition 2, provides
conditions for the existence of equilibria in a menu of mechanisms given the existence
(and some properties) of equilibria in the continuation mechanisms.

Part B.5 states a formal definition of equilibrium payoffs in the bargaining game.
The last part of this Appendix uses Proposition 2 to finish the remaining part of the
proof of Theorem 1.

B.1. Payoff outcomes. Recall that a payoff outcome is a pair (y, yB) of a function
y : U → R and yB ∈ R. Let Y0 = RU ×R be the space of payoff outcomes equipped
with the topology of uniform convergence.

We restrict attention to payoff outcomes that are obtained from incentive compat-
ible mechanisms. Let Y ⊆ Y0 be the subspace of payoff outcomes (y, yB) such that y
is continuous. Because U is a compact set, Y is a Banach space under the uniform
norm. Standard arguments equilibrium payoffs in any mechanism belong to Y .

A payoff correspondence is a correspondence E : ∆U ⇒ Y from beliefs into payoff
vectors.

Payoff correspondence isKakutani if it is u.h.c.10 and for each µ, E (µ) is non-empty,
convex, and compact. It follows that the set E = {(µ, y) : y ∈ E (µ)} ⊆ ∆U × Y is
compact.

For each payoff correspondence E and x ∈ R, define xE to be payoff correspondence
st. E (µ) = {(xy, xyB) : (y, yB) ∈ Y } for each µ. Similarly, we can define convex
combination αE1 + (1− α)E0 of payoff correspondences E0, E1 for α ∈ (0, 1).

B.2. Mechanisms. The set of payoff outcomes in a perfect Bayesian equilibrium
in mechanism m is denoted as E (µ;m). The equilibrium conditions ensure that the
equilibrium allocation must be incentive compatible, hence standard arguments based

10Recall that, for any topological spaces A, B, the correspondence G : A ⇒ B is u.h.c. if for each
a, each open neighborhood B′ of G (a), there exists an open neighborhood A′ of a such that for each
a′ ∈ A′, G (a′) ⊆ B′. Correspondence G is l.h.c. if for each a ∈ A and b ∈ G (a) and an open set
b ∈ V ⊆ B, there is an open set a ∈ U ⊆ A such that for each a′ ∈ U , the intersection between V

and G (a′) is non-empty. Correspondence G is continuous if it is u.h.c. and l.h.c.
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on the envelope theorem imply that E (µ;m) ⊆ Y . Because players have access to
public randomization, w.l.o.g. we assume that E (µ;m) is convex for each µ.

Remark 1. Payoff correspondence captures all important properties of a mechanism.
In fact, we refer to a payoff correspondence as an abstract mechanism. All the subse-
quent definitions work in exactly the same way of mechanisms are understood in this
abstract way.

A mechanism m is Kakutani if its payoff correspondence is Kakutani. Because
Kakutani correspondences are non-empty, any Kakutani mechanism has, by defini-
tion, an equilibrium for each belief.

Let M be a set of mechanisms, equipped with some topology. We refer to such M
as a family of mechanisms.

Definition 1. Family M is Kakutani if M is compact Polish (as a set), each m ∈M
is Kakutani, and the correspondence E : M×∆U ⇒ Y of equilibrium payoffs is u.h.c.
(jointly over mechanisms and beliefs).

B.3. Menus. An important class of mechanisms for bargaining games are menus.
Menus are defined in Section 1.3 as a compact set of allocations for Alice to choose
from. We generalize this definition to allow each player (Bob or Alice) to choose
a continuation mechanism (rather than a single allocation) to be played later with
the other player. Suppose that M is a Kakutani family of mechanisms. A menu of
mechanisms for player i, denoted as Mm

i , is a multi-stage game, in which, in order,

• players observe a public randomization device,
• player i chooses m ∈ M and, if i = A, Alice makes a cheap talk announce-
ment and Bob updates his beliefs (following the choice of mechanism and the
announcement),
• m is implemented.

The announcement may provide information about Alice and it plays a role in the
existence proof. We assume that the space of announcements A is sufficiently rich:
it has a from A = ∆U × A0 for some compact Polish set A0 (the latter set can be a
singleton).
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B.4. Equilibrium in menu of mechanisms. Next, we define a notion of perfect
Bayesian equilibrium in a menu of mechanisms M . For clarity, we do it in two steps.
Definition 2 focuses on the behavior after the randomization device is observed, and
Definition 3 completes the notion from the perspective before the randomization.

We start with a menu for Alice.

Definition 2. We say that a tuple (y, yB, µ) ∈ Y × ∆U is an equilibrium tuple in
menu of mechanisms Mm

A if there exists a measurable strategy σ : U → ∆ (M × A),
measurable continuation payoffs v : M × A → Y , and, if i = A, measurable belief
function q : M × A→ ∆U , such that the following conditions hold:

• payoff consistency:

y (u) =
ˆ
vA (u|m, a)σ (d (m, a) |u) , for each u ∈ U,

yB =
ˆ
vB (u|m, a)σ (d (m, a) |u) dµ (u) ,

• best response: for each m, a, each u ∈ U

vA (u|m, a) ≤ y (u) ,

• belief consistency: for each continuous function f : U ×M ×A→ R, we haveˆ
f (s,m, a) q (ds|m, a)σ (d (m, a) |u) dµ (u) =

ˆ
f (u,m, a)σ (d (m, a) |u) dµ (u) ,

• continuation payoffs: for each m, a, we have

v (m, a) ∈ E (m) (q (m, a)) .

We refer to the tuple (σ, q, v) as a (perfect Bayesian) equilibrium of menu of mecha-
nisms Mm

A .

The definition for Bob’s menu is analogous (and it can be obtained from above by
replacing U by a single element set and dropping the belief consistency condition).

We point out non-standard features of the definition. Although the equilibrium
describes the behavior of player i in the menu of mechanisms, it is silent about the
behavior once the mechanism is selected. Instead, the definition points to a contin-
uation payoff, taking as granted that the payoff can be implemented. The approach
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is modular: to focus on the behavior in the game at hand and leave the continuation
behavior for some other definition. One consequence is that such a definition assumes
that the one-shot-deviation principle always holds. Another consequence is that the
definition does not require that the continuation behavior in the mechanism is mea-
surable with respect to the history in the game at hand, as long as the continuation
payoffs and beliefs at the beginning of the mechanism are measurable.

Second, the best response condition, together with the payoff consistency condi-
tion ensure that µ-almost all types best respond and receive payoffs as in y. The
remaining 0-mass of types may either receive a lower payoff, or have no well-defined
best response. This feature is without loss of generality, as we can always modify the
equilibrium object to ensure maximization for all types.

Definition 3. A tuple of payoffs (y, yB) ∈ Y is an equilibrium outcome with ran-
domization device (e.o.r.d.) in menu of mechanisms Mm

i with initial beliefs µ if there
is a probability distribution γ ∈ ∆Y such that (y′, µ) is an equilibrium tuple in menu
of mechanisms Mm

i for γ-all y′ and y =
´
y′dγ (y′, y′B) and yB =

´
y′Bdγ (y′, y′B).

For each µ ∈ ∆U , let

E (Mm
i ) (µ) = {(y, yB) : y is e.o.r.d. in Mm

i with initial beliefs µ}

= con {(y, yB) : (y, yB, µ) is equilibrium tuple in Mm
i } . (B.1)

The equality in the second line is due to the Choquet Theorem. Hence E (Mm
i ) is the

equilibrium correspondence in mechanism Mm
i .

Proposition 2. If family of mechanisms M is Kakutani, then the family of menus
of mechanisms {Km

i : K ⊆M,K is compact} is Kakutani as well.

Recall that, by definition, all Kakutani mechanisms have an equilibrium. Thus, the
proposition implies that each of the menu of mechanisms Km

i for a compact subset
K ⊆M of a Kakutani family of mechanisms M has an equilibrium.

Corollary 1. Single offers, menus, and menus of menus are Kakutani mechanisms.

Proof. The claim for single-offers is trivial. Clearly, the family of all single allocations
is Kakutani (as the set of allocations is compact). The claim for menus (where
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Alice is choosing from a compact set of single offers) follows from the Proposition 2.
Proposition 2 implies that a compact family of menus (i.e., derived from a compact set
of compact sets of X is Kakutani. Applied once again, the Proposition 2 implies that
each menus of menus (where Bob is choosing from a compact set of Alice’s menus) is
Kakutani. �

B.5. Equilibrium of the bargaining game. The definition of equilibrium in the
bargaining game builds upon the definition of equilibrium payoff outcome with ran-
domization device in a menu of menus.

Definition 4. A tuple (y, yB) is an equilibrium payoff outcome in the bargaining
game with beliefs µ if there are Kakutani payoff correspondences E,EA, EB and
EA,m, EB,m for m ∈M such that (y, yB) ∈ E (µ) and

(1) E = βEA + (1− β)EB,
(2) for each player i, family of (abstract) mechanisms {Ei,m : m ∈M} is Kaku-

tani and Ei is a payoff correspondence in the menu of (abstract) mechanisms
{Ei,m : m ∈M}mi ,

(3) for each player i, for each m ∈ M, Ei,m is a payoff correspondence in the
menu of two mechanisms {m, δE}m−i.

Condition 1 ensures that the payoffs in the bargaining game are expectation over the
choice of the proposer. Condition 2 describes the payoffs in the game in which a
proposer chooses a mechanism. Condition 3 describes the payoffs in the subgame, in
which the other player decides whether to accept or reject. In case of rejection, the
continuation payoff is discounted.

B.6. Existence part of the proof of Theorem 1. Let m be a Kakutani mecha-
nism. Define an “abstract” mechanismm0 (see Remark 1) with payoff correspondence
E (m), where

E0 (m0) (µ) =
{(
δyβ,p, δΠ∗β (µ)

)
: p ∈ P (µ)

}
, and

E (m0) (µ) = conE0 (m0) (µ) .
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In other words, the payoffs in mechanism m0 are convex combination of payoffs(
δyβ,p, δΠ∗β (µ)

)
for some p ∈ P (µ). Mechanism m0 stands for the continuation

payoffs in the bargaining game, discounted for the next period.
Correspondence E (m0) : ∆U ⇒ Y is clearly non-empty-valued and convex. Below,

we verify that E0 (m0), hence E (m0), is u.h.c. Hence, the “abstract” mechanism m0

is Kakutani.
Consider a game, where Alice either accepts mechanism m (and an equilibrium

from this mechanism is implemented) or rejects it, which leads to mechanism m0.
Because bothm andm0 are Kakutani, Proposition 2 implies that menu of mechanisms
{m,m0}mA is a Kakutani mechanism. Therefore, there exists a measurable strategy
σ : Y → ∆ {m,m0}, a pair of beliefs µAm = q (m) and µRm = q (m0), and continuation
payoffs

(
yA, yAB

)
= υ (m) ∈ E

(
µAm;m

)
if the mechanism is accepted and

(
δyR, δyR

)
=

υ (m0) ∈ E (m0) (µ) if the mechanism is rejected such that (σ, q, υ) is perfect Bayesian
equilibrium of the menu of mechanism {m,m0}mA .

We check that E0 (m0) is u.h.c. Take any sequence (yn, yB,n) ∈ E (m0) (µn). By
taking subsequences, we can assume that µn → µ. Note that yB,n = δΠ∗β (µn).
Because Π∗β is continuous, it must be that yB,n → Π∗β (µ). For each n, there exists
pn ∈ U such that yn = δyβ,pn . By taking subsequences, assume that pn → p. Clearly,
yn → δyβ,p uniformly over u. Finally, because Π∗β (µn) = Π (µn; yβ,pn), it must be that
Π∗β (µ) = Π (µ; yβ,p).

Appendix C. Existence proofs

C.1. Distributional equilibrium. In this subsection, we provide an alternative and
equivalent definition of equilibrium for menus of mechanisms and discuss its proper-
ties. The notion is a version of the equilibrium in distributional strategies from
Milgrom and Weber (1985) but adapted to menu-of-mechanisms game.

From now on, assume that M is a Kakutani family of mechanism.
A distributional strategy in Alice’s menu of mechanism Mm

A with prior beliefs µ is
a probability distribution α ∈ ∆ (U ×M × A× Y ) such that margUα = µ. Hence
a distributional strategy is a joint distribution over types, actions (mechanism and
announcement), as well as continuation payoffs. Recall that A = ∆U × A0. The
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first part of the announcement a = (q, a0) can be interpreted as as “posterior beliefs”
induced by the chosen mechanism and the announcement.

Definition 5. We say that (y, yB, µ) ∈ Y ×∆U is a distributional equilibrium tuple in
menu of mechanisms Mm

A with initial beliefs µ if there exists a distributional strategy
α ∈ ∆ (U ×M × A× Y ) such that the following conditions hold:

• payoff consistency: for any continuous function f : U → R,ˆ
f (u) y (u) dµ (u) =

ˆ
f (u) v (u)α (d (u,m, a, v, vB)) ,

yB =
ˆ
vBα (d (u,m, a, v, vB)) ,

• best response:

α {v : v (u) ≤ y (u) for each u} = 1, ⋃
q∈∆U

E (m) (q)
 ∩ {v : v (u) ≤ y (u) for each u} 6= ∅ for each m,

The first condition ensures that there are no on-path deviation. The second
condition ensures that for each mechanism m, there is a belief q and contin-
uation payoff that is worse than the equilibrium payoff for Alice. This takes
care of off-path deviations,
• belief consistency: recall that A = ∆U × A0. For each continuous function
f : U ×M ×∆U × A0 → R, we have

ˆ (ˆ
f (s,m, q, a0) q (ds)

)
α (d (u,m, q, a0, v, vB))

=
ˆ
f (u,m, q, a0)α (d (u,m, q, a0, v, vB)) .

The condition ensures that the announced continuation belief is correct in the
Bayes updating sense,
• continuation payoffs: for each m, a = (q, a0), we have

α {(u,m, q, a0, v, vB) : (v, vB) ∈ E (m) (q)} = 1.

We refer to α as a distributional equilibrium of the menu of mechanisms Mm
i .
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Lemma 6. Tuple (y, µ) is an equilibrium tuple if and only if it is a distributional
equilibrium tuple.

Proof. Part 1. Suppose that (y, yB, µ) ∈ Y × ∆U is an equilibrium tuple and let
(σ, q, v) be the supporting strategy, belief function, and continuation payoffs. Define
measure α ∈ ∆ (U ×M ×∆U × A0 × Y ) so that for any continuous function f :
U ×M ×∆U × A0 × Y → R, we have

ˆ (ˆ
f (u,m, q (m, q, a0) , a0, v (m, q, a0))σ (d (m, q, a0) |u)

)
dµ (u)

=
ˆ
f (u,m, q, a0, v)α (d (u,m, q, a0, v, vB)) .

Then, the payoff consistency, best response, and continuation payoff conditions of
Definition 5 are satisfied immediately. For the belief consistency condition, take any
continuous f : U ×M ×∆U × A0 → R, and notice that

ˆ (ˆ
f (s,m, q, a0) q (ds)

)
α (d (u,m, q, a0, v, vB))

=
ˆ (ˆ (ˆ

f (s,m, q (m, q, a0) , a0) q (ds|m, q, a)
)
σ (d (m, q, a0) |u)

)
dµ (u)

=
ˆ (ˆ

f (u,m, q (m, q, a0) , a0)σ (d (m, q, a0) |u)
)
dµ (u)

=
ˆ
f (u,m, q, a0)α (d (u,m, q, a0, v, vB)) ,

where the first and the third equality come from the definition of α and the second
from the belief-consistency condition of Definition 2.

Part 2. Suppose that (y, yB, µ) is a tuple of distributional equilibrium payoffs,
and let α be a corresponding distributional equilibrium. Fix versions of conditional
distributions α (.|u) and α (.|m, a) for each u ∈ U , and m ∈ M,a ∈ A. Define a
measurable strategy σ : U → ∆ (M × A), measurable belief function q̃ : M × A →
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∆U , and measurable continuation payoffs ṽ : M × A→ Y :

σ (u) = margM×Aα (.|u) ,

q̃ (m, a) = margUα (.|m, a) ,

ṽ (u|m, a) =
ˆ
v (u)α (d (v, vB) |m, a, u) ,

ṽB (m, a) =
ˆ
vBα (d (u, v, vB) |m, a)

The definitions of q̃ and σ̃ imply that for each continuous function f : U ×M ×
∆U × A0 → R, we haveˆ

f (u,m, a)σ (d (m, a) |u)µ (du)

=
ˆ
f (u,m, a)α (d (u,m, a))

=
ˆ (ˆ

f (u,m, a) (margUα (du|m, a))
)
α (d (m, a))

=
ˆ (ˆ

f (s,m, q, a′) q̃ (ds|m, q, a′)
)
α (d (m, a))

=
ˆ (ˆ

f (s,m, q, a′) q̃ (ds|m, q, a′)
)
σ (d (m, a) |u)µ (du) .

In particular, q̃ satisfies the belief-consistency condition of Definition 2. By the belief
consistency condition of Definition 5, we haveˆ (ˆ

f (s,m, q, a′) [q (ds)− q̃ (ds|m, q, a′)]
)
α (d (u,m, q, a′, v)) = 0.

Because the claim holds for any continuous f , we obtain that q̃ (m, a) = q, α-
almost surely. Hence, by the continuation payoffs condition of Definition 5, we have
(ṽ (m, a) , ṽB (m, a)) ∈ E (m, a) (q̃ (m, a)), α-almost surely. Let W1 be the set of pairs
(m, a) for which the relation does not hold.

By the best response condition, ṽ (m, a) ≤ y α-almost surely. Let W2 be the set of
pairs (m, a) for which the relation does not hold.

For eachm, pick in a measurable way (qm, vm) so that vm ∈ E (m) (qm) and vm ≤ y.
Modify ṽ to v for all pairs (m, a) ∈ W1 ∪W2 so that v (m, a) = vm and for all m, a.
Because the modification is on α-null set, the payoff consistency and belief consistency
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of Definition 2 are not affected. The construction ensures that the best response and
the continuation payoffs conditions are satisfied as well. �

C.2. Proof of Proposition 2. The argument in Bob’s case is relatively straightfor-
ward and therefore omited. From now on, assume that i = A, i.e., Alice chooses from
the menu of mechanisms.

Let M be a Kakutani family of mechanisms. LetM be a collection of all compact
subsets of M . Consider the equilibrium payoff correspondence Em : M×∆U ⇒ Y

defined so that for each K ∈M,

Em (K) (µ) = E (Km
i ) (µ) .

By (B.1), correspondence Em is convex-valued. We want to show that correspondence
Em is u.h.c. and that it is non-empty-valued.

The proof of u.h.c. is relatively straightforward and relies on the equivalence be-
tween equilibria and distributional equilibria established in Lemma 6. The proof of
the existence is preceded by a general observation about continuous selectors approx-
imating Kakutani correspondences.

C.2.1. Upper hemicontinuity. Let

F0 =
⋃

m∈M,µ∈∆U,
E (m) (u) ⊆ Y and F = conF0.

Lemma 7. Sets F0, F ⊆ Y are compact.

Proof. Take any sequence yn ∈ F0 and find mn, µn such that yn ∈ E (mn) (µn). By
taking subsequences, and using the fact that family M is Kakutani, we can assume
that mn → m ∈ M and µn → µ ∈ ∆U . For each ε > 0, let Yε be a finite set of
elements of E (m) (µ) such that E (m) (µ) ⊆ ⋃y∈Yε

B (y, ε), where B (y, ε) is an open
ball. Because E : M ×∆U ⇒ Y is u.h.c., for sufficiently high n, yn ∈

⋃
y∈Yε

B (y, ε).
By taking subsequences, there is yε ∈ E (m) (µ) such that yn ∈ B (yε, ε) for infinitely
many n. Because the claim holds for all ε > 0, we can construct a Cauchy, hence
convergent subsequence yn → y ∈ E (m) (µ) ⊆ F0.

The compactness of F follows. �

Lemma 8. Correspondence Em is u.h.c.
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Proof. It is enough to show that Em
0 :M×∆U ⇒ F0 is u.h.c., where

Em
0 (K) (µ) = {y : (y, µ) is equilibrium pair in Km} .

Because F0 is compact, we can rely on the characterization of upper hemicontinuity
through sequences. Let (yn, µn, Kn)→ (y, µ,K) be a convergent sequence such that
for each n, yn ∈ Em

0 (Kn) (µn). Let αn ∈ ∆ (U ×Kn × A× F0) be the sequence of
associated equilibrium distributions. After possibly taking a subsequence, αn con-
verges to some α ∈ ∆ (U ×K × A× F0). Because all equilibrium conditions in the
Definition 5 are preserved under weak limits, α is a distributional equilibrium in a
menu of menus Km. Moreover, y is the associated payoff vector and µ = margUα are
the beliefs. �

C.2.2. Continuous approximations. Suppose that A is compact Polish and B ⊆ Y is
a compact subset of Banach space Y . For each correspondence G : A⇒ B, and each
ε > 0, define correspondence UεG : A⇒ B so that for each a ∈ A,

UεG (a) =
{
Eµ b : µ ∈ ∆G is s.t. ∀α ≥ 0, µ {(a′, b′) : dA (a, a′) ≥ αε} ≤ e−α

}
.

Here, Eµ b is the barycenter of measure margBµ (i.e., the unique element b∗ ∈ B such
that for any continuous and llinear functional l (b∗) =

´
l (b) dµ (a, , b)). Mapping

µ→ Eµ b is continuous in weak* topology on ∆ (A×B).

Lemma 9. If G is u.h.c., convex- and non-empty-valued, then

• UεG is convex-, non-empty-valued, and continuous as a correspondence (see
footnote 10),
• UεG admits a continuous selector: a function φGε : A→ B such that for each
a ∈ A, φGε (b) ∈ UεG.
• limε→0 UεG→ G in the sense of the Hausdorff distance on subsets A×B,

Intuitively, UεG is a continuous approximation of G.

Proof. UεG is clearly convex- and non-empty-valued. The upper hemicontinuity is
obvious from the definition. To see the lower hemicontinuity, take a ∈ A and Eµb ∈
UεG (a). For each x ∈ A, take an arbitrary bx ∈ G (x). Construct a probability
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measure
µx = e- 1

ε
d(a, x)µ+

(
1− e- 1

ε
d(a, x)

)
δ(x,bx).

Then, for each α ≥ 0,

µx {(a′, b′) : dA (x, a′) ≥ αε} = e- 1
ε
d(a, x)µ {(a′, b′) : dA (x, a′) ≥ αε}

≤ e- 1
ε
d(a, x)µ {(a′, b′) : dA (a, a′) + dA (a, x) ≥ αε}

≤ e- 1
ε
d(a, x)e−(α− 1

ε
dA(a,x)) = e−α.

Hence Eµx b ∈ UεG (x) . Notice that

Eµx b = e- 1
ε
d(a, x) Eµ b+

(
1− e- 1

ε
d(a, x)

)
bx,

which implies that ‖Eµx b− Eµ b‖∞ ≤
(
1− e- 1

ε
d(a, x)

)
diam∞B. Because diam∞B <∞

(as B is compact), for each r > 0, there exists dr > 0 such that, if dA (a, x) ≤ dr,
then ‖Eµx b− Eµ b‖∞ ≤ r. Hence UεG is lower hemicontinuous.

The Michael Selection Theorem says that UεG admits a continuous selector.
For the last claim, notice first that G ⊆ UεG for each ε. Take any sequence εn → 0,

an → a and bn ∈ Uεn (an). Let µn be the associated distributions st. bn = Eµn b. By
taking subsequences, assume that µn → µ and bn → b. Then, µ ∈ ∆G, and for each
ξ > 0,

µ{(a′, b′) : dA (a, a′) ≥ ξ} = lim
n
µn {(a′, b′) : dA (a, a′) ≥ ξ}

≤ lim
n
µn

{
(a′, b′) : dA (an, a′) ≥

1
2ξ
}

≤ lim
n

e−
1
2 ξ

1
εn = 0,

where the first inequality comes from the fact that a = lim an. Because the above is
true for any ξ > 0, µ ({a} ×G (a)) = 1 and b = lim bn = lim Eµn b = Eµ b ∈ G (a).
The last inclusion is a consequence of the Choquet Theorem. �

C.2.3. Existence of equilibrium. We will show that the equilibrium payoff correspon-
dence Em :M×∆U ⇒ F0 is non-empty valued. Because finite subsets K ⊆ M are
dense in M , Lemma 8 implies that it is enough to show that E (Km

A , µ) is non-empty
for finite K ⊆M and any belief µ.

Take finite K ⊆M .
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• Let Σ = {ω ∈ ∆ (U ×K × A× F ) : margUω = µ} be the set of all distribu-
tional strategies. For each mechanism k ∈ K, let Pk : Σ ⇒ ∆U be the
correspondence of posterior beliefs after k is chosen that are consistent with
the Bayes formula: if ω ∈ Σ

Pk (ω) =


margUω(.,k)

ω(k) if ω (k) > 0,

∆U if ω (k) = 0.

Clearly, Pk is u.h.c., non-empty-valued, and convex valued. Define P : Σ ⇒

(∆U)K as P = ×k∈KPk. Because ∆U is a compact subset of a Banach space,
Lemma 9 applies, and there exists a continuous selector φPε from UεP .
• Recall that E (k) : ∆U ⇒ F is the equilibrium payoff correspondence of
mechanism k. For each ε > 0, let UεE (k) be the ε-approximation of the
equilibrium payoff correspondence. Let φE(k)

ε : ∆U → F be a continuous
selector from UεE (k) (Lemma 9) for each k. Let φEε : (∆U)K → FK be given
by formula:

(
φEε (µ)

)
k

= φE(k)
ε ((µk)).

• Define best response correspondence B : FK ⇒ Σ so that ω ∈ B (y) if and
only if for each k, all the types who choose mechanism k maximize their payoff:

ω
{

(u, k, a, f) : k ∈ arg max
m∈K

f (u) and f = yk

}
= 1.

Clearly, B is u.h.c., non-empty-valued, and convex valued, and space Σ is a
compact subset of a Banach space. Let φBε be a continuous selector from UεB.

The Tychonoff Fixed Point Theorem implies the existence of fixed point

ωε = φBε
(
φEε

(
φPε (ωε)

))
.

Let

µε = φPε (ωε) ∈ (∆U)K and yε = φEε (µε) ∈ FK .

Then, (ωε, µε) ∈ UεP , ((µε)k , (yε)k) ∈ UεE (k) for each k, and (yε, ωε) ∈ UεB.
Because all the relevant spaces are compact, there exists ω ∈ Σ, µ ∈ (∆U)K , and

y ∈ FK for each k, such that, after possibly taking convergent subsequences, we get

ωε → ω, µε → µ, and yε → y = ((yk, yB,k))k∈K as ε→ 0.
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Because UεP → P , we have µ ∈ P (ω) or µk ∈ Pk (ω) for each k. Because UεE (k)→
E (k), we have (yk, yB,k) ∈ E (k) ((µ)k) for each k. Finally because UεB → B, we
have

ω
{

(u, k) : k ∈ arg max
m

ym (u)
}

= 1.

We construct a distributional equilibrium α: it is uniquely defined by (a) margU×Kω =
margU×Kα and (b) α {(u, k, µk, a, yk, yB,k) : k ∈ K} = 1 for some fixed a ∈ A. Recall
that µ = margUω = ∑

kmargKω (k)µk. Let yB = ∑
kmargKα (k) yB,k and, for each

type u, let y (u) = maxk yk (u).
We verify that α is an equilibrium distribution for the tuple (y, yB, µ):

• the payoff consistency condition for yB is satisfied by definition and, for y, it
follows from the property of ω,
• on-path best response conditon is satisfied by definition of y. Off-path best
response condition holds because, for each k, (yk, yB,k) ∈ E (k) ((µ)k) and
yk ≤ y,
• belief-consistency holds because of the choice uninformative announcement
and the fact that µk ∈ Pk (ω) for each k,
• continuation payoffs holds due to (yk, yB,k) ∈ E (k) ((µ)k) for each k.
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