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Introduction

I Sophisticated offers in real world
I menus,
I menus of menus (“I divide, you choose”),
I deadlines or delays,
I negotiation chapters,
I propose arbitration (example: trial by gods), propose a change

to bargaining protocols, etc.



Introduction

I Model of bargaining, where players offer mechanisms to find a
resolution.

I Why mechanisms help?
I screening: which type of the opponent wants what?
I signaling: how to protect oneself from revealing information?
I “belief threats”: can opponent’s adversarial beliefs be tested?



Model
Environment

I Alice (informed) and Bob (uninformed):
I Bob’s beliefs F about Alice’s preferences u ∈ [0, 1],
I Bob’s preferences v ∈ [0, 1] are known.

I Single good + transfers,
I Alice’s utility: qu + t
I Bob’s utility (1− q) v − t

I Bargaining game
I multiple rounds until offer is accepted, discounting δ < 1,
I once the offer is accepted, it is implemented and the game

ends,
I random proposer: Alice is a proposer with i.i.d. probability

β = βA and Bob with prob. 1− β = βB ,
I both sides may make offer,
I includes single-proposer games β ∈ {0, 1}.



Model
Mechanisms as offers

I Each offer is a mechanism: a finite-horizon extensive-form
game.
I m =

(
(St

A,St
B)t≤T , χ

)
I allocation: χ :

∏
i,t Si,t → X ,

I T <∞ and St
i compact.

I Examples: single-offers, menu, menu of menus
I When an offer is accepted, mechanism is implemented, and

the game ends.
I Main result hold as long asM contains menus and menus of

menus.



Model
Equilibrium

I “Perfect Bayesian Equilibrium,”
I existence is an issue (assume cheap talk and randomization

device for this),
I we show the existence ofM is “compact”,
I menus + menus of menus is “compact”.



Model
Mechanisms as offers

I For each mechanism m, only equilibrium payoffs matter:
I payoffs
I define equilibrium payoff correspondence

E (m) : ∆ [0, 1]⇒ R[0,1] × R.
I Mechanisms are Kakutani if E (m) is u.h.c., convex- and

non-empty-valued,
I M is “compact” if

I all mechanisms are Kakutani and
I the correspondence E :M×∆ [0, 1]⇒ R[0,1] × R is u.h.c.

I Assumption: M is compact.



Model
Equilibrium notion and existence

I Menu of mechanism game:
I makes an announcement a ∈ A,
I chooses from the compact set of mechanismM,
I after which public randomization is observed and one of the

continuation payoffs is implemented:
I PBE:

I strategy: α ∈ ∆ (M× A),
I posteriors: p :M×A→ ”beliefs”,
I continuations v :M× A→ ∆ (”payoffs”),
I p and v are measurable.

I Bargaining game - a sequence of menu of mechanisms games,
I PBE of bargaining game = sequence of PBEs in the menu of

mechanism games, where continuation payoffs in chosen
mechanisms are PBEs of the subsequent games.



Main result
Complete information

I Complete information bargaining: Alice u, and Bob v (fixed).
I Surplus max (u, v).
I Both players split the surplus, and receive

(βmax (u, v) , (1− β) max (u, v))

I the player with higher utility gets the good and pays out a
fraction of its value in the form of a transfer.

I This is not incentive compatible if Alice’s utility u > v .



Main result
Optimal mechanisms

I Alice’s optimal (ICR) mechanism:
I own the good and offer it for sale at price v ,
I payoffs: (max (u, v) , 0).

I Bob’s optimal mechanism:
I own the good and offer it for sale at price

p∗ ∈ arg max vF (p) + p (1− F (p))
I payoffs

(max (u − p∗, 0) , vF (p∗) + p∗ (1− F (p∗))) .

I Assume for simplicity that p∗ is unique.



Main result

Theorem
SupposeM contains all menus and menus of menus. Then, in the
unique equilibrium, the expected payoffs are as if
I with prob β, Alice implements her optimal mechanism,
I with prob. 1− β , Bob implements his optimal mechanism.

I β−random property (“usage” + “sell”) right



Main result

I “Incentive-efficient”, but not ex post efficient:
I Alice types v < u < p∗ do not get the good with prob. 1− β,

I Bob’s payoffs are continuous and convex in F ,
I Myerson’s neutral solution,
I Bob’s constrained commitment: the outcome is best for Bob

subject to Alice receiving her complete information payoffs.



Proof

I Equilibrium “construction”.
I Lower bound on Bob’s payoffs.
I Lower bound on Alice’s payoffs.



Proof
Preliminaries

I For each α, let m∗
α (F ) be the best mechanism for Bob st.

Alice receives her complete info payoffs yα (u) = αmax (u, v).

I α-random property rights, or
I 3-element Alice’s menu.

I Menu Yα,p∗ :
I Bob gets the good and Alice receives transfer αv ,
I Alice gets the good with prob. α,
I Alice gets the good, and pays (1− α) p∗,

I Payoffs are affine in α,

Alice payoffs: y∗
α (u;F ) := αmax (u, v) + (1− α) max (u − p∗, 0)

Bob payoffs: Π∗
α (F ) := (1− α) [vF (p∗) + p∗ (1− F (p∗))] ,
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Proof
Equilibrium

I In equilibrium, if player i is chosen a proposer, they offer m∗
αi ,

where
αA = 1− δ (1− β) and αB = δβ,

I the average payoff is y∗β and Π∗β , where β = βαA + (1− β)αB ,
I Bob is indifferent between accepting Alice’s offer and waiting,

Π∗αα = Π∗1−δ(1−β) = δΠ∗β ,
I Alice (weakly) prefers to accept Bob’s offer than to wait,

y∗αB = y∗δβ ≥ δy∗β .



Proof
Equilibrium

I What if players make out-of-equilibrium offers?
I If Bob deviates:

I each type of Alice optimally accepts or rejects,
I the lower bound on rejection payoffs are Alice’s (αB-)

complete info payoffs ,
I but because m∗αB is Bob-optimal, Bob cannot profit from the

deviation.
I If Alice offers m 6= m∗

αA : there is Bob’s belief Fm st.
I either Alice’s mechanism has an equilibrium with payoffs
≤ yαA (u) for all her types (so, not a profitable deviation), or

I Bob’s payoffs are ≤ ΠαA (Fm), and Bob prefers to wait.



Proof
Lower bound on Bob’s payoffs

I Can Bob get a lower payoff? No.
I Suppose x > β is the highest possible so that Π∗

x (G) is the
tight lower bound on Bob’s eq. payoff across any beliefs G ,
I then, there is always Alice’s type (in the support of G) that

receives ≤ yx in any equilibrium.
I In equilibrium with payoffs Π∗

x (G):
I Bob’s counteroffer m∗δx+ε (G).
I If accepted, this is strictly profitable (for small ε) for Bob,

Π∗x (G) < βBΠ∗δx+ε (G) + (1− ββ) δΠ∗x (G)
I The offer will be accepted.

I Alice payoffs from accepting y∗δx+ε > y∗δx ≥ δyx ,
I If rejected, posterior beliefs G ′.
I Because Bob receives Πx (G ′) in the continuation, at

least one G ′-positive prob. Alice’s type must get yx
(somewhere the constraint must be binding).

I But then, this type should not have rejected - hence
beliefs are not G ′.



Proof
Lower bound on Alice’s payoffs

I Can Alice’s get a lower payoff? Not less than y∗
β .

I Suppose x ≤ 1 is the lowest possible so that Alice’s type u
receives across alll eq.
I If x < β, Alice’s counteroffer is to offer a menu of mechanisms{

m∗1−δ(1−β)+ε (G) : for all beliefs G
}
.

I Bob will accept it because it improves his payoff, no matter
what is the posterior belief G .

I If ε is small enough, because x < β, any choice of Bob will
lead to a strict improvement for at least some type of Alice.



Proof
Role of menus

I Menus help with screening problem
I menus of menus help with signaling problem (inscrutability),

and
I responding to belief threats.



Comments

1. Neutral solution
2. Coasian bargaining
3. Renegotiation
4. Other bargaining environments
5. Two-sided incomplete information



Comments
Neutral solution

I Axiomatic bargaining: Harsanyi and Selten (72), Myerson (84)
I incentive compatible mechanisms,

I (Myerson 84) - neutral solution as a minimal set of incentive
compatible outcomes that satisfies three axioms
I probability invariance
I extension axiom,
I random-dictatorship (with simple bargaining problems .

I In practice, equal sharing of virtual valuations.



Comments
Neutral solution

I Here: assume that β = 1/2.

Theorem
Suppose that

(u − v) f (u)− (1− F (u))

is strictly increasing in u. Then, equal likelihood of “property
rights” mechanism is the unique neutral solution.



Comments
Commitment and Coasian bargaining

I Coasian bargaining and dynamic mechanism design without
commitment: Skreta (06), Liu et al (19), Doval, Skreta (21),
I only uninformed party makes offers.

I As in that literature,
I players cannot unilaterally commit to future offers,
I players are committed to an offer for the period in which the

offer is made,
I once the offer is accepted, it must be implemented.

I But, mechanisms may generate ex post inefficient allocation,
I players have also access to a large(-r) space of mechanisms,
I applications: bargaining over protocol, bargaining without

common knowledge of surplus



Comments
Commitment and Coasian bargaining

I When β = 0, Bob is the single proposer, the unique PBE is
that Bob proposes optimal selling mechanism: sell at price
p∗ > v , which is accepted.
I that’s unlike Coasian bargaining, where Bob would sell at v :
I in the Coasian bargaining, if offer is rejected, Bob cannot stop

himself from learning that it is rejected,
I here, rejection does not reveal any information,

I The ability of players to commit to the mechanism once
accepted is not crucial - see next!



Comments
Renegotiation

I Multiple ways of introducing renegotiation.
I Suppose that both Alice and Bob need both to agree to

renegotiate:
I after mechanism is accepted, and implemented, one of them

may propose “Do you want to renegotiate?”
I and if the other says “yes”, the bargaining game is restarted,
I so, previous agreement is not a “starting point” for

renegotiation (unlike Strulovici 17).
I The lower bound on Bob’s payoffs (i.e., β-random property

rights) remains the same.



Comments
Renegotiation

I The lower bound on Bob’s payoffs remains the same.
I renegotiation leads to the possibility that players make

sub-optimal choice in the counter-offered mechanism, because
they anticipate renegotiation,

I but the argument goes through:
I the key is that Bob’s counteroffer is a menu and Alice controls

the payoffs.
I This does not work for Alice:

I Alice’s counteroffer is a menu of menus, and Bob does not
control the payoffs.



Comments
Heterogeneous pie

I Heterogeneous pie: chocolate and strawberry part
I X =

{
(ac , as) ∈ [0, 1]2

}
- divisions of the pie

I Alice’s utility: uac + (1− u) as ,
I Bob’s utility: v (1− ac) + (1− v) (1− as) .

Theorem
If β = 1

2 and δ → 1, the PBE outcomes converge to optimal Bob’s
mechanism st. each type of Alice receiving her complete
information payoffs.



Comments
Other bargaining environments

I More generally, redefine
I the space of allocations X ,
I preference types,

I apply the same methodology.
I General result: Under one-sided incomplete information, each

player i will receive at least βi fraction of their best allocation.



Comments
Two-sided incomplete information

I Suppose that two players can have two types ul < uh.
I beliefs Fi ∈ ∆ {ul , uh},

I βA + βB = 1 proposer probabilities:
I β-random property right mechanism: with prob. βi , player i

gets the good and may offer to sell it at price p = uh.
I this mechanism is ex post efficient.



Comments
Two-sided incomplete information

Theorem
SupposeM contains all α-random property rights mechanisms for
all α ∈ [0, 1].
Then, in the unique equilibrium, the expected payoffs are as if
β-random property rights mechanism is implemented.



Conclusion

I A model of bargaining with incomplete information and
mechanisms as offers

I Main result: unique and continuous equilibrium outcome
I role of mechanisms in bargaining,

I Proof of a concept that bargaining with mechanisms is
possible and useful,
I relation to axiomatic theory,
I other environments,
I two-sided incomplete information,
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