
LEARNING THROUGH THEORIES
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Abstract. This paper examines the relationship between language and knowledge in a

learning model. An agent describes the world through theories. A theory consists of uni-

versal propositions called patterns, and it is formulated in some language. We look at two

characteristics of a good theory. A theory is informative if it ensures correct predictions. A

theory is brief if it consists of one pattern. We o¤er di¤erent characterizations of informative

theories. In particular, we identify languages for which there is no trade-o¤ between both

characteristics: Any informative theory logically implies a theory that is informative as well

as brief. The results are illustrated with speci�c problems of reasoning under uncertainty.

1. Introduction

Both in science and in life, information is often represented in the form of theories stated
in some language. Typically, theories serve two goals. First, theories are used to make
predictions. For example, the theory of a consumer�s choices usually contains a transitivity
assumption: for all bundles, if the consumer chooses a from any bundle that includes b and
b from any bundle that includes c; she must choose a from any bundle that includes a and
c: Such a theory allows to deduce the choice of a from the last bundle given the observed
choices in the �rst two bundles.
Second, theories are used to communicate information. Instead of describing the con-

sumer�s choices in all possible bundles separately, the theory of transitivity consists of one
statement that applies universally to all bundles. A communicable theory must be stated
brie�y. Consider a teacher who wants to pass on knowledge to a student. The teacher does
not have the time or other resources to discuss all the situations that the student may face
in her life. Instead, the teacher will teach a general theory together with a few well-chosen
examples. The student should be able to use the examples and the theory to deduce the out-
comes of situations that the teacher did not mention. Because the quality of predictions may
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require the teacher to communicate long and complicated theories, there exists a trade-o¤
between the two goals of the theory.
In this paper, we analyze the two goals of the theories using a learning model. In the

model, a theory provides an information about the association between instances (questions,
decision problems) and outcomes (answers, solutions). Let X be a space of instances. Each
instance x is associated with an outcome � (x). The association � : X ! Y; called the state
of the world, is chosen by Nature, and an agent knows only that � is consistent with some
theory T:We assume that theory T must be expressed in some language. We formally de�ne
language as a system of symbols (relations, variables, Boolean operators, and quanti�ers)
and rules of combining �nite tuples of symbols into formulas. Language is used to express
universal formulas called patterns. A theory is any (�nite or in�nite) set of patterns.
In each period, the agent observes a new instance xt makes a prediction of the outcome

� (xt) and observes the realization of the true outcome. The prediction is formally de�ned
as a learning rule and it is based on the entire database of past observations before period
t: The choice of the learning rule is in�uenced by the agent�s knowledge of theory T: See
Figure 1.
The agent�s payo¤ is equal to the long-run average number of periods in which his predic-

tion was correct. The payo¤ depends on the instance process, the state of the world, and the
learning rule. We say that a theory is informative, if for some instance process, there exists
a learning rule, such that for any state � that is consistent with the theory, the long-run
average number of mistakes converges to 0. Such theories are very valuable: as long as the
agent can appropriately choose the order of observations, such a theory guarantees that in
the long-run the agent commits arbitrarily few mistakes.
We present di¤erent characterizations of informative theories. We show that, in a class of

languages all informative (possibly in�nite) theories imply theories that are simultaneously
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informative and brief, i.e., that consist of only one pattern (Theorem 1). Additionally, we
show that informative theories are separated from non-informative ones in the following
sense. For each language from the class we study, there exists a constant h > 0 such that for
each non-informative theory, the worst-case scenario average number of mistakes is equal to
at least h. Constant h does not depend on the theory, only on the language.
As an illustration, we show that there exists a class of languages with important applica-

tions in which all non-trivial theories are informative. This is surprising, as the de�nition of
informativeness is quite demanding. The language of the consumer�s choices does not belong
to that class. Although the (one-pattern) theory of transitivity is informative, the language
allows to state non-trivial and non-informative theories.
The de�nition of informativeness is relatively weak: for a theory to be informative, it is

enough that there exists (possibly theory-speci�c) an instance process and (possibly process-
speci�c) a learning rule. Because we start with a weak de�nition, we are certain not to omit
interesting theories. In order to test whether the de�nition is not too permissive, we discuss
its modi�cations:

(1) We consider theories that lead to no mistakes in the long-run for any instance process.
However, we argue that such a requirement is too strong as in many languages, all
theories that satisfy the stronger requirement are essentially constant (see Section
4.2).

(2) One may ask whether the instance process can be chosen independently from the
theory and the learning rule. Say that a class of processes satis�es the su¢ cient
data condition, if for any informative theory, there exists a learning rule that ensures
no long-run mistakes along any process from the class. In particular, the learning
rule does not depend on the instance process, and the class of instance processes
does not depend on the theory. We characterize conditions under which such classes
exist (Theorem 2) and we show that, in many cases, they correspond to natural and
easy-to-interpret requirements.

(3) Finally, we show that there exists a learning rule that ensures no long-run mistakes
for any informative theory and any instance process from a class that satis�es the
su¢ cient data condition (Theorem 3). We interpret the result as a possibility of
induction. The proof relies on our characterization of informative theories as those
that imply informative patterns.

The next two sections de�ne language and the learning model. Section 4 illustrates the
de�nitions and the results of the paper on examples. Section 5 characterizes theories that
are informative. Section 6 proves the existence of the su¢ cient data condition. Section 7
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discusses the existence of universal learning rule that applies to all informative theories. Sec-
tion 8 discusses the tightness of various languages. We postpone the review of the literature
until the last section.

2. Language

Let X be a countably in�nite space of instances (decision problems, objects). For each
�nite tuple of elements of X; �x = (x1; :::; xm) ; and each subset S � X; we write �x � S if
fx1; :::; xmg � S: Let �x^�x0 denote the concatenation �nite tuples �x and �x0:
A (relational) language on X is a set of relations L = fRig1; where Ri � XkR is a kRi-ary

relation on X. Language L is �nite, if jLj < 1: We implicitly assume that each language
includes the binary relation of equality �=�.
Let Y be a �nite space of outcomes (solutions, properties). A mapping � : X ! Y is

called a state of the world. Let M = Y X be the space of all states equipped with the
product �-algebra.
Language L is used to express information about states of the world. An atomic formula

is a statement of one of the following forms

R (~x1; ~x2:::; ~xkR) , ~� (~x) = 0, or ~� (~x) = 1;

where ~x1; ; ~x2:::; ~xk; ~x are variables corresponding to instances, R 2 L is a relation; and ~� is
variable corresponding to state. A (free) formula F is any combination of atomic formulas
connected by Boolean operators _;^;=);:. We write F (~x1; ; ~x2:::; ~xk; �) when we want to
indicate all (�nitely many) variables used in formula F:
For any k-tuple of instances x1; :::; xk 2 X and any state �; let F (x1; :::; xk; �) be the

statement obtained from the substitution of the respective variables; such statement can be
assigned with the truth value.2 State � is consistent with F if F (x1; :::; xk; �) is true for any
substitution of instances into variables: We write

8x1;x2:::;xk2XF (x1; x2:::; xk; �) ; (2.1)

and we refer to (2.1) as a (universal) pattern F .

1Mathematical logic de�nes (�rst-order) language as a set of symbols of relations, functions, operators,

quanti�ers, etc., and rules of constructing formulas (grammar). Except for Boolean operators and quanti�ers,

symbols do not have any meaning. The meaning is acquired only when a formula from the language is

interpreted in a particular model. In this paper, we want to compare the power of expression of concrete

relational systems. For this purpose, we assume that relations R 2 L are already de�ned on the space of
instances X: This is a shortcut; instead, with a little bit more notation, one could follow the standard route

to obtain the same interpretation of the results.
2If F (:) is one of the atomic formulas, the de�nition of the truth value is immediate. For general F; the

truth value is de�ned by induction with respect to smaller formulas.
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A theory T is any set of patterns. LetM (T ) �M denote the set of all states � that are
consistent with all patterns in theory T: For each A � X; let

M (T ;A) :=
�
� 2 Y A : � = �jA for some � 2M (T )

	
denote the set of all A-restrictions of states that are consistent with theory T: SetsM (T ) and
M (T ;A)) describe the uncertainty of the agent who knows that theory T is true: Clearly,
the more states that are consistent with theory T , the largerM (T ;A) : Say that theory T
implies theory S ifM (T ) �M (S).
The above model of theory-based information is entirely standard. To see it, notice that

one can think aboutM as the state space and about fM (F ) ;MnM (F )g as binary par-
titions onM induced by patterns F: There are two reasons for looking at languages rather
than partitions. First, language is a less abstract and a more direct way of describing in-
formation. In addition, language comes with an added structure (relations, relationships
between relations, and so on) that can be used in proofs and to draw comparisons.
In the rest of this section, we describe some natural properties of languages. For any pair

of tuples of equal length �x; �x0 2 Xm, we say that tuples �x and �x0 are analogous, write �x � �x0,
if for each k-ary relation R 2 L; for each i1; :::; ik � m;

R (xi1 ; :::; xik), R
�
xi01 ; :::; x

0
ik

�
:

In other words, two tuples are analogous, if they have the same description in language
L: Say that two �nite sets S; S 0 � X are analogous, S � S 0; if there are enumerations
�x = (x1; :::; xm) of S and �x0 = (x01; :::; x

0
m) that are analogous, �x � �x0: Also, write �x~�D (or,

S ~�D) if there is �x0 � D (or, S 0 � D) such that �x and �x0 (or, S and S 0) are analogous.
Language L is complete if each pair of analogous tuples �x � �x0 has analogous extensions:

for each x 2 X; there exists x0 such that �x^x � �x0^x0: Thus, in complete languages, two
tuples with the same relational description have the same relations with elements outside
the tuples.
Language L is transitive if any two instances (1-tuples) are analogous, i.e., when the

language L does not have any non-trivial unary relations. That means that all instances
look alike a priori. All the examples of languages that are discussed in this paper are
complete and all but full language from Section 4.5 are transitive.
It turns out that if the language is complete, the restrictions over the �nite set depend in

some sense only on the analogy class of the set. In Appendix A.1, we prove the following
fundamental property.

Lemma 1. Suppose that language L is complete. Then, for any theory T; any two analogous
sets A and A0; jM (T;A)j = jM (T;A0)j.
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3. Learning

A (deterministic) instance process is any sequence of instances �x = (x1; x2; :::) such that
no instance is ever repeated xs 6= xt for s 6= t: In each period t; the agent observes instance
xt and predicts the value of outcome � (xt) : Because each instance is observed only once,
each prediction problem is novel and non-trivial. After the prediction is made, the agent is
informed about the true outcome � (xt). The predictions may depend on past observations
from periods s < t. A learning rule � :

[
t

(X � Y )t�1 � X ! �Y chooses (possibly

randomized) predictions after each history. The agent receives payo¤ 1 if her prediction
is correct and 0 if not. (More general payo¤s do not change any of the results.) For any
instance process �x; any learning rule �; any state �; let

Ut (�; �x; �) =
1

t

tX
s=1

�
�
(xu; � (xu))u<s ; xs

�
(� (xs)) :

This is the t-period average payo¤ from learning rule � given instance process �x and state
�. The average payo¤ is never larger than 1.
Consider an agent who knows that a certain deterministic theory T holds, but does not

know which state � 2 M (T ) is the true one. The agent chooses learning rule � in order to
maximize the worst-case payo¤,3

inf
�2M(T )

Ut (�; �x; �) : (3.1)

De�nition 1. Theory T is informative if there is an instance process �x and a learning rule
�; such that

lim inf
t!1

inf
�2M(T )

Ut (�; �x; �) = 1: (3.2)

De�nition 1 allows us to compare theories with respect to the quality of their predictions:
For each informative theory, there exists a learning rule and an instance process that ensure
that, in the long-run, almost all predictions are correct.

3The worst-case criterium has a long tradition in statistical literature. This criterium is directly used

in the classic decision theory of Wald (1950), Wald (1949) and Blackwell and Girshick (1954) (see Schwarz

(1994)); slightly reformulated, it is used by the learning theory of Vapnik and Chervonenkis (1971) (see

Vapnik (1998) and Bousquet, Boucheron, and Lugosi (2004)). Alternatively, the worst-case criterium can be

interpreted as an extreme uncertainty aversion of the decision maker Gilboa and Schmeidler (1989). Chen

and Epstein (2002), Epstein and Schneider (2003), Epstein (2006), and Epstein, Noor, and Sandroni (2006)

develop a systematic study of axiomatic foundation of learning under ambiguity with discounting. The

robust control literature (see Hansen and Sargent (forthcoming)) uses a discounted version of formula (3.2)

both in a theoretical and an empirical framework.
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The de�nition of informativeness is relatively weak: for a theory to be informative, it is
enough that there exists (possibly theory-speci�c) an instance process and (possibly process-
speci�c) a learning rule. Because we start with a weak de�nition, we are certain not to omit
theories that may reasonably lead to almost perfect predictions. On the other hand, the
de�nition may be too weak. To fully examine its scope, we discuss three modi�cations:

(1) We consider theories that lead to no mistakes in the long-run for all instance process.
Formally, say that theory T is strongly informative, if there is a learning rule � such
that (3.2) holds for all instance processes x. We believe that such a requirement is
too strong: in many languages, all theories that satisfy the stronger requirement are
essentially constant. An example is discussed in Section 4.2 (see Lemma 2).

(2) We ask whether the instance process can be chosen independently from the theory
and the learning rule. A class �X instance processes satis�es su¢ cient data condition,
if for any theory T that are informative, there is a learning rule � such that for all
processes �x, (3.2) holds. If there exists such a (non-empty) class of processes �X,
then we can switch the order of quanti�ers in De�nition 1: a theory is informative if
and only if there exists a learning rule such that (3.2) holds for any instance process
�x 2 �X. In particular, the learning rule depends only on the theory, not on a speci�c
instance process from the class. We show that such classes exist (Theorem 2).

(3) Say that � is an universal learning rule if (3.2) holds for each informative theory T;
each process �x from the su¢ cient data condition class �X: In Section 7, we show that
an universal learning rule exists.

We assume that the agent computes payo¤s with respect to the long-run criterion. This
is certainly a simpli�cation; in the real world, people discount. One of the consequences of
the current approach is that informativeness is a zero�one notion, and it divides theories
into two categories: those that predict well with few mistakes and those that do not. A
discounted model could allow for a re�nement of the �rst category into theories that allow
for correct predictions early and those that lead initially to many mistakes. However, at this
moment, it is unclear what exactly will happen in the discounted model. This should be a
subject of future research.
We assume that the instance process is a deterministic sequence. The model can be easily

expanded to incorporate probabilistic instance processes, i.e., distributions � over determinis-
tic instance processes. For each probabilistic process �; de�ne Ut (�; �; �) = E!Ut (�; �x; !) for
probabilistic instance processes. Say that a class of probabilistic instance processes satis�es
the su¢ cient data condition if for any theory T that is informative, there is a learning rule �
such that (3.2) with �-probability 1 for all probabilistic processes � in the class. Thus, if class
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�X of deterministic processes satis�es the su¢ cient data condition, then
�
� : �

�
�X
�
= 1
	
also

satis�es the su¢ cient data condition.

4. Examples

In this section, we discuss examples. All examples but the last one satisfy the assumptions
of the main results of the paper.

4.1. Trivial language. Let Ltrivial=? be a language without any non-trivial relation. This
is a very limited language that nevertheless allows a range of patterns to be stated. For
example,

8x� (x) = 0

is a pattern that is satis�ed by only one state, � � 0: On the other hand, pattern

8x;x0x 6= x0 ^ � (x) = 1 =) � (x0) = 0;

is satis�ed by in�nitely many states, in all of which, there is at most one outcome equal to
1 and all the remaining are equal to 0. We show that any non-trivial theory is informative
and the set of all instance processes satis�es the su¢ cient data condition.

4.2. Net�ix. Net�ix is a DVD rental online company. Its customers typically do not know
whether they will like a movie before they watch it. To help them, Net�ix makes recommen-
dations. The recommendations are based on rankings given by the customers in the past. To
make recommendations, Net�ix needs to know some universal properties of the distribution
of preferences. For example, Net�ix might know that:

For any customers c; c0, any movies m;m0;

if c likes m but dislikes m0, and c0 dislikes m; (4.1)

then c0 also dislikes m0:

Statement (4.1) describes a situation in which there is an universal ordering of movies with
respect to their quality: for each two movies m and m0 , the set of customers that like m is
either contained or it contains the set of customers that like m0: A similar ordering exists on
the set of customers. Because statement (4.1) does not refer to any individual customer or
movie, it is an example of a pattern.
We formally describe language in which pattern (4.1) can be stated. Let C be an in�nite

set of customers, M be an in�nite set of movies, and let X = C �M be the set of instances.
Each instance (c;m) is associated with an outcome � (c;m) 2 f0; 1g ; where � (c;m) = 1 if
and only if customer c likes movie m:
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There are two natural relations RC and RM on set X : for any (c;m) ; (c0;m0) 2 X;

(c;m)RC (c
0;m0) i¤ c = c0; and (c;m)RM (c0;m0) i¤m = m0:

Two instances are in relation RC if they refer to the same customer; two instances are in
relation RM if they refer to the same movie. Let LNet�ix = fRC ; RMg :
Any information about customers and movies that does not refer to any speci�c customer

and movie can be expressed in language LNet�ix. As an example, we show how to state (4.1):
Let R be a free formula with four variables:

R (~x1; ~x2; ~x3; ~x4) := ~x1RC ~x2 ^ ~x3RC ~x4 ^ ~x1RM ~x3 ^ ~x2RM ~x4 ^ : (~x1 = ~x2) ^ : (x1 = x3) :

For example, R (�x) and R ( �w) but :R (�z) for tuples �x; �w; and �z from Figure 2. (Notice that
tuples �x and �w are analogous, but they are not analogous to �z.)

m x1 x3
n0

m0 x2 x4

n

c d c0

;

m

n0 w4 w2
m0

n w4 w1

c d c0

;

m z1
n0 z2
m0 z4

n z3

c d c0

Figure 1. Tuples �x; �w, and �z:

Then, (4.1) has the same meaning as:

8�x=(x1;x2;x3;x4) (R (�x) ^ � (x1) = 1 ^ � (x2) = � (x3) = 0) =) � (x4) = 0:

In other words, for each quadruple of instances �x such that R (�x) ; if the outcome of the �rst
instance is equal to 1and the outcomes of the second and the third instances are equal to 0,
then the outcome of the last instance must also be equal to 0.
We will show that any non-trivial theory in language LNet�ix is informative (Theorem 1

and Lemma 6). To see why it might be so, consider one-pattern theory (4.1). Suppose that
Net�ix observes the preferences of customer c over a set of nM movies and the preferences
of the set of nC customers over movie m for some nC and nM : See Figure 2. There are at
most nC +nM mistakes committed while making these observations. Net�ix uses the theory
and initial observations to predict that customer c0 will not like movie m0: In fact, Net�ix
can correctly predict all outcomes of customer-movie pairs denoted with �?�. The number of
correct predictions is proportional to the product nCnM : For large nC and nM ; the number
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of correct predictions is of an order larger than the number of mistakes, nCnM >> nC +nM .

movies 1

? ? ? 0 ? ?

m 0 1 0 1 0 1 0 0 1

m0 ? ? ? 0 ? ?

1

? ? ? 0 ? ?

? ? ? 0 ? ?

1

c0 c customers

Figure 2.

The order in which observations are made has an impact on the quality of predictions. Not
all instance processes lead to the same long-run payo¤s. For example, consider an instance
process in which no customer or movie is ever repeated. Then, pattern (4.1) will never be
applied. Such an instance process does not belong to any class that satis�es the su¢ cient
data condition.
For each instance process �x; each period t, de�ne the numbers of distinct customers and

movies observed until period t; nCt = # fcs : s � tg and nMt = # fms : s � tg : Consider a
class of processes �XNet�ix such that

lim
t!1

nCt = lim
t!1

nMt =1 and sup
t

nCt n
M
t

t
<1 almost surely: (4.2)

The �rst two conditions ensure that the number of distinct customers and movies is un-
bounded. The last condition implies that, for su¢ ciently high t; the average number of
observations per customer is proportional to the number of observed movies and the average
number of observations per movie is proportional to the number of observed customers. We
show that for any informative theory, there exists a learning rule such that for any instance
process �x 2 �XNet�ix; (3.2) holds, i.e., �XNet�ix satis�es the su¢ cient data condition.
Finally, we use the Net�ix example to argue that many interesting theories are not strongly

informative. For example, consider an instance process along which in each period a new
movie is observed. Along such an instance process, pattern (4.1) can never be applied to
make a correct prediction. In fact, the best long-run average number of correct predictions
is 1

2
and it can be achieved by randomized prediction that predicts 0 with probability 1

2
in

each period.
More generally, we show that in the language LNet�ix all strongly informative theories are

essentially constant. The proof of the next result can be found in Appendix B.
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Lemma 2. Suppose that T is a theory in language LNet�ix that is strongly informative.
Then, there exists k such that for each state � 2 M (T ) ; there is y� 2 f0; 1g and sets
C0 � C;M0 �M such that jC0j ; jM0j � k; and � (c;m) = y� for ell c =2 C0 and m 2M0.

A similar result holds for any other language discussed in this section.

4.3. Consumer�s choices. Let X be a collection of choice sets, and let � (x) denote the
consumer�s choice from choice set x 2 X:4 An econometrician wants to predict � (x) : He is
guided by a belief that the consumer�s choices are rational.
Let B be a countable set of goods. Let X be a set of ordered d-tuples of distinct elements

of B: Let Y = f1; :::; dg. State � : X ! Y assigns choices in tuples of goods: if � (b1; :::; bd) =
l; then, faced with a choice between b1; :::; bd, the consumer chooses bl. De�ne language
Lchoices = fRijg where Ri;j is a binary relation such that for all x; x0 2 X;

(b1; :::; bd)Rij (b
0
1; :::; b

0
d) i¤ bi = b

0
j:

If d = 2; then the rationality of the consumer�s choices can be stated as two patterns:

8x;x0xR12x0 ^ xR21x0 ^ � (x) = 1 =) � (x0) = 2; (4.3)

8x;x0;x00xR21x0 ^ xR11x00 ^ x0R22x00 ^ � (x) = 1 ^ � (x0) = 1 =) � (x00) = 1: (4.4)

Pattern (4.3) says that the consumer�s choice does not depend on the order of goods in the
tuple. Pattern (4.4) says that the consumer�s choices are transitive: To see, notice that the
pattern is satis�ed if and only if there are distinct goods a; b; c such that x = (a; b) ; x0 = (b; c) ;
and x00 = (a; c) : Then, if the customer chooses a from bundle x; b from bundle x0; then she
must choose a from bundle x00:
Not all patterns are informative. For example, pattern (4.3) alone is not informative. On

the other hand, a general characterization of informative patterns from Section 8.4 implies
that (4.4) is informative.
For each instance process �x; each period t, de�ne the number of distinct customers and

movies observed until period t; nt = jfxi;s : i 2 f1; :::; dg ; s � tgj : We show that the class
�Xchoices of processes such that

sup
t

(nt)
d

t
<1; almost surely, (4.5)

satis�es the su¢ cient data condition.

4I am grateful to Matias Iaryczower for suggesting this example.
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4.4. Chemist. A chemist mixes di¤erent substances in a tube and observes the type of
interaction in the mixture. Some substances interact by producing salty water in a stormy
reaction. The chemist would like to predict the types of interactions between pairs of sub-
stances that she has not yet observed.
Let B be a set of substances and let fx � B : jxj = dg be the collection of d-element

subsets of B: Each instance is interpreted as a mixture of d substances and is assigned an
outcome � (x) 2 f0 ("no reaction") ; 1 ("reaction")g. Language Lchoices = fRig consists of
binary relations Ri for i � d such that for all x; x0 2 X;

xRix
0 i¤ jx \ x0j = k:

For example, suppose that d = 2; and de�ne free formula with three variables:

R (~x1; ~x2; ~x3) := ~x1R1~x2 ^ ~x1R1~x2 ^ ~x1R1~x2:

Then, R (x1; x2; x3) if and only if there are distinct substances a; b; c 2 B such that x1 =
fa; bg ; x2 = fa; cg ; and x3 = fb; cg : Consider patterns:

8x1;x2;x3R (x1; x2; x3) ^ � (x1) = 1 ^ � (x2) = 1 =) � (x3) = 0;

8x1;x2;x3R (x1; x2; x3) ^ � (x1) = 0 ^ � (x2) = 0 =) � (x3) = 0:

The �rst pattern says that if a and b react, a and c react, then b and c don�t react, and the
second that if a and b don�t react, a and c don�t react, then b and c don�t react. These two
patterns jointly give rise to the acid-alkaline theory of substances: Each substance is an acid
or alkaline, and two substances react if and only if they are of di¤erent types.
We show that the acid-alkaline theory is informative. Also, let nt =

��S
s�t xs

�� : Then, the
set of all instance processes such that (4.5) holds satis�es the su¢ cient data condition.

4.5. Full language. Consider a language LX = fRxg ; where, for each x 2 X; Rx is a unary
relation such that Rx (x0) i¤ x = x0:
We show that the main result of this paper fails for such language (LX does not satisfy

the assumptions of Theorem 1 below). Fix a state �� : X ! f0; 1g and consider a theory
T�� = f8xRx�x =) � (x) = � (x�) : x� 2 Xg : �� is the only state that omits all patterns in
theory T��,M (T��) = f��g : Thus, theory T�� is informative. Theory T�� consists of in�nitely
many patterns. Unless �� is constant outside a �nite set, theory T�� does not imply any �nite
set of patterns that is informative.

5. Characterization of informative theories

In this section, we present three characterization of informative theories. All the proofs of
the above results can be found in Appendix C.
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5.1. Entropy. Let

E (T ;A) = 1

jAj log jM (T ;A)j for each �nite A � X; (5.1)

E (T ) = infA�X;A is �nite E (T ;A) :

(In this paper, the logarithm always has base 2.) We refer to E (T ) as the entropy of theory
T and E (T ;A) as the entropy of T over A: If the language is complete, the entropies over
analogous sets are equal. The entropy measures the informational content of the theory over
�nite sets.

Lemma 3. Suppose that the language is transitive and complete. Theory T is informative
if and only if E (T ) = 0:

Lemma 3 ties the informativeness of theory T to a numerical characteristic, its entropy.
Notice that the de�nition of entropy does not depend on the choice of language. In particular,
if theory T can be expressed in two (complete and transitive) languages, and it is informative
in one of them, it is also informative in the other.
It is not surprising that an entropy is related to the quality of predictions, as similar results

are common in the probability and information sciences. The above result may appear to
be relatively strong as it says that theory is informative if there exists some sequence of
�nite sets over which the entropy disappears, and not necessarily over all such sets. The
result relies heavily on the permissiveness of the de�nition of an informative theory, and
speci�cally, on the fact that one can choose any instance process to determine whether a
theory is informative.

5.2. Restrictions. Next, we show that a theory is informative, if it imposes restrictions
of certain type. Recall that each theory determines the restrictions of consistent states of
the world over �nite sets S; M (T ;S) : The restriction sets matter the informativeness of
T for two reasons. First, the smaller set M (T ;S), the more information theory provides
over outcomes of instances in S: Above, we de�ned entropy over S as a measure of the
informational content of a theory. Here, we propose to use a simpler, qualitative measure
that distinguishes theories that contain any information from the rest. In the case of binary
space of outcomes, Y = f0; 1g ; we say that the restrictions over S are substantive, if there
is at least one possible element excluded from setM (T ;S). Because in the binary case set
M (T ;S) cannot be larger than 2jSj; the restrictions are substantive if jM (T ;S)j < 2jSj: In
this case, a theory without any substantive restrictions over any �nite sets is trivial.
The case of general Y can be reduced to the binary case by mappings � : Y ! f0; 1g

that divide �nitely many outcomes in Y into two disjoint sets. We say that a theory has
substantive restrictions over sS if for each � : Y ! f0; 1g ; jf� � � : � 2M (T ;S)gj < 2jSj.
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Second, recall that in complete languages, the theory imposes analogous restrictions on
analogous sets. That implies that if the restrictions over S are substantive, the restrictions
over any analogous copy S 0 of S are substantive as well. If S has a very few analogous copies,
then an observation that theory T leads to substantive restrictions over S may not matter
too much. On the other hand, if S has many analogous copies, the same observation may
have much stronger implications.
To capture this intuition, we need a measure of the number of analogous copies of S. It

cannot be done simply by counting, because if the language is transitive and complete, each
�nite subset S of in�nite X has in�nitely many analogous copies (this follows from Lemma
10 in Appendix A). Instead, we propose to measure how common are analogous copies of
S as a subsets of some �nite sets. Say that S is "-generic in �nite A � X; if any of subset
D � A with at least "-proportion of elements, ; contains an analogous copy of S: if;D � A
and jDj � " jAj ; then S ~�D. Finite set S is generic, if for each " > 0; S is "-generic in some
�nite A:
The next Lemma shows that substantive restrictions over generic sets mean that the theory

is informative.

Lemma 4. Suppose that the language is transitive and complete. Then, any theory with
substantive restrictions over some generic set is informative.

The Lemma provides a su¢ cient condition for informativeness. The condition is easy to
check as long as it is possible to characterize generic sets in a given language. It turns
out that in some languages, for example Ltrivial and LNet�ix, all sets are generic. Section 8
contains discussion of these as well as generic sets in other languages.

5.3. Informative and brief theories. The converse to Lemma 4 does not always hold, as
for example, there are languages like Full language with informative theories and without
any generic sets. However, it turns out that when there are su¢ ciently many generic sets,
each informative theory has to lead to substantive restrictions over at least one of them. In
order to capture what it means to have su¢ ciently many generic sets, we have the following
de�nition. We say that a language is tight if:there exists � > 0 such that for each �nite A,
there is S � A; jSj � � jAj such that S is generic. Section 8 discusses the tightness of various
languages.
In tight languages, the su¢ cient conditions from Lemma 4 are also necessary.

Theorem 1. If language is transitive, complete and tight if and only if then theory is infor-
mative if and only if it has substantive restrictions over some generic set. In addition, there
exists a constant hL > 0 such that for any theory T that is not informative, any learning
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rule �; any instance process �x; and any period t

inf
�2M(T )

Ut (�; �x; �) � 1 +
1

t
� hL.

The Theorem characterizes informative theories as those that generate substantive restric-
tions over generic sets. In the binary case of Y = f0; 1g ; theory T is informative if and only
if it leads to at least one substantive restriction over generic set. In languages in which all
sets are generic, the Theorem implies that all non-trivial theories are generic.
The second part of Theorem 1 characterizes theories that are not informative. For each

tight language, there is a constant hL > 0 with the following property. For any theory T
that is not informative, there is a state � 2M (T ) for which the agent will commit a mistake
every 1=hL periods, no matter what learning rule she uses or what order she observes the
instances. The value of hL depends on the language, not on the theory.
Transitivity is not essential for the result: As long as there are �nitely many classes of

analogy of 1-tuples (i.e., there are �nitely many non-trivial unary relations), the characteri-
zation of informative theories can be divided into each of the classes separately. The role of
the other assumptions is indicated in the sketch of the proof below.
In �nite languages, the Theorem leads to the following corollary.

Corollary 1. Suppose that the language is transitive, complete, tight and �nite. Then, theory
T is informative if and only if T implies a one-pattern theory fFg that is informative.

The Corollary says that any informative theory implies an informative theory that consists
of only one pattern. If theory T consists of �nitely many patterns, the Corollary is an
immediate consequence of the fact that �nitely many patterns can be composed into one
pattern. The real bite comes when T has in�nitely many patterns. By de�nition, pattern F
is built out of �nitely many atomic formulas. The Theorem says that a informative theory
that is expressed using possibly in�nitely many symbols can be replaced by a informative
theory that is �nitely expressible.
The Corollary 1 is a simple consequence of Theorem 1. We sketch the idea in the binary

case Y = f0; 1g : Suppose that S is a generic set such that jM (T ;S)j < 2jSj: In particular,
there exists a con�guration of outcomes � : S ! f0; 1g that is omitted by all states that
are consistent with theory T : for each state � that is consistent with theory T; there exists
x 2 S so that � (x) 6= � (x) : Let �x = (x1; :::; xn) be an enumeration of elements of set S: Let
F�x be a relational formula in language L such that F�x (�x0) is true if and only if tuples �x and
�x0 are analogous. Such a formula exists because the language is �nite and complete. De�ne
formula

F (~x1; :::; ~xn) = F�x (~x1; :::; ~xn) ^
 _
m=1;:::;n

� (~xm) 6= � (xm)
!
:
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Formula requires con�guration � to be omitted on all tuples that are analogous to tuple �x:
Because the language is complete and by Lemma 9 from the Appendix, any state � that is
consistent with theory T must be consistent with formula F: In particular, theory T implies
theory fFg : On the other hand, one-pattern theory fFg has substantive restrictions over S,
and by the above argument, it is informative.

6. Sufficient data condition

In this section, we discuss the existence of a su¢ cient data condition. The goal is to present
a general result that encompasses the examples of su¢ cient data conditions from Section 4.
Notice that each of these su¢ cient data conditions is stated in terms that are very language-
speci�c as they refer to customers, movies, or goods. In order to present a general condition
that encompasses all these examples, we will need quite abstract de�nitions. In order to
motivate these de�nitions, we begin with a careful discussion of the su¢ cient condition in
the Net�ix example.

6.1. Net�ix example. Suppose that T is an informative theory in language LNet�ix: By
Lemma 3, for each " > 0; there exists a �nite set of instances A" such that E (A";T ) � ":
We argue that there exists a learning rule � such that for each instance process that

satis�es (4.2), the average long-run number of mistakes converges (in expectation) to 0. The
idea is to divide learning into stages. The learning moves from one stage to the next one
when the number of customers and/or movies crosses certain threshold. Speci�cally, �x a
sequence of thresholds nk = 2k. We say that the learning instance process is in stage (k; l)
if nk�1 < nCt � nk and nl�1 < nMt � nl.
For each stage (k; l), �x an nknl-element sets of customer-movie pairs with exactly nk

customers and nl movies Ukl. In other words, Ukl is a product of nk-element set of customers
and nl-element set of movies. An argument from the proof of Lemma 3 shows that one can
construct a learning rule �kl that ensures the expected total number of mistakes along any
�nite sequence of instances from set Ukl is not larger than the entropy of set Ukl multiplied
by the number of elements in this set,

E (T ;Ukl)nknl: (6.1)

We construct a learning rule � so that the predictions in stage (k; l) are made using a
version of learning rule �kl applied to a dataset of observations taken only from the same
stage, and the total number of mistakes in this stage is not larger than bound (6.1). There
is a (minor) di¢ culty: Learning rule �kl is designed for set Ukl and Ukl is chosen somehow
arbitrarily as there are in�nitely many other nknl-element product sets. Although the ob-
servations from stage (k; l) belong to some nknl-element product set U; there is no guarantee
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that U = Ukl: However, notice that all such sets U are analogous. We can use this fact to
�nd a version of learning rule �kl that ensures that the total number of mistakes is bounded
by (6.1) along any �nite (at most nknl-element) sequence of instances that is analogous to
a sequence from set Ukl:
The construction ensures that the average number of mistakes till period t depends on the

stages (k1; l1) ; :::; (km; lm) visited before t and it can be bounded by�
1

t
jUk1l1 j

�
E (T ;Uk1l1) + :::+

�
1

t
jUkmlmj

�
E (T ;Ukmlm) : (6.2)

Suppose now that the instance process satis�es condition (4.2). The �rst part of the
condition guarantees that sets Ukl become larger and larger in the sense of inclusion. In
particular, for su¢ ciently high k and l; A" ~�Ukl: We use the properties of set Ukl (namely,
that set Ukl is local in the sense de�ned below) to show that E (T ;Ukl) � E (T ;A") � ": It
follows that

lim
m
E (T ;Ukmlm) = 0:

The second condition, together with the choice of thresholds ensures that for each t;

1

t
(jUk1l1 j+ :::+ jUkmlmj) �

1

t
2 (jUkmlmj) �

1

t
2 (2t) = 4 (6.3)

is uniformly bounded away from in�nity. These two observations guarantee that as t goes
to in�nite, bound (6.2) and the average number of mistakes converges to 0.
It is instructive to explain the role of two parts of condition (4.2). The �rst part of

condition (4.2) ensures that the stages of the learning process become larger and larger.
Because they eventually contain (up to analogy) any �nite set A; eventually any information
contained in theory T about the restrictions of the states to A will become eventually useful.
The second part of the condition ensures that new data do not arrive too quickly. By

construction, the bound on the number of mistakes committed in stage (k; l) is equal to
jUklj E (T ;Ukl) : Typically, a majority of these mistakes is committed in the initial periods of
stage (k; l) when the number of observations in set Ukl is small relatively to the size of Ukl.
(This is because the learning rule in this stage relies only on the observations from the same
stage, and in order to make good predictions, the learning rule needs past data.) Even if
the average number of mistakes till the beginning of stage (k; l) is small, a large number of
mistakes in the initial periods of stage (k; l) may temporarily raise the average much beyond
what is necessary for the long-term convergence. Inequality (6.3) ensures that this is not
going to happen.

6.2. Local sets. Before we describe the general de�nition of su¢ cient data condition, we
state an useful de�nition. A �nite set U � X is local if for any two tuples �x and �x0 of
elements of U such that the two tuples are analogous, for each x 2 U; there exists x0 2 U
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such that tuples �x^x and �x0^x0 are analogous. In other words, U is local if the restriction of
the language L to set U is complete.5

We interpret local sets as �nite approximations of in�nite space X: The usefulness of local
sets come from the fact that the entropy over a local set is an lower bound on the entropy
of any of its subsets. The proof of the next result can be found in Appendix A.3.

Lemma 5. Suppose that language L is transitive. For each local set U; each A � U;

E (T ;A) � E (T ;U).

For example, in the trivial language Ltrivial, any set is local. In the language LNet�ix, all
products A�B; where A is a �nite set of customers and B is a �nite set of movies are local.
In the language Lchoices, any set of bundles of goods from some �nite set of goods A is local.

6.3. Su¢ cient data condition. Suppose that U is a collection of local sets with the fol-
lowing identi�cation property: for each �nite tuple �x; there exists local set U (�x) 2 U such
that �x~�U (�x) and for any U 2 U ; if �x~�U; then U (�x) ~�U: In other words, for each �nite
tuple, there exists the smallest (up to an analogy class) local set U that contains the tuple.
Say that instance process �x = (x1; x2; :::) is U-adapted if two conditions are satis�ed: (a)

for each �nite A; there exists t such that A~�U (�xt) and (b)

sup
t

1

t

X
U2fU(�xs):s�tg

jU j <1:

The �rst condition guarantees that the process encounters more and more new data and it
corresponds to the �rst part of condition (4.2). The second condition guarantees that the
new data does not arrive too quickly and it corresponds to the second part of condition (4.2).

Theorem 2. Suppose that language L is transitive and complete U is a family of disjoint
local sets. Then, the class of all U-adapted processes satis�es the su¢ cient data condition.

The proof can be found in Appendix F.
As an example, consider language LNet�ix and let UNet�ix be the collection of all product

sets of 2k customers and 2l movies for some k and l: The above discussion demonstrates that
each instance process that satis�es (4.2) is U-adapted. In the consumer�s choices example,
let Uchoices be a collection of sets that consist of all bundles of goods from some A, where
jAj = 2k. A similar argument to the one used in the case of LNet�ix; shows that each instance
process that satis�es (4.5) is Uchoices-adapted.

5Formally, a restriction of language L to set U is a collection of relations LU =�
R \ Uk : R 2 L and R is a k-ary relation

	
.
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7. Universal learning rule

So far, we assumed that the agent knows that a certain theory is correct. The purpose of
this exercise is to measure the information that is provided by a theory. In the real world,
the agent faces the problem of induction: she looks for a theory by analyzing data. The
question is it possible to learn theory from data? The next result gives a partial answer to
the question: it constructs an universal learning rule �� such that for any informative theory
T; and any instance process from some su¢ cient data condition class, (3.2) holds. In other
words, if the true state of the world � is consistent with some informative theory T; learning
rule �� will predict the outcomes � (x) correctly in the long-run, regardless what T is:

Theorem 3. Suppose that the language is complete, transitive, �nite, and tight and there
exists a su¢ cient data condition �X. Then, there exists a learning rule �� such that (3.2)
holds for all instance processes �x 2 �X; and for all theories T that are informative.

Because there is a single learning rule that ensures (3.2) for all informative theories,
Theorem 3 inverts the order of quanti�ers from the de�nition of such theories.

Proof. The equivalence between (1), (2) ; and (4) from Theorem 1 shows that if theory T
is informative, then it an informative one-pattern theory fFg. Additionally, the proof of
Theorem 1 shows that each such pattern has the following form: Take a generic set S and
�nd enumeration �x = (x1; :::; xk) of S: Let F�x (~x1; :::; ~xk) be a relational formula that de�nes
the analogy class of tuple �x (i.e., for each tuple �x0; R (�x0) if and only if �x0 is analogous to �x).
Let F� (~x1; :::; ~xk) be a formula that consists of atomic formulas � (~xl) = yl; together with
logical symbols. Then, F = F�x ^ F�:
Let T be the set of one-pattern theories that are informative and that are constructed in

such a way. Because any theory T implies a theory T 0 2 T , the Theorem will be proved if
there exists a learning rule �� such that

inf
T2T

lim inf
t!1

inf
�2M(T )

Ut (�
�; �x; �) = 1:

Because Y is �nite, and the set of �nite tuples if countable, T is countable. Enumerate
all theories in T by T1; T2; ::: . By the de�nition of the su¢ cient data condition, for each k;
there exists a learning rule �k such that for each instance process �x 2 �X;

lim inf
t!1

inf
�2M(Tk)

Ut (�k; �x; �) = 1:

Each period t, let kt be the lowest index such that theory Tk has not been contradicted
by data observed before period k: De�ne ��t := �kt : If there exists theory T 2 T that is true,
then kt will not grow to in�nity. In other words, there is period t�; such that for all t > t�;
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kt = kt� : Because of the long-run payo¤ criterion, the payo¤s from the prediction in periods
before t� do not a¤ect the limit of payo¤s and,

inf
T2T

lim inf
t!1

inf
�2M(T )

Ut (�
�; �x; �)

= lim inf
t!1

inf
�2M(Tkt� )

Ut (�kt� ; �x; �) = 1:

�

8. Tightness of languages

This section discusses the tightness of languages from Section 4.

8.1. Trivial language. Ltrivial is complete and transitive. Each �nite subset is local and
generic, and the language is trivially tight with tightness � (Ltrivial) = 1:

8.2. Product languages. In the Net�ix example from the Introduction, the set of instances
is a two-dimensional product of the set of customers and the movies, X = C �M . More
generally, let X = X1::::�Xd be a product of d sets. For each l; let Ll = fRlg be a language
on set Xl: For each l � d and each R 2 Ll, de�ne kR-ary relation R� on set X : for each
x1; :::; xkR 2 X; let

R� (x1; :::; xkR)() R
�
xl1; :::; x

l
kR

�
:

De�ne product language L :=
[
l

fR� : R 2 Llg : The next result shows that genericity is

preserved under products. The proof can be found in Appendix 6.

Lemma 6. If sets Sl � Xl are generic in languages Ll, then S1 � ::: � Sd is generic in
language L:

8.3. Net�ix. Notice that language LNet�ix is a product of two independent copies of trivial
languages. Lemma 6, the fact that any �nite set is generic in language Ltrivial, and the fact
that any subset of a generic set is also generic lead to a simple corollary.

Corollary 2. Any �nite S � X is generic in language LNet�ix. In particular, language
LNet�ix is tight.

8.4. Consumer�s choices. Next, we show that language Lchoices is tight. Assume that X
is the set of ordered tuples of distinct elements of B:

Lemma 7. For any �nite and mutually disjoint sets B1; :::Bd � B; B1 � :::�Bd is generic
in language Lchoices: For any �nite A � X; there exist �nite and disjoint B1; :::Bd � B such
that ��A \B1 � :::�Bd�� � d�d jAj :
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Thus, language Lchoices is tight:

The proof can be found in Appendix G.2. We discuss some examples of generic and
non-generic sets. To �x attention, assume that d = 2: We show that set

S = f(a; b) ; (b; c) ; (a; c)g

is not generic. Indeed, it is easy to see that for any �nite A; there are �nite and disjoint sets
of goods B1 and B2 such that jA \B1 �B2j � 1

4
jAj : But neither S nor any of its analogous

copies can be represented as a subset of the product of two disjoint sets of goods B1 and B2:
The contradiction shows that S is not generic.
On the other hand, take

S 0 = f(a1; b1) ; (a2; b1) ; (a1; b2) ; (a2; b2)g

for some a1; b1; a2; b2: Then, S 0 = fa1; a2g � fb1; b2g is generic by Lemma 7.
Let Ftrans denote transitivity pattern (4.4). We show that theory fFtransg is informative.

Notice that E (fFtransg ; S) < 1: Unfortunately, Lemma 16 cannot be applied, because S is
not generic. On the other hand, notice that transitivity Ftrans implies pattern F

8x1;x01;x2;x02x1R11x
0
1 ^ x2R11x02 ^ x1R22x2 ^ x01R22x02 ^ x1 6= x2 ^ x1 6= x01

^� (x1) = 2 ^ � (x01) = 1 ^ � (x2) = 1 =) � (x02) = 1:

To see it notice that the pattern is satis�ed only if there exists distinct goods a; b; c; d such
that

x1 = (a; c) ; x
0
1 = (a; d) ; x2 = (b; c) ; x

0
2 = (b; d) :

By transitivity, if the customer chooses b from bundle x2 and c from bundle x1; then she
must choose b from bundle x = (a; b) : In addition, if she chooses a from x01; then she must
choose b from bundle x02.
Then, E (fFg ; S 0) < 1 . Because S 0 is generic, theories fFtransg and fFg are informative.

8.5. Chemist. Here, we show the tightness of language Lchemist. For any mutually disjoint
�nite sets B1; :::Bd � B; de�ne:

X
�
B1; :::; Bd

�
=
�
fb1; :::; bdg 2 X : bl 2 Bl

	
:

Suppose that sets Bj are disjoint. Then, X
�
B1; :::; Bd

�
contains d-element subsets x �

B; jxj = d; such that x contains exactly one element of Bj, jx \Bjj = 1 for each j = 1; ::; d:

Lemma 8. X
�
B1; :::; Bd

�
is generic in language Lchoices for any �nite and disjoint B1; :::Bd �

B; Bl \Bl0 = ? for l 6= l: For any �nite A � X; there exist �nite and disjoint B1; :::Bd � B
such that ��A \X �B1; :::; Bd��� � d�d jAj :
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Thus, language Lchemist is tight.

The proof of Lemma 8 is analogous to the proof of Lemma 7, and, therefore, skipped. As
an example, we show that the acid-alkaline theory is informative. The acid-alkaline theory
implies pattern F :

8x1;x01;x2;x02x1R1x
0
1 ^ x2R1x02 ^ x1R1x2 ^ x01R1x02 ^ x01 6= x2

^� (x1) = 1 ^ � (x01) = 1 ^ � (x2) = 1 =) � (x02) = 0:

Take any 4-tuple x1; x01; x2; x
0
2 that satis�es the �rst part of the pattern. Then,

x1 = (a1; b1) ; x
0
1 = (a2; b1) ; x2 = (a1; b2) ; x

0
2 = (a2; b2) :

for some a1; b1; a2; b2: Pattern F corresponds to a statement: "If a1 and b1 react, a2 and b1
react, a2 and b2 react, then a1 and b2 react," which is a consequence of the acid-alkaline
theory. Because fx1; x01; x2; x02g = X (fa1; a2g ; fb1; b2g) is generic by Lemma 8, Theorem 1
implies that fFg and the acid-alkaline theory are informative.

8.6. Full language LX. In language LX , any two sets A and A0 are analogous if and only
if A = A0: It follows that language LX cannot be tight.

9. Review of literature

This paper is closely related to the statistical V C-theory and to the computer-science
model of probability approximately correct learning (PAC ); see Vapnik (1998). Let X be
a set of instances, M be a set of functions � : X ! f0; 1g, and � be a distribution on
X: Say that M is PAC-learnable for distribution � if there exist prediction functions �t :
(X � Y )t�1 �X ! �Y such that for each � 2 C;

lim
t!1

E��t
�
(xs; � (xs))s<t ; xt

�
(� (xt)) = 1;

where x1; :::; xt are drawn i.i.d. from distribution �. The classic result of the PAC-theory is
the Vapnik-Chervonenkis Theorem that says that setM is PAC-learnable for all distributions
� 2 �X if and only if it has a �nite V C-dimension, i.e., there exists constant k such
that for each �nite set A � X; if jAj � k; then the cardinality of the set of restrictions
M (A) =

�
�jA : � 2M

	
is strictly smaller than 2k:

We brie�y describe the main di¤erences. The �rst one is somewhat technical: we do not
use a probability distribution � over instances. If X is in�nite and discrete, it is di¢ cult (or
impossible, if X is transitive) to point to a "right" distribution. For example, it is di¢ cult
to point to a natural distribution in the Net�ix example.



LEARNING THROUGH THEORIES 23

Notice that the role of a distribution in the PAC model to generate instances; that role
is played in our model by instance processes. And so, the PAC-learnability of set M (T )

for all distributions corresponds to the de�nition of strongly informative theories de�ned in
Section. Lemma 2 can be interpreted as a (very simple) corollary of the VC-Theorem in the
case when setM is equal to the set of states of theories expressed in language LNet�ix:
The second di¤erence between the VC-theorem and Theorem 1 is that the latter has a

weaker hypothesis and a weaker thesis. On one hand, Theorem 1 establishes the learnability
only for some processes, not for all. On the other hand, statement (1) of Theorem 1 is weaker
than �nite VC-dimension: the statement says that there exists a generic S such that the
cardinality of the set of restrictions M (T ;S) is strictly smaller than 2jSj: In other words,
instead of restrictions on all �nite k-element subsets, statement (1) imposes restrictions only
on set S (and its analogous copies).
Both PAC-learning and Theorem 1 heavily rely on the bounds on entropy obtained from

Sauer-Shelah�s Lemma. In speci�c cases, these bounds are far from sharp. For example,
with Lchoices, the problem can be restated as the omitted subgraph problem, which is studied
by the graph-theoretic literature (for example, Promel and Steger (1991), Promel and Steger
(1993) and Promel and Steger (1992); see also Balogh, Bollobas, and Weinreich (2000),
J. Balogh and Weinreich (2001) and Scheinerman and Zito (1994)). With LNet�ix; much
sharper bounds on the entropy can be obtained as a corollary to Lemma 6.3 from Alon,
Fischer, and Newman (2005). Note that better bounds could not improve the qualitative
claims of Theorem 1; however, they may lead to a (wider) su¢ cient data conditions. There
are two open questions. Are there any better general bounds? Second, what are the best
bounds possible in speci�c cases?
Kalai (2003) and Salant (2007) study the informativeness of speci�c theories in speci�c

languages (the transitivity of consumer�s choices in the former case, and the majority voting
in the latter). These two papers very closely follow the PAC model; in particular, they
assume that the sets of instances are �nite and the distribution � is uniform. By focusing on
speci�c examples, these papers are able to obtain sharper bounds on the number of possible
mistakes in �nite samples.
More broadly, the current paper is related to the economic literature on languages (for

an excellent review, see Lipman (2003)). Rubinstein (1996) (also Chapter 1 of Rubinstein
(2000)) notices that natural languages often contain certain binary relations (for example, "is
bigger that"). He asks which properties distinguish binary relations observed in the natural
languages from other relations. Among others, he argues that binary relations should be
easy to describe: One should be able to learn it from a universal proposition (theory, in my
terminology) aided by a few examples. (In a similar spirit, Blume (2004) postulates that a
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natural language, understood as an assignment of meanings to utterances, should be simple
to learn.) There exist some rough correspondences between those de�nitions and the current
paper: In the terminology of the current paper, a binary relation corresponds to a state �;
and the ease of describibility corresponds to informativeness. Rubinstein looks for relations
that are optimal with respect to such a criterion. Here, the goal is to characterize the set of
all informative (i.e., "easy to describe") theories.
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Appendix A. Complete languages

In this appendix, we present some general results about complete languages.

A.1. Fundamental property. The next result shows that if the language is complete, then
theory T imposes the same type of restrictions over analogous tuples or sets.
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Lemma 9. Suppose that language L is complete. Then, for each theory T , any two analogous
tuples �x; �x0 2 X t; each y1; :::; yt, if there exists � 2 M (T ) such that � (xs) = ys; s � t, then
there exists �0 2M (T ) such that �0 (xs) = ys; s � t:

Proof. Let �x = (x1; :::; xt; xt+1; :::) and �x =
�
x01; :::; x

0
t; x

0
t+1; :::

�
be enumerations of set X

such that for each m;, tuples (x1; :::; xm) and (x01; :::; x
0
m) are analogous. Such enumerations

exist, because X is countably in�nite, and because of the extension property of complete
languages.
Suppose that there exists � 2 M (T ) such that � (xs) = ys; s � t: De�ne �0 2 M so

that �0 (x0m) = � (xm) for each m: We show that �0 2 M (T ) : Indeed, take any universal
pattern F 2 T such that formula F has k free variables. For any tuple

�
x0m1

; :::; x0mk

�
2 Xk;

the truth value of statement F
�
x0m1

; :::; x0mk
; �0
�
is the same as the truth value of statement

F (xm1 ; :::; xmk
; �) : Because the latter statement is true (since � 2M (T ) �MfFg), it must

be that F
�
x0m1

; :::; x0mk
; �0
�
is true. In particular, state �0 is consistent with F: Because any

pattern could have been chosen, it must be that �0 2M (T ) : �

Proof of Lemma 1. The result follows from Lemma 9. �

A.2. Transitive languages.

Lemma 10. Suppose that language L is complete and transitive and X is in�nite. Then,
for each two �nite sets A;B � X; there exists A0 such that A and A0 are analogous and A0
and B are disjoint.

Proof. Let G be the set of all bijections g : X ! X such that for each tuple �x = (x1; :::; xk) ;
tuples �x and g (�x) = (g (x1) ; :::; g (xk)) are analogous. Because the language is complete, by
the same argument as in Lemma 9, we can show that two tuples �x and �x0 are analogous if
and only if there exists g 2 G such that �x0 = g (�x) : In particular, if the language is transitive,
then for each x and x0; there exists g 2 G such that g (x) = x0:
The proof proceeds by induction on the size of set A: If jAj = 1; then the claim follows

from the fact that the language is transitive and any two elements are analogous. Suppose
that the claim holds for all �nite B and all A such that jAj � k� 1: Take any A and B such
that jAj � k � 1.
By the repeated application of the inductive claim, we can �nd in�nitely many g1; g2; :::

such that gn �A \
�
B [

S
m<n gm � A

�
= ?: Suppose that there is a =2 A such that gn � a 2 B

for each n: Because B is �nite, there exists b such that set N0 = fn : gn � a = bg has in�nite
cardinality: Because of transitivity, there exists g 2 G such that g � a =2 B . Because B is
�nite and sets gn � A are disjoint, there is n 2 N0 such that ggn � A \ B = ?: This ends the
proof of the inductive claim. �



LEARNING THROUGH THEORIES 27

A.3. Entropy and transitive languages. Fix theory T: Suppose that U � X is a local
set. Let G be the set of bijections g : U ! U such that for each tuple �x � U; tuples
�x = (x1; :::; xk) and (g (x1) ; :::; g (xk)) are analogous. Then, G contains identity bijection, it
is closed with respect to compositions (for each g; g0 2 G; g � g0 2 G) and inverses (for each
g 2 G; g�1 2 G). Moreover, if language L is transitive and U is local, then for any two x
and x0 2 U; there exists g 2 G such that g (x) = x0:
For any subset A � U; let Y A be the set of functions from A to Y: For any �A 2 Y A; let

[�A] = f� 2M (T ;U) : � jA = �Ag be the set of functions � 2 Y U which restrictions to A are
equal to �A: For any subset A � U; de�ne

EA := �
X
�2Y U

1

M (T ;U)
log

j[� jA]j
M (T ;U)

:

Lemma 11. 1
jU jEU = E (T ;U) : For each A � U ,

1
jAjEA � E (A;T ). For each A � U; and for

each g 2 G, EA = Eg(A):

Proof. The �rst observation is immediate. Let p 2 �M (T ;A) be any probability distri-
bution over functions �A 2 M (T ;A) : Let p0 2 �M (T ;A) be the uniform probability
distribution. By standard results,X

�A2Y A
p (�A) log p (�A) �

X
�A2Y A

p0 (�A) log p0 (�A)

= � log jM (T ;A)j = � jAj E (A;T ) :

Take p (�A) :=
j[�A]j

M(T ;U)
:

The last part of the Lemma follows from the following observation: For any � 2M (T ;U) ;

and each g 2 G; �g 2M (T ;U) ; where �g 2 Y U is a function de�ned as �g (x) = � (g � x) for
each x 2 U: Then, for each � 2M (T ;U), and each g 2 G; �g 2M (T ;U) : �

Lemma 12. For any A;B � U;

EA[B � EA � EB � EA\B:

Proof. Observe that

EA[B � EA = �
X
�2Y U

1

M (T ;U)
log

j[� jA[B]j
j[� jA]j

and

EB � EA\B = �
X
�2Y U

1

M (T ;U)
log

j[� jB]j
j[� jA\B]j

:
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Because the logarithm function is concave, Jensen�s inequality implies that

EA[B � EA � [EB � EA\B]

=
X
�2Y U

1

M (T ;U)
log

j[� jA]j j[� jB]j
j[� jA\B]j j[� jA[B]j

� log
 X
�2Y U

1

M (T ;U)

j[� jA]j j[� jB]j
j[� jA\B]j j[� jA[B]j

!
:

The Lemma follows from the fact thatX
�2Y U

1

M (T ;U)

j[� jA]j j[� jB]j
j[� jA\B]j j[� jA[B]j

=
X

�A\B2Y A\B

j[�A\B]j
M (T ;U)

X
�A[B2Y A[B ; st. �A[B jA\B=�A\B

j[�A[BjB]j j[�A[BjA]j
j[�A\B]j j[�A\B]j

=
X

�A\B2Y A\B

j[�A\B]j
M (T ;U)

0@ X
�A2Y A st.�AjA\B=�A\B

����A���
j[�A\B]j

1A0@ X
�B2Y B st.�B jA\B=�A\B

����B���
j[�A\B]j

1A
=

X
�A\B2Y A\B

j[�A\B]j
M (T ;U)

= 1:

�

Lemma 13. For any A � U ,
1

jAjEA �
1

jU jEU :

Proof. Choose A� � U so that (a) A� 2 argmaxA 1
jAjEA and (b) for each A � A

�; A 6= A�,
1
jAjEA <

1
jA�jEA�. Such a set exists because U is �nite. If A� = U; then the Lemma holds.

Suppose not and A� 6= U: Since G 7�! U is transitive, there is g 2 G; so that g (A�) 6= A�.
By Lemma 12,

EA�[g(A�) � EA� + Eg(A�) � EA�\g(A�):
By Lemma 11,

EA�[g(A�)
jA� [ g (A�)j �

EA� + Eg(A�) � EA�\g(A�)
jA�j+ jg (A�)j � jA� \ g (A�)j

=
EA�
jA�j +

�
EA�
jA�j �

EA�\g(A�)
jA�\g(A�)j

�
� jA� \ g (A�)j

2 jA�j � jA� \ g (A�)j :

Because of (a),
EA�
jA�j �

EA�\g(A�)
jA� \ g (A�)j :

However, this implies that
EA�[g(A�)

jA� [ g (A�)j �
EA�
jA�j ;
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which leads to a contradiction with (b). �

Proof of Lemma 5. The Lemma follows from Lemmas 11 and 13. �

Appendix B. Proof of Lemma 2

Let �x = (x1; x2; :::) be an instance process such that for each m 6= n, neither xmRCxn nor
xmRMxn: LetAm = fx1; :::; xmg : If (3.2) holds for instance processes �x and some learning rule
�, then it must be that jM (T ;Ak)j < 2k for some k: In particular, there are y1; :::; yk 2 f0; 1g
such that for each � 2M (T ), if � (xl) = yl for each l < k; then � (xk) = yk:
Let Ayn (�) = fm � n : � (xm) = yg : We show that for each n � 2k, for each � 2 M (T ) ;

either jA0n (�)j � k or jA1n (�)j � k: If not, there exists a k-tuple (xm1 ; :::; xmk
) of distinct

elements of An such that � (xml
) = yl for each l < k and � (xmk

) 6= yk: Notice that tuple
(x1; :::; xk) is analogous to tuple (xm1 ; :::; xmk

) : Because language LNet�ix is complete, and
because of Lemma 9 from the Appendix, there is �0 2 M (T ) so that � (xl) = yl for each
l < k and � (xk) 6= yk: A contradiction.
Suppose that there exists � 2 M (T ) such that for some y; there are 2k + 2-element

set of customers fc1; :::; c2k+2g and movies fm1; :::;m2k+2g such that � (ci;mi) = y for
each i � k + 1 and � (ci;mi) 6= y for each i � k + 2: Because tuples (x1; :::; x2k+2) and
((c1;m1) ; :::; (c2k+2;m2k+2)) are analogous, by Lemma 9, there exists �0 2 M (T ) such that
�0 (xi) = y for each i � k + 1 and �0 (xi) 6= y for each k + 2 � i � 2k + 2: This leads to a
contradiction with the above observation. THe contradiction demonstrates the Lemma.

Appendix C. Proofs of Section 5

C.1. Entropy characterization. We start with two preliminary results. The proof of the
next Lemma can be found in Appendix D.

Lemma 14. Suppose that language L is transitive and complete. For each theory T; if
E (T ) = 0; then theory T is informative.

For each w 2 (0; 1] ; de�ne h (w) as the unique solution to equation

w = h (w) (log jY j+ 2� log h (w)) :

For each w > 0; h (w) > 0 is well-de�ned, continuous, and increasing in w.6

The next Lemma shows that for any learning rule, the average number of mistakes com-
mitted by the learning rule over any set A is not smaller than h (E (T )) : The proof can be
found in Appendix E.

6Consider function w (h) = h
�
log jY j+ 2 + log 1h

�
: Then, w (h) = 0, w (:) is strictly increasing for any

h � 1, and w (1) � 1: Thus, there exists an increasing function h : [0; 1] ! R such that for each w 2 [0; 1],
w (h (w)) = w:
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Lemma 15. Suppose that language L is transitive and complete. For each theory T , any
instance process �x, learning rule �, and any period t

inf
�2M(T )

Ut (�; �x; �) � 1 +
1

t
� h (E (T )) . (C.2)

The two results imply Lemma 3

C.2. Sauer-Shelah�s Lemma. Consider �rst the binary case Y = f0; 1g : First, we show
that a non-trivial restriction over generic sets leads to much stronger restrictions over su¢ -
ciently larger but �nite sets.

Lemma 16. Suppose that Y = f0; 1g : For any generic S; any " > 0; there is �nite U" � X
such that for any theory T; if E (T ;S) < 1; then E (T ;U") � ". In particular, E (T ) = 0 and
T is informative.

The proof of Lemma 16 is an application of the famous Sauer-Shelah Lemma. Suppose
that A is a �nite set andM� f0; 1gA is a set of binary functions on A: For any D � A; let
MD := f� jD : � 2Mg be the set of restrictions to set D: Notice that jMDj � 2jDj:

Lemma 17 (Sauer (1972), Shelah (1972), Vapnik and Chervonenkis (1971)). Take any
M � f0; 1gA and suppose that there exists k such that jMDj < 2jDj for any D � A;

jDj � k:7 Then, jMj �
kX
l=1

 
jAj
l

!
.8

Proof of Lemma 16. We prove Lemma 16. Fix " > 0 and �nd � > 0 small enough so that

� log �+ (1� �) log (1� �) � 1

2
":

Find U" large enough such that S ~�U" for anyD � U"; jDj � � jU"j : BecauseM (T ;S) < 2jSj;

it must be thatM (T ;D) < 2jDj for each D � U"; jDj � � jU"j : By Sauer-Shelah�s Lemma,

M (T ;U) �
�jU"jX
l=1

 
jU"j
l

!
� 2

 
jU"j
� jAj

!
� 22(� log �+(1��) log(1��))jAj � 2"jU"j:

(The second inequality is satis�ed for any � � 1
4
; and the third is an application of Stirling�s

inequality.) �

7The smallest such k is known as a VC-dimension of setM; see Vapnik (1998).

8Here,

 
k

l

!
is the Newton binomial.
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Next, we can turn to the proof of Lemma 4 in the general case of �nite Y . The idea is
to reduce the characterization of theories to the case of the binary space of outcomes Y: For
any � : Y ! f0; 1g, any state � : X ! Y; de�ne a binary �-representation of state � as
�� (x) := (� � �) (x) : For any �nite A � X; let M� (T ;A) := f��jA : � 2M (T )g : De�ne
E� (T ;A) := 1

jAjM� (T ;A) : Suppose that there exists generic S � X such that for any
� : Y ! f0; 1g, E� (T ;S) < 1: Take any " > 0 and �nd �nite U" from Lemma 16. Then,

E (T ) � E (T ;U") =
1

jU j log jM (T ;U")j

� 1

jU"j
log

Y
�:Y!f0;1g

jM� (T ;U")j �
X
�

E� (T ;U") � 2jY j";

and E (T ) = 0:

C.3. Proof of Theorem 1. For the �rst part of the Theorem, given Lemma 4, it is enough
to show that if a theory is informative, then it has substantive restrictions over some generic
set S: On the contrary, suppose that for each generic S � X, there exists �S : Y ! f0; 1g so
that E�S (T ;S) = 1: Because the language is tight, each �nite A � X has a generic subset
S � A such that jSj � � (L) jAj where � (L) > 0: Then,

E (T ) � E (T ;A) = 1

jAj logM (T ;A) � 1

jAj logM (T ;S)

� logM�S (T ;S) =
jSj
jAjE�S (T ;S) � � (L) > 0:

By Lemma 15, T is not informative.
The second part of the Theorem follows from inequality (C.2).

C.4. Proof of Corollary 1. Suppose that the language is complete, transitive, tight and
�nite. We show that theory T is informative only if it implies an informative theory that
consists of one pattern. The other direction is immediate.
Suppose that T is informative. By the Theorem, there exists generic S such that for any

� : Y ! f0; 1g there exists �� : S ! f0; 1g such that �� =2 M� (T ;A) : Let �x 2 Xk be a
k-tuple such that k = jSj and S = fx1; :::; xkg :
Recall that �:�denotes the logical negation, and �::�denotes the double negation, i.e.,

the truth. For any relation R 2 L; and any assignment i : f1; :::; kRg ! f1; :::; kg ; de�ne
logical symbol

(�)R;i :=
(
::;
:;

if R
�
xi(1); :::; xi(kR)

�
;

if :R
�
xi(1); :::; xi(kR)

�
:

)
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De�ne free formula F�x (~x1; :::; ~xk) as

F�x :=
^
R2L

^
i:f1;:::;kRg!f1;:::;kg

(�)R;iR
�
~xi(1); :::; ~xi(kR)

�
:

Because language L is �nite, F�x is a well-de�ned, and F�x (�x0) is true if and only if �x0 is
analogous to �x:
For each � : Y ! f0; 1g ; de�ne free formula F� (~x1; :::; ~xk) as

F� :=
_

i=1;::::;k

0@ ^
y2��1(��(i))

� (xi) 6= y

1A
If F� (x1; :::; xk) is true, then (� � �) jS 6= ��:
De�ne free formula F := F�x ^

^
�

F�: Then, if � is consistent with theory T; then it also is

consistent with pattern F: Hence, T implies pattern F: Moreover, for any � : Y ! f0; 1g ;
E� (fFg ;S) < 1; and fFg is informative.

Appendix D. Proof of Lemma 14

Lemma 18. Fix theory T . For each �nite A � X, there exists a learning rule �A such that
for any sequence x1; :::; xm 2 A

inf
�2M(T )

X
t<m

�
�
(xs; � (xs))s�m ; xs+1

�
(� (xs+1)) � m� E (T ;A) jAj :

Proof. Fix �nite A � X: For all tuples �x 2 Ak; �y 2 Y k; De�ne learning rule �A: for each
�x 2 Ak; �y 2 Y k; de�ne set

M (T ;A; �x; �y) = f� 2M (T ;A) : � (xl) = yl; l � kg ;

and for each x 2 A; let the prediction �A
�
(xl; yl)l�k ; x

�
assign a probability 1 to set

argmax
y2Y

jM (T ;A; �x^x; �y^y)j
jM (T ;A; �x; �y)j :

Then, for each y so that �A
�
(xl; yl)l�k ; y

�
< 1;

jM (T ;A; �x^x; �y^y)j � 1

2
jM (T ;A; �x; �y)j : (D.1)
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Take any state � 2 M (T ) and a �nite sequence x1; :::; xm 2 A: W.l.o.g. assume that
m � jAj and all the elements of the sequence are distinct. Then,X

t<m

�
�
(xs; � (xs))s�m ; xs+1

�
(� (x))

� m�
���t < m : �

�
(xs; � (xs))s�m ; xs+1

�
(� (xs+1)) < 1

	��
� m� E (T ;A) jAj ;

where the last equality follows from the de�nition of entropy and the bound (D.1). �

Suppose that E (T ) = 0: For each n > 0; there exists �nite An � X such that E (T ;An) �
1
n
jAj : Let

mn =

�
jAn+1j
jAnj

�
and Mn =

X
n0<n

kn0 :

Using Lemma 10, �nd disjoint sets Am such that for each n and Mn < m � Mn+1; A
m is

analogous to An. For each m; �nd a learning rule �Am from Lemma 18. Let

tm =
X

m0<m
jAmj+ 1:

Find an instance process �x such that for each m;
�
xtm ; :::; xtm+1�1

�
is an enumeration of Am:

De�ne learning rule � so that for each m; and tm � t < tm�1;

�
�
(xs; ys)s<t ; xt

�
= �Am

�
(xs; ys)tm�s<t ; xt

�
:

Then, for each � 2M (T ),

Ut (�; �x; �) � 1�
1

t

X
m0�m

���Am0
��� E �T ;Am0

�
:

The result follows from the fact that
X

m0�m

��Am0�� � 2t and that limm!1 E
�
T ;Am

0�
= 0:

Appendix E. Proof of Lemma 15

E.1. Combinatorial result. The following combinatorial result will be useful. De�ne func-
tion f : R� f1; 2; :::g ! R:

f (p; 1) := jY jmax (p+ 1; 0) and
f (p;m+ 1) := (jY j � 1) f (p� 1;m) + f (p;m) ; for m � 1:

Lemma 19. Function f (p;m) is continuous, convex, and increasing in p; and for any p > 0;
any natural r � m;

f (r;m) � (r + 1) jY jr
 
m

r

!
: (E.1)
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By de�nition, f (p; 1) is continuous, convex, and increasing in p. When m > 1; the
continuity, convexity, and monotonicity of f (p;m) follows from the inductive argument.
First, we show that for m; r;

f (r;m) � jY jm (r + 1) :

Indeed, this is true for m = 1 by the de�nition of f . Suppose that the above is true for m:
For any r;

f (r;m+ 1) � (jY j � 1) r jY jm + (r + 1) jY jm � (r + 1) jY jm+1 :

In particular, this implies that

f (m;m) � (m+ 1) jY jm : (E.2)

Notice also that, by de�nition, for any m

f (0;m) = 1: (E.3)

By induction on r and k, we show that for any r � 1; k � 0;

f (r; r + k) � (r + 1) jY jr
 
r + k

r

!
: (E.4)

By (E.2), the statement is true for k = 0 and any r: Suppose that the statement is true for
k and any r: Then,

f (1; 1 + k) = (jY j � 1) f (0; k) + f (1; k)

� jY j � 1 + 2 jY j k � 2 jY j (2 + k) = 2 jY j
 
k + 2

1

!
;

where the inequality follows from the inductive step and (E.3). Suppose now that (E.4) is
true for k + 1 and r � 1: Then

f (r + 1; r + 1 + k + 1)

� (jY j � 1) f (r; r + k + 1) + f (r + 1; r + k + 1)

� (jY j � 1) (r + 1) jY jr
 
r + k + 1

r

!
+ (r + 2) jY jr+1

 
r + k + 1

r + 1

!

� (r + 2) jY jr+1
" 

r + k + 1

r

!
+

 
r + k + 1

r + 1

!#

= (r + 2) jY jr+1
 
r + k + 2

r + 1

!
;
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where the �rst inequality comes from the inductive step. This shows the inductive step for
k + 1 and all r: This also �nishes the proof of the Proposition.

E.2. Proof of Lemma 15. Fix a theory T , an instance process �x; a learning rule l, and
number of periods t: De�ne At = fx1; :::; xtg and

� the set of state restrictions that are considered as plausible by the agent, who observed
that � (x1) = y1; :::; � (yt�m) = yt�m :

M (y1; :::; yt�m) := f� 2M (T ;At) : � (x1) = y1; :::; � (xt�m) = yt�mg ;

Of course,

jM (y1; :::; yt�m)j =
X
y

jM (y1; :::; yt�m; y)j ;

� the worst-case sum of payo¤s obtained by learning rule � in periods s = t�m+1; :::; t;
given that the state restriction belongs to setM (y1; :::; yt�m) :

um (y1; :::; yt�m) = inf
�2M(y1;:::;yt�m)

tX
s=t�m+1

�
�
(xs0 ; � (xs0))s0<s ; xs

�
(� (xs)) :

Notice that um is characterized by a recursive formula:

um (y1; :::; yt�m) = inf
y

�
�
�
(xs; ys)s�t�m ; xt�m+1

�
(y) + um�1 (y1; :::; yt�m; y)

�
; (E.5)

� the upper bound on the size of M (y1; :::; yt�m) for these sequences of outcomes
y1; :::; yt�m that lead to continuation payo¤ at least u

Mm (u) = max
y1;:::;yt�m:ut(y1;:::;yt�m)�u

jM (y1; :::; yt�m)j ;

with a convention that Mm (u) = 0 for any u > m. Notice that Mm (u) is (weakly)
decreasing in u:

Lemma 20. Mm (u) � f (m� u;m) for any u and any m = 1; :::; t:

Proof. By recursive formula (E.5),

um (y1; :::; yt�m; y)� �
�
(xs; ys)s�t�m ; xt�m+1

�
(y) � um�1 (y1; :::; yt�m; y) ;

for any y1; :::; yt�m; y: Because Mm (u) is (weakly) decreasing in u,

jM (y1; :::; yt�m; y)j �Mm�1 (um�1 (y1; :::; yt�m; y))

�Mm�1
�
um (y1; :::; yt�m; y)� �

�
(xs; ys)s�t�m ; xt�m+1

�
(y)
�
:

This leads to a recursive bound,

Mm (u) � max
�2�Y

X
y2Y

Mm�1 (u� � (y)) : (E.6)



36 MARCIN P ¾ESKI

The rest of the proof is by induction on m: The inductive hypothesis can be directly
veri�ed for m = 1: Indeed, by de�nition,

M1 (u) � jY j � jY jmax (2� u; 0) for any u � 1 and
M1 (u) = 0 � jY jmax (2� u; 0) for any u > 1:

Suppose that the inductive step holds for m� 1: Then, due to (E.6) applied at m� 1;

Mm (u) � max
�2�Y

X
y2Y

f (m� 1� u+ � (y) ;m� 1) :

Since function f (x;m� 1) is convex in x; the maximum above is obtained when � (y) = 1
for some y and � (y0) = 0 for y0 6= y. Hence, by de�nition of function f;

Mm (u) � (jY j � 1)
X
y2Y

f (m� u� 1;m� 1) + f (m� u;m� 1) = f (m� u;m) ;

which �nishes the inductive step and the proof of the Lemma. �

Let u� := ut (?) = inf�2M(T ) tUt (�; �x; �) be the worst case sum of payo¤s from predictions
made between periods 1 and t: Then,M (T ;At) =Mt (u

�). By Lemmas 19 and 20,

E (T ;At) = logM (T ;At) = logMt (u
�)

� log
"
(dt� u�e+ 1) jY jdt�u

�e

 
t

dt� u�e

!#
:

Using Stirling�s formula, one obtains that

log

 
t

dt� u�e

!
� dt� u�e

�
log

t

dt� u�e + 1
�
:

Also, log (dt� u�e+ 1) � dt� u�e : Hence,

1

t
E (T ;At) �

dt� u�e
t

�
log jY j+ 2� log dt� u

�e
t

�
:

Because h is increasing, this shows that

1� u
�

t
+
1

t
� dt� u�e

t
� h

�
1

t
E (T ;At)

�
:

This ends the proof of the Lemma.
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Appendix F. Proof of Theorem 2

We describe the proof. Fix an informative theory T: Using Lemma 18 in Appendix D, for
each �nite set U � X; we can �nd a learning rule �U such that the number of mistakes com-
mitted when predicting the outcomes of instances from set U is not larger than jU j E (T ;U) ;
no matter what is the order of instances.
If set U is local, then we can construct a learning rule ~�U such that for any �nite tuple

(x1; :::; xm) ~�U , the average number of mistakes committed when predicting the outcomes
of instances x1; :::; xm is not larger than jU j E (T ;U) : First notice that because U is local,
for all analogous tuples �x � �u and each instance x; if �x^x~�U and �u � U , then there exists
an instance u 2 U such that �x^x � �u^u: Second, we can use the �rst observation to �nd a
tuple �u (�x) � U for each tuple �x~�U so that for each x; if �x^x~�U; then there exists u 2 U
such that �u (�x^x) = �u (�x) ^u: Finally, for each (x1; :::; xm) ~�U; any y1; :::; ym�1 2 Y; let

~�U
�
(xs; ys)s<m ; xm

�
= �U

�
(us; ys)s<m ; um

�
;

where �u (x1; :::; xm) = (u1; ::::; um) : The fact that restrictions are analogous (Lemma 9 from
Appendix A.1) implies that the learning rule ~�U has the required property.
Suppose that U is a family of local sets with the identi�cation property as described before

Theorem 2. Then, for each t < s; �xt ~�U (�xs) ; which implies that U (�xt) ~�U (�xs) : Moreover,
if U (xs) � U (�xt) ; then U

�
xs

0� � U (�xt) for each s � s0 � t:
By Lemma 3, for each " > 0; there exists �nite A" such that the entropy over A" is not

larger than ": If an instance process is U-adapted, then for all su¢ ciently high t � t"; set
A" is contained (up to analogy) in U (�xt) ; A" ~�U (�xt) : Lemma 5 shows that the entropy of
any theory T over any local set U is an lower bound on the entropy over its subsets A � U .
Hence, E (T ;U (�xt)) � ".
We construct learning rule �: For each �nite tuple (x1; :::; xt) ; �nd the smallest t0 � t such

that U (x1; :::; xt0) � U (x1; :::; xt) : For each y1; :::; yt�1, let

�
�
(xs; ys)s<t ; xt

�
= �U(x1;:::;xt)

�
(xs; ys)t0�t<t ; xt

�
:

Then, the number of mistakes committed by � during periods t0 � s � t is not larger than
jU (x1; :::; xt)j E (T ;U (x1; :::; xt)) : It follows that the average number of mistakes committed
till period t is not larger than

1

t

X
U2fU(x1;:::;xs):s�tg

jU j E (T ;U) :

If the instance process is U-adapted, then the average number of mistakes converges to 0.
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Appendix G. Proofs of Section 8

G.1. Proof of Lemma 6. It is su¢ cient to prove the result for d = 2: Fix " > 0: For
each j = 1; 2; denote kj = jSjj and let �x�j =

�
x�j1 ; :::; x

�j
kj

�
be an enumeration of Sj; i.e.n

x�j1 ; :::; x
�j
kj

o
= Sj.

Find �nite U1 � X1 so that S1 ~�D1 for any subset D1 � U1; jD1j � "
2
jU1j : De�ne the set

of tuples

A1 =
�
�x1 : �x1 is analogous to �x�1 and �x1 � U1

	
:

Then,

�1 := inf
D1�U1;jD1j� "

2
jU1j;

�
�x1 2 A1 \Dk

1

	
jA1j

> 0:

Find �nite U2 � X2 so that S2 ~�D2 for any subset D2 � U2; jD1j � "
4
� jU1j : De�ne the set

of tuples

A2 =
�
�x2 : �x2 is analogous to �x�2 and �x2 � U2

	
:

Then,

�2 := inf
D2�U2;jD2j� "

4
�jU2j;

�
�x1 2 A2 \Dk

2

	
jA2j

> 0:

Such sets U1 and U2 exist because S1 and S2 are generic: De�ne U = U1 � U2:
Take any D � U , jDj � " jU j = " jU1j jU2j : De�ne sets DA

1 � A1 � U2 and DA
12 � A1 �A2

as follows:

DA
1 =

��
�x1; x2

�
:
�
x1l ; x

2
�
2 D for any l � k1

	
and

DA
12 =

��
x11; :::; x

1
k1
; x21; :::; x

2
k2

�
: for any l � k2;

�
x11; :::; x

1
k1
; x2l
�
2 DA

1

	
=
��
x11; :::; x

1
k1
; x21; :::; x

2
k2

�
: for any l1 � k1; l2 � k2;

�
x1l1 ; x

2
l2

�
2 D

	
:

We will show that DA
12 is not empty, and there exists

�
x11; :::; x

1
k1
; x21; :::; x

2
k2

�
2 DA

12. De�ne

S 0j :=
n
xi1; :::; x

j
kj

o
� Uj: Then, S 01 � S 02 is analogous to S1 � S2 and S 01 � S 02 � D: Thus,

S1 � S2 ~�D; and S1 � S2 is generic.
For each x2 2 U2; de�ne

�2 (x2) =
jfx1 : (x1; x2) 2 Dgj

jU1j
:

Because jDj � " jU1j jU2j ;

jDj �
���nx2 : �2 (x2) � "

2

o��� jU1j+ "
2
jU1j jU2j ; and

jDj
jU1j jU2j

� "
2
�
���x2 : �2 (x2) � "

2

	��
jU2j

:
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For any �x1 2 A1; de�ne

�1 (�x1) =

���x2 : (�x1; x2) 2 DA
1

	��
jU2j

:

Then, ��DA
1

�� � n�x1 : �1 (x1) � "

4
�1

o
jU2j+

"

4
�1 jA1j jU2j ; and��DA

1

��
jU2j jA1j

� "
4
�1 �

�
�x1 : �1 (�x1) � "

4
�1
	

jA1j
:

Observe that��DA
1

�� = X
x22U2

�����x1; x2� : for any l � k1; �x1l ; x2� 2 D	��
�

X
x22U2;�2(x2)� "

2

����x1 : x1l 2 U1 \ fx1 : (x1; x2) 2 Dg for any l � k1	��
�

X
x22U2;�2(x2)� "

2

�1 jA1j = �1 jA1j
���nx2 : �2 (x2) � "

2

o���
�
�

jDj
jU1j jU2j

� "
2

�
�1 jA1j jU2j

Similarly,

jD12j =
X

�x12AU1 (�x�1)

�����x1; �x2� : for any l � k2; ��x1; x2l � 2 DA
1

	��
�

X
�x12AU1 (�x�1);�1(�x1)�

"
4
�1

����x2 : x2l 2 U2 \ �x1 : (�x1; x2) 2 DA
1

	
for any l � k1

	��
�

X
�x12AU1 (�x�1);�1(�x1)�

"
4
�1

�2 jA2j

�
 ��DA

1

��
jU2j jA1j

� "
4
�1

!
�2 jA2j jA1j

By the above, ��DA
1

��
jU2j jA1j

� 1

jU2j jA1j

�
jDj

jU1j jU2j
� "
2

�
�1 jA1j jU2j

�
�

jDj
jU1j jU2j

� "
2

�
�1 �

�
"� "

2

�
�1 =

"

2
�1 >

"

4
�1:

Thus,

jD12j �
"

4
�1�2 jA2j jA1j > 0

and D12 is not empty.
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G.2. Proof of Lemma 7. Take any set S = B1 � :::�Bd, where Bi are �nite and disjoint
subsets of B: We show that S is generic. Take any in�nite and disjoint sets B̂1; :::; B̂d � B
such that Bj � B̂j for j � d: Let X̂ = B̂1 � ::: � ~Bd. Consider language Lchoices restricted
to X̂: It is easy to notice that such language Lchoices is isomorphic to the product of trivial
languages on sets B̂j; j � d (see Section 8.2). By Corollary 2, set S � X̂ is generic in the
product language. Because of isomorphism, set S is also generic in language Lchoices.
Next, we show that for any �nite A � X; there is a generic S � A such that jSj � d�d jAj :

Let B1 � B2 � ::: � B be an increasing sequence of subsets of B such that jBnj = nd: Let
Un � X consists of all tuples of elements of Bn. Then, sequence Un is increasing and there
exists n high enough, so that A~�Un: Let B1n; :::; Bdn � Bn be disjoint subsets of Bn such that
jBjnj = d for each j: Let S� = B1n � :::�Bdn � Un and observe that

jS�j
jUnj

� d�d: (G.1)

We show that there exists an analogous copy S of S� such that jS \ Aj � d�d jAj (notice
that, by the above, S�; hence S and any of its subsets are generic.) Indeed, let � be a
collection of all subsets of Un that are analogous to S: Consider a uniform distribution on �:
Because of (G.1), for each x; the probability that x belongs to randomly chosen set S 2 �
is not smaller than d�d: It follows, that there exists at least one realization of S such that
jS \ Aj � d�d jAj.
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