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Abstract. This paper proposes two (ordinal and cardinal) generalizations of Harsanyi and

Selten (1988) risk-dominance to multi-player, multi-action games. There are three reasons

why generalized risk-dominance (GR-dominance) is interesting. Extending the logic of risk-

dominance, GR-dominant actions can be interpreted as best responses to conjectures that

satisfy a certain type of symmetry. Second, in a local interaction game of Ellison (1993), if

an action is risk-dominant in individual binary interactions with neighbors, it is also GR-

dominant in the large game on a network. Finally, we show that GR-dominant actions

are stochastically stable under a class of evolutionary dynamics. The last observation is a

corollary to new abstract selection results that applies to a wide class of so-called asymmetric

dynamics. In particular, I show that a (strictly) ordinal GR-dominant pro�le is (uniquely)

stochastically stable under the approximate best-response dynamics of Kandori, Mailath,

and Rob (1993). A (strictly) cardinal GR-dominant equilibrium is (uniquely) stochastically

stable under a class of payo¤-based dynamics that includes Blume (1993). Among others,

this leads to a generalization of a result from Ellison (2000) on the 1
2 -dominant evolutionary

selection to all networks and the unique selection to all networks that satisfy a simple,

su¢ cient condition.

1. Introduction

There is a large literature that is concerned with selecting a unique equilibrium in games
with with multiple equilibria. Harsanyi and Selten (1988) proposed risk-dominance as an
selection criterion that is appropriate for games with two players and two actions. It turned
out soon that risk-dominance plays an important role in two di¤erent models of equilibrium
selection: robustness to incomplete information (Carlsson and Damme (1993) and Kajii and
Morris (1997)) and evolutionary learning (Kandori, Mailath, and Rob (1993) and Young
(1993)). The connection between the two models can be easily attributed to the relation
between two equivalent statement of risk-dominance. In a two-action coordination game,
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the risk-dominant action is a best response to the conjecture that assigns equal probability
to each of the opponent actions. Alternatively, consider a population game in which players
are randomly and uniformly matched in pairs to play two-action coordination game. The
risk-dominant action is a best response to any population pro�le in which each action is
played by exactly half of the population.
This paper proposes two generalizations of risk-dominance from two-player to multi-player

and multi-action games. The �rst generalization depends on the ordinal, and the second on
the cardinal properties of the payo¤ function. We motivate the generalizations on two levels.
First, we show that they preserve the logic of risk-dominance in richer environments. Sec-
ond, we show that the generalizations are stochastically stable under a class of evolutionary
dynamics. These results are corollaries to an abstract selection result about asymmetric
dynamics.

1.1. Generalized risk-dominance. We present two versions, an ordinal and a cardinal, of
a generalized risk-dominance (GR-dominance). Suppose that there are I � 2 players, and
each player i chooses an action xi 2 Ai: Fix pro�le a =(ai) 2 �iAi: Say that two (pure
strategy) pro�les �; �� 2 �iAi are a-associated, if all players i who do not play ai in pro�le
�; play ai in pro�le �� : for all i; either �i = ai or ��i = ai. Say that pro�le a is ordinal GR-
dominant, if whenever action ai is not a best response against pro�le �; it is a best response
against any a-associated pro�le �� :

For all a-associated pro�les � and ��, for all players i; (1.1)

action ai is a best response to either � or ��:

Let ui (xi; �) be the payo¤ of player i when she plays xi and the other players follow pro�le �:
The de�nition of ordinal GR�dominance depends only on the best-response behavior of the
payo¤ function. Say that pro�le a is cardinal GR�dominant if the utility loss from playing
ai rather than the best action xi 6= ai to pro�le � is not higher than the gain from playing
ai rather than the best action xi 6= ai to a-associated pro�le �� :

For all a-associated pro�les � and ��, for all players i; (1.2)

max
xi 6=ai

ui (xi; �)� ui (ai; �) � ui (ai; ��)�max
xi 6=ai

ui (xi; ��) :

These de�nitions have appropriate strict versions.
Any cardinal or ordinal GR�dominant pro�le is a pure-strategy equilibrium. With two

players and two actions, a pro�le is cardinal GR�dominant if and only if it is risk-dominant.
Because Harsanyi and Selten (1988)�s de�nition depends on cardinal properties of payo¤s,
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there is no immediate relation between risk-dominance and ordinal GR-dominance in two-
player games. For multi-player games, Morris, Rob, and Shin (1995) de�ne a (p1; :::; pI)-
dominant equilibrium, in which the action of player i is the best response to any conjecture
that assigns a probability of at least pi to the equilibrium action pro�le. We show in Section
4 that if there are only two actions for each player, then cardinal GR�dominance implies�
1
2
; :::; 1

2

�
-dominance. There is no further logical relationship between GR�dominance and

1
2
-dominance in general multi-player games.1

1.2. Motivation. We argue that GR�dominance extends the logic of risk-dominance to
multi-player games. It is useful to distinguish among two statements of risk-dominance:
belief-based and population-based.2 According to the belief-based version, pro�le a = (a1; a2)
in a two-player, two-action game is risk-dominant, if, for each player i; action ai is a best
response to any conjecture that assigns at least 1

2
-probability to the opponent playing a�i.3 In

coordination games, it is enough to require that ai is a best response to any conjecture that is
symmetric with respect to (i.e., which assigns equal probability to) actions A�i = fa�i; b�ig.
Cardinal GR�dominant actions are best responses to conjectures that satisfy an analogous

type of symmetry in multi-player games. Suppose that each player chooses between two
actions, Ai = fai; big and that actions ai are complementary, i.e., if ai is a best response,
it remains the best response when more players switch to a. For each pro�le �, �nd the
unique pro�le �� in which actions of all players are �ipped. One can think about �� as
obtained from � by relabeling all the actions as into bs and vice versa. Say that player i�s
conjecture about other players�behavior is symmetric with respect to labels, if the conjectured
probability of pro�le � is equal to the conjectured probability of pro�le �� for all �: Players
with symmetric conjectures are reluctant to assume that actions with di¤erent labels are
treated di¤erently by other players. We show that a is cardinally GR�dominant if and only
if a is a best response of each player to any symmetric conjecture (Lemma 5).
Alternatively, consider the population-based interpretation of risk-dominance. Suppose

each player is matched to play a two-player two-action interaction game with an opponent
chosen randomly and uniformly from a large population (this is the model analyzed in Kan-
dori, Mailath, and Rob (1993)). Pro�le (ai; aj) is risk-dominant in the two-player interaction

1In particular, there is no relationship between
�
1
2 ; :::;

1
2

�
-dominance and ordinal �ip-dominance. This

is not surprising given the fact that the former is de�ned with respect to cardinal properties of the payo¤

function, and the latter is a purely ordinal concept.
2I am grateful to the editior for this suggestion.
3When there are two players, but more than two actions, the above de�nition has been introduced in

Morris, Rob, and Shin (1995) as 12 -dominance. The following discussion applies unchanged if the interaction

game � has more than two actions.
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Figure 1. Example of a network

game between players i and j; if and only if action ai is a best response to any population
pro�le in which a majority of players chooses a�:
In more general games, players are not matched according to uniform distribution. For

example, in a model of local interactions introduced by Ellison (1993), there are I players
located on a network. Player i�s payo¤s are equal to the sum of payo¤s in the interactions
with his neighbors,

ulocali (xi; �) :=
X
j 6=i

gij� (xi; �j) ; (1.3)

where gij 2 f0; 1g denotes the existence of a connection between players i and j and � is a
payo¤ function in the two-player interaction. (1.3) generalizes the global interaction model
of Kandori, Mailath, and Rob (1993) where all players are connected, gij = 1 for each i and
j:

Consider a network in Figure 1. Player 1 has three neighbors: players 2; 5, and 8: Suppose
that action a is best response in the two-player interaction if the opponent plays a with a
probability at least 2

5
; b is a best response when the opponent plays a with a probability

not more than 2
5
: Then, there are pro�les where the majority of players play a; but a is not

player i�s best response: For example, if all players but player 2 and 5 play a; b is player 1�s
best response even though more than half of players play a: On the other hand, if all players
�ip their actions from a to b and vice versa, then action a becomes player 1�s best response.
More generally, Lemmas 4 and 6 show that the pro�le of actions that are risk-dominant
in the two-player interaction � is (cardinal and ordinal) GR�dominant in any multi-player
game (1.3) on any network. The pro�les are strictly ordinal GR�dominant, if the network
satis�es a simple su¢ cient condition on the number of neighbors of each player and strictly
cardinal dominant if the actions satisfy a version of strict risk-dominance in the two-player
interaction.4

4One could work with an alternative extension of risk-dominance. Say that the pro�le of actions a� is

multi-player risk-dominant, if action ai is a best response against any pro�le of actions in which at least half

of the players play a: This is a stronger de�nition than generalized risk-dominance. The example shows that



GENERALIZED RISK-DOMINANCE AND ASYMMETRIC DYNAMICS 5

1.3. Stochastic stability. The main results of the paper extend and generalize various
stochastic stability results that the evolutionary literature has traditionally associated with
risk-dominance. We discuss these results as corollaries to an abstract selection result de-
scribed in section 2. We identify a simple su¢ cient condition for stochastic stability, called
asymmetry of dynamics. Asymmetry is a condition of its own interest, as it is likely to be
satis�ed by other dynamics and other generalizations of risk-dominance. Theorem 1 shows
that if the dynamics are asymmetric toward pro�le a then pro�le a is stochastically sta-
ble. Uniqueness is implied by appropriate versions of asymmetry: robustness and strictness.
Theorem 2 shows that the evolutionary dynamics of Kandori, Mailath, and Rob (1993) are
(robustly) asymmetric toward any (strictly) ordinal GR�dominant pro�le. Blume (1993)
studied an alternative evolutionary dynamics in which the cost of transition is linear in the
di¤erence between the payo¤ from a given action and the best response payo¤. Theorem
3 shows that Blume�s and related dynamics are (strictly) asymmetric toward any (strictly)
cardinal GR�dominant pro�le. Figure 2 presents logical connections between the results in
the paper.
Recall that Ellison (1993) and Ellison (2000) establish the stochastic stability of pro�le a

of risk-dominant actions in model (1.3), if the network has a particular shape like a circle
or torus (see, for example, Lee, Szeidl, and Valentinyi (2003) or Blume and Temzelides
(2003) for generalizations of Ellison�s argument). The results from Figure 2 imply that a
is stochastically stable on all networks, and uniquely so on networks that satisfy a simple
condition on the number of players.
Blume (1993) shows if the interaction game is symmetric and has two actions, then the

pro�le of strictly risk-dominant actions is uniquely stochastically stable on a two-dimensional
lattice. This is further in Young (1998) to all local interaction models (1.3)). Blume (1993)
and Young (1998) rely on the fact that two-action symmetric coordination games have a
potential function. Because of Figure 2, the results from Blume (1993) and Young (1998) can
be generalized to, among others, games with multiple actions and games without potential.
Since Rubinstein (1989), Carlsson and Damme (1993), and Morris, Rob, and Shin (1995),

it is known that risk- or, more generally, p-dominant outcomes are robust to incomplete
information. It has been argued that the connection between the two models is not acciden-
tal. For example, Morris (2000) shows that the arguments behind evolutionary selection on
some networks closely resemble contagion arguments used in the robustness to incomplete
information literature. At this moment, it remains unknown whether a similar relationship

such a de�nition is too strong. In particular, is a is risk-dominant, but not a best response when more than
3
5 neighbors plays b; then a is not multi-player risk-dominant.
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Figure 2. Connections between the results of the paper

exists between GR�dominance and incomplete information games. The answer to this ques-
tion would shed light on the connections between the two models. In particular, a negative
answer would mean that the connection established in the previous literature is restricted to
very special classes of games, such as games on networks with a speci�c network structure.
A positive answer may lead to new results in the global games literature.

2. Asymmetric dynamics

This section identi�es an abstract property of evolutionary dynamics, asymmetry, that is
responsible for the evolutionary selection results discussed later in the paper.

2.1. Model. There are I � 2 players. Each player i chooses an action �i from a �nite set Ai:
A state of the population is represented as an action pro�le � 2 � = �iAi; and ��i denotes
the actions of all players but i:
We describe abstract evolutionary dynamics on the space state � following Ellison (2000).

The state of the population evolves according to the Markov process P", where P" (�; �0) � 0
denotes the probability of transition from � to �0 and for each �; ";

X
�0

P" (�; �
0) = 1: The

parameter " > 0 is interpreted as the probability of an individual mutation. We assume that
limits

lim
"!0

logP" (�; �
0)

log "
=: c (�; �0) 2 [0;1] (2.1)
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exist (note that they might be equal to 1). Function c : � � � ! [0;1] is called a cost
function if it satis�es standard assumptions: For any �; �0 (a) c (�; �) = 0; and (b) there
exists a path � = �0; :::; �t = �0 such that c (�s; �s+1) < 1 for any s < t: Assumption (a) is
without a loss of generality, and assumption (b) ensures that for each " > 0; P" is ergodic and
there are unique ergodic distributions �" 2 �� st. for each �; �" (�) =

X
�0

�" (�
0)P" (�

0; �) :

Pro�le � is stochastically stable if lim"!0 �" (�) > 0: It is uniquely stochastically stable, if
lim"!0 �" (�) = 1:

2.2. Asymmetric dynamics. Fix pro�le a = (ai) 2 �. Pro�le � is a-dominated by �0 if
for each player i; �i = ai ) �0i = ai: Pro�le � is almost a-dominated by �0 if there is a player
j such that for each i 6= j, �i = ai ) �0i = ai: Pro�les �; �� are a�associated if for all players
i, either �i = ai or ��i = ai: Pro�les � and �� are almost a�associated if they are a-associated
or there is player j; such that either �i = ai or ��i = ai for any player i 6= j.
To parse these de�nitions, consider the binary case Ai = f0; 1g and ai = 1 for each i: The

set � = �iAi is a lattice with a natural partial order � : Pro�le � is a-dominated by �0 if
and only if � � �0: Two pro�les �; �0 are a-associated if and only if �i + �0i � 1 for each i:
Figure 3 presents an example of such a lattice together with a cost function. Pro�le a = 111
a�dominates any other pro�le and is a�associated with any other pro�le. Pro�le 011 is a-
associated with pro�le 100 and any other pro�le that a-dominates 100. Lines between states
correspond to transitions. The cost of transition upwards (downwards) between neighboring
pro�les are written at the top left (bottom right) of a corresponding line. For example, the
cost of transition from pro�le 111 to pro�le 011 is equal to c (111; 011) = 5: The costs of
transitions that are not denoted in the Figure are de�ned as the sums of costs of the lowest
cost path between pro�les. For example, c (111; 010) = c (111; 011) + c (011; 010) = 8:

De�nition 1. Cost function c is asymmetric toward a, if for any pro�les �; �0; ��, such that
�; �� are a-associated, there exists ��0 such that �� is a-dominated by ��0, ��0 is a-associated with
�0; and

c (��; ��0) � c (�; �0) : (2.2)

This de�nition has a simple intuition. Very informally, if the cost function is asymmetric,
then for any transition away from pro�le a, there is an "associated" transition toward pro�le
a with at most the same cost. The cost function drawn in Figure 3 is asymmetric. For
example, notice that c (000; 100) = 4 � 5 = c (111; 011) :

Theorem 1 below states that if the cost function is asymmetric toward a, then pro�le
a is stochastically stable. Unique stochastic stability requires additional conditions. Two
variations of the above de�nition are useful. In what follows, we adopt the convention that
1 <1:
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Figure 3. Example of a cost function. The costs of upwards (downwards)
transitions are written at the top left (bottom right) of the corresponding lines.

De�nition 2. Cost function c is strictly asymmetric toward a if

(1) for any � 6= a; c (a; �) > 0; and
(2) for any pro�les �; �0; ��, such that � and �� are a-associated, there exists ��0 such that ��

is a-dominated by ��0, ��0 is a-associated with �0; and

either c (��; ��0) = 0 or c (��; ��0) < c (�; �0) :

Strict asymmetry is more restrictive than asymmetry. Strict asymmetry requires that
inequality (2.2) is strict whenever c (��; ��0) > 0. Additionally, strict asymmetry requires that
the transitions out of pro�le a are costly. We demonstrate below that the cost function from
the dynamics by Blume (1993) is robustly asymmetric toward strictly cardinalGR�dominant
pro�les.
The cost function from Figure 3 is strictly asymmetric. In fact, one cannot lower the

cost of any transition downwards by 1 or more without violating the strict asymmetry. For
example, if the cost of the transition from 111 to 011 changed from 5 to 4; this would violate
the inequality c (000; 100) < c (111; 011).

De�nition 3. Cost function c is robustly asymmetric toward a if

(1) for any � 6= a; c (a; �) > 0;
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(2) for any pro�les �; �0; ��, such that �; �� are almost a-associated, there exists ��0 such
that �� is a-dominated by ��0, ��0 is almost a-associated with �0; and

c (��; ��0) � c (�; �0) ;

(3) for any pro�les �; �0 such that c (�; �0) > 0; if �; �� are a-associated, then there exists
��0 such that ��0 is a-dominated by ��; ��0 is almost a-associated with �0; and

c (��; ��0) < c (�; �0) ;

(4) for any pro�les �; �0; �� such that �0 is almost a-dominated by � and �� is a-associated
with �0; either c (�; �0) = 0 or there is ��0 that is a-associated with �; �� is a-dominated
by ��0; and c (��; ��0) = 0:

Robust asymmetry is more restrictive than asymmetry. We demonstrate below that the
cost function from the dynamics by Kandori, Mailath, and Rob (1993) is robustly asymmetric
toward strictly ordinal GR�dominant pro�les.
The main theorem of this section characterizes stochastic stability under Markov dynamics

with asymmetric cost functions.

Theorem 1. If the cost function is asymmetric toward a, then a is stochastically stable. If
it is strictly or robustly asymmetric toward a, then a is uniquely stochastically stable.

2.3. Proof of Theorem 1. The rest of this section discusses the proof of the Theorem.
The reader interested in the applications of the above result should go directly to Sections 3
and 4. There are three steps in the proof of the Theorem.
The �rst step is standard. We rely on the well-known tree technique of Freidlin and

Wentzell (1984). A tree h is a function h : � ! � with a distinguished element �h 2 �
called a root of the tree, st. (a) h (�h) = �h and (b) for every � 6= �h there is a path
�; h (�) ; :::; hm (�) = �h leading from � to �h. Let c : � � � ! [0;1] be a cost function. A
cost of tree h is equal to the sum of the costs of its branches: c (h) =

P
� 6=�h c (�; h (�)) : A

tree has minimal cost, if there is no tree with a lower cost. Denote the set of all roots of
minimal cost trees as

MR (�; c) = f� : � is a root of a tree h st. for any h0; c (h) � c (h0)g :

It turns out that the stochastic stability of a pro�le is equivalent to whether this pro�le is a
root of a minimal cost tree.

Lemma 1 (Freidlin and Wentzell (1984)). Pro�le a is stochastically stable if a 2MR (�; c) :

Pro�le a is uniquely stochastically stable if fag =MR (�; c) :
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Second, we reduce the proof to the binary case. Let S = f0; 1gI be a binary lattice with
a partial order de�ned above. To distinguish between sets � and S; we refer to a typical
element v 2 S as a state. Let 1 denote a state that consists only of 1s. Let  : S�S ! [0;1]
be a cost function on S (i.e., it satis�es the assumptions stated above). Let MR (S;  ) be
the set of all roots of minimal cost trees on S with a cost function  .
De�nitions 1, 2, and 3 extend to cost functions  : An additional property of  is helpful.

A cost function is supermodular if the transitions upwards are less costly if started from a
higher state.

De�nition 4. Cost function  is supermodular, if for any states v; v0; �v st. �v � v; there is
�v0 � v0; �v; such that  (�v; �v0) �  (v; v0) :

The next Lemma is proven in Appendix A. It shows that the problem of �nding the roots
of minimal cost trees on � can be reduced to the analogous problem in the binary case.

Lemma 2. Suppose that cost function c : ���! [0;1] is asymmetric (strictly asymmetric,
robustly asymmetric). There exists a supermodular and asymmetric (strictly asymmetric,
robustly asymmetric) cost function  : S � S ! [0; 1], such

1 2MR (S;  ) =) a 2MR (�; c) and

f1g =MR (S;  )() fag =MR (�; c) :

The central part of the proof is contained in the following Lemma.

Lemma 3. If cost function  : S � S ! [0; 1] is supermodular and asymmetric, then
1 2MR (S;  ) : Additionally, if it is strictly or robustly asymmetric, then f1g =MR (S;  ) :

Lemma 3 identi�es su¢ cient conditions on the cost function  which guarantee that state
1 is a (unique) root of minimal cost trees. Theorem 1 is a corollary to Lemmas 1, 2, and 3.

2.4. Intuition for Lemma 3. The proof of Lemma 3 can be found in Appendix B. Here,
we use the example from Figure 3 to sketch the main ideas behind the Lemma.
All known algorithms for �nding the roots of minimal cost trees are based on a similar

idea (Chu and Liu (1965), Edmonds (1967)). Instead of solving the problem (S;  ) directly,
one replaces it by a simpler problem using one of two techniques:

(1) Subtracting a constant. One can replace  by  0 =  ��; where � := minv 6=v0  (v; v0).
It is easy to see that this operation does not change the set of minimal cost trees,
MR (S;  ) =MR (S;  0) : The left graph in Figure 4 shows the cost function obtained
from Figure 3 by subtracting 1.
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(2) Merging. Consider the left graph in Figure 4. Notice that the cost of transition from
states 110 and 101 to 111 is equal to 0 and each transition out of state 111 has a cost
of at least 3. Any tree with a root at one of the states 110 or 101 can be replaced
by a tree with a root at 111 with a total cost lower by at least 3. Thus, states
110 and 101 cannot be roots of minimal trees. One can replace the problem (S;  0)

from the left graph in Figure 4 by the problem
�
S1; ~ 1

�
drawn on the right-hand

side of Figure 4; where S1 = Sn f110; 101g. Some care is required in de�ning the
new cost function ~ 1: For each two states v; v0 2 S 0; we de�ne ~ 1 (v; v0) as the sum
of  0-costs of the lowest cost path between v and v0: For example, ~ 1 (010; 111) =
 0 (010; 101) +  0 (101; 111) = 3: One can verify that the set of the roots of minimal

cost trees in problems
�
S1; ~ 1

�
and (S;  0) (hence, also (S;  )) must be equal. This

is standard (see, for example, Proposition 1 of Nöldeke and Samuelson (1993) and the
Appendix in Young (1993)); Lemma 15 (Appendix B) presents the formal argument.
In order to de�ne merging formally, say that state v is an attractor, if for any other
state v0; if there is a 0-cost path from v to v0; then there is a 0-cost path from v0 to
v:5 For each state v; let U (v) be the set of all attractors v0 such that there is a 0�cost
path from v to v0: As a convention, we take that if v is an attractor, then v 2 U (v) :
Clearly, the set of minimal tree roots is contained in the set of all attractors

[
v2S

U (v) :

Moreover, if v is the minimal tree root, then any other attractor v0 2 U (v) is also a
minimal tree root.
Lemma 16 shows that, if the cost function is supermodular, then for any state v; the
set of attractors U (v) contains its highest element: there is �v (v) 2 U (v) such that
for each v0 2 U (v) ; v0 is 1-dominated by �v (v) : De�ne S1 := f�v (v) : v 2 Sg to be the
space of the highest elements in the attractor sets with the interpretation that each
state v merges into state �v (v) :
If each attractor set contains only one element, then merging does not change the set
of minimal tree roots. If there is an attractor set with more than two elements, some
minimal tree roots might be lost. However, the merging guarantees that the new
state space always contains at least some of the minimal tree roots of the original
problem.

One can continue simplifying the problem by alternating between the two techniques. At
each step, subtracting a constant creates 0-costs transitions and merging reduces the size of
the state space. The algorithm stops when there is only one state remaining. Of course, the

5A 0-cost path between states v and v0 is a sequence of states v = v0; :::; vm = v0 such that  0 (vivi+1) = 0

for each i < m:
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Figure 4. Tree techniques

remaining state must be a root of the minimal cost tree. Figure 5 presents the subsequent
steps of the algorithm in the example. In this example, one can check that no roots were lost
along the steps of the procedure. Because 111 is the only remaining state, it is the unique
minimal tree root in the original problem (S;  ) :

The above discussion de�nes the algorithm. The proof of Lemma 3 shows that, if the
initial cost function is supermodular and asymmetric, then state 1 survives all the steps of
the algorithm; hence it is a minimal tree root of the initial problem. In addition, if the initial
cost function is robustly or strictly asymmetric, then no other minimal tree roots are lost
along the algorithm. The idea is based on the following observations: If the original cost
function is supermodular and strictly or robustly asymmetric, then

� If the cost function at step k � 1 of the algorithm is supermodular and (strictly)
asymmetric, then it remains supermodular and (strictly) asymmetric also at step
k+1 (Lemmas 16 and 17): If the original cost function is supermodular and (strictly
or robustly asymmetric), then step 1 and all the subsequent steps are supermodular
and (strictly) asymmetric. Notice that the cost function from Figure 5 is strictly
asymmetric at all steps. For example, consider the transition from state 001 to 000.
State 111 is the unique state that is 1-associated with 001 in state space S1, and,
 1 (001; 000) = 1 >  1 (111; 111) = 0 (the cost of the transition from a state to itself
is always equal to 0 by de�nition).
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Figure 5. Steps of the algorithm

� If step k is supermodular and asymmetric, then state 1 is not "merged" into any
other state. More precisely, if  k (1;v) = 0 for v 2 Sk; v 6= 1; then  k (v;1) = 0

and, by the chosen convention of merging states into the upper most candidate, all
states v such that  k (v;1) = 0 are merged into state 1: In particular, the only state
remaining at the end of the algorithm is 1. Therefore, 1 is the only remaining state
when the algorithm stops.

� In addition, if step k is strictly asymmetric, then there is no minimal tree root
lost when merging other states into state 1: More precisely, if  k (v;1) = 0 for
v 2 Sk; v 6= 1; then  k (1;v) > 0: Because this must be true along all the steps of the
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algorithm, not only 1 is the only remaining state when the algorithm stops, but also
1 is the unique minimal tree root of the initial problem.

3. Ordinal generalized risk-dominance

This section discusses the ordinal extension of risk-dominance to multi-player games.

3.1. De�nition. Let ui (xi; ��i) denote a payo¤ of player i from action xi given the pro�le
of the opponents�actions ��i: To economize on subscripts, we sometimes write ui (xi; �) =
ui (xi; ��i). Action xi is a best response (strict best response) to pro�le � if for any action
x0i 2 Ai; ui (xi; �) � (>)ui (x0i; �).

De�nition 5. Pro�le a =(ai) 2 �iAi is ordinal generalized risk�dominant (GR-dominant),
if (1.1) holds. Pro�le a is strictly ordinal GR�dominant, if for any player i; any action
xi 2 Ai; xi 6= ai; any pro�les �; �� that are almost a-associated, ai is a strict best response to
either � or ��:

This de�nition says that if ai is not a best response of player i to certain pro�le �; then
it becomes a best response if all players j who do not play aj in pro�le � switch to aj; and
the other players switch to any action.
Suppose that there are two players, I = 2; and each player chooses one of two actions,

jAij = 2 for each i: In this case, any equilibrium pro�le is ordinal GR�dominant. Indeed,
suppose that a = (a1; a2) 2 A1 � A2 is an equilibrium pro�le, i.e., for each player i; ai is a
best response to a�i: Let �; �0 2 A1 �A be two a-associated pro�les. Then, either ��i = a�i
or �0�i = a�i and ai is a best response to one of the pro�les � or �0: On the other hand, pro�le
a is strictly ordinal GR�dominant if and only if ai is a best response to a�i as well as to
x�i 6= a�i; hence, if and only if ai is dominant.

3.2. Example: Local interactions. Let � : A�A! R be a payo¤function in a symmetric
two-player interaction game. Following Morris, Rob, and Shin (1995), say that a 2 A is
(strictly) p-dominant in interaction game �; if it is a (strict) best response to any distribution
� 2 �A that assigns probability of at least p to action a:
Consider the local interaction model with payo¤s ulocali de�ned in (1.3). Ellison (1993)

assumes that gij = gji 2 f0; 1g for each i and j: The next result is formulated for general
weights gij � 0. Let a = (a; :::; a) 2 AI .

Lemma 4. If action a is 1
2
-dominant in two-player interaction game �, then a is ordinal

GR�dominant.
If action a is strictly

�
1
2
� ��

�
-dominant in interaction game �, then a is strictly ordinal
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GR�dominant. Here, �� = maxi �i is a characteristic of weights (gij) and �i is de�ned as

�i = inf

(
� : 8S�f1;:::;Ignfig8j�2S if

P
j2S gijP
j 6=i gij

>
1

2
+ �, then

P
j2Snfj�g gijP

j 6=i gij
� 1

2
� �;

)
:

Proof. We verify only the second statement. Suppose that a is strictly
�
1
2
� ��

�
-dominant in

the interaction game. Take any two almost a-associated pro�les � and �� and suppose that a
is not a strict best response to �: Then,P

j 6=i:�j=a gijP
j 6=i gij

<
1

2
� �� and

P
j 6=i:�j 6=a gijP
j 6=i gij

>
1

2
+ ��:

Because pro�les � and �� are almost a-associated, there is player j� 6= i; such thatP
j 6=i:��j=a gijP
j 6=i gij

�
P

j 6=i;j�:�j�a gijP
j 6=i gij

� 1

2
� ��;

where the last inequality follows from the de�nition of ��: Hence, a is a strict best response
to pro�le ��: �

There are two important applications. In the global interaction model of Kandori, Mailath,
and Rob (1993) with uniform matching guniformij = 1 for each i and j. It is easy to check that

�uniformi = �uniform,� =

(
1

2(I�1) ;

0;

if I � 1 is odd,
if I � 1 is even:

Thus, Lemma 4 implies that (a) if a is risk-dominant in the interaction game, then pro�le a is
ordinal GR�dominant in the multiplier game uuniform; and (b) if a is strictly risk-dominant
in the interaction game, then pro�le a is strictly ordinal GR�dominant in the multiplier
game uuniform if either the number of players is odd or the number of players is even and
su¢ ciently large.
In the games on a network of Ellison (1993) gnetworkij = gnetworkji 2 f0; 1g for each i and j:

De�ne gnetworki =
P

j 6=i g
network
ij be the number of neighbors of player i: One can check that

�networki =

(
1

2gnetworki
;

0;

if gnetworki is odd,
if gnetworki is even;

and �network,� := maxi �networki is a characteristic of the network. One can interpret �network,� as
a measure of the �neness of the network. In particular, �network,� can be bounded from above
by a number that is inversely proportional to the minimum number of neighbors across all
players, �network,� � 1

2
1

mini gi
: The su¢ cient conditions of Lemma 4 relate the �neness of the

network to the strength of p-dominance of a in the interaction game. Speci�cally, if a is 1
2
-

dominant, then a is ordinal GR�dominant on each network, and if a is strictly 1
2
-dominant,
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then a is strictly ordinal GR�dominant on each network such that

�network,� <
1

2
� inf fp : a is strictly p-dominantg : (3.1)

Note that for the two networks considered by Ellison, circle and torus, the number of neigh-
bors of each player is always even. Thus, �network,� = 0; and condition (3.1) is trivially
satis�ed whenever a is strictly 1

2
-dominant in the interaction game.

3.3. KMRdynamics. Consider the evolutionary learning process based on Kandori, Mailath,
and Rob (1993). Each period player i is randomly drawn (say with a probability 1

N
) and

given an opportunity to change his action. With a probability of order 1 � "; she chooses
one of the best responses to the current pro�le in the population; with a probability of order
"; she chooses an action randomly. Formally, assume that the dynamics is a Markov process
with a cost function cKMR : �� �! [0;1] :

� cKMR (�; �) = 0;

� cKMR (�; �
0) = 0 if there is player j, such that �0j is a best response of player j to ��j

and �i = �0i for all i 6= j;

� cKMR (�; �
0) = 1 if there is player j, such that �0j is not a best response of player j to

��j and �i = �0i for all i 6= j;

� cKMR (�; �
0) =1 in all other cases.

Theorem 2. If a is ordinal GR�dominant, then it is stochastically stable under dynamics
cKMR. If a is strictly ordinal GR�dominant, then it is uniquely stochastically stable under
dynamics cKMR.

Proof. We show that if pro�le a is ordinal GR�dominant (strictly ordinal GR�dominant),
then cost function cKMR is asymmetric (robustly asymmetric) toward a. The result will
follow from Theorem 1.
The proof proceeds in four steps. First, take any pro�les �; �0; �� such that �; �� are a-

associated (almost a-associated). We show that there is a pro�le ��0; such that �0 and ��0 are
a-associated (almost a-associated) and cKMR (��; ��

0) � cKMR (�; �
0) : W.l.o.g. assume that

cKMR (�; �
0) = 0 (the other cases are trivial). Let j and xj be a player and an action, such

that �0j = xj 6= �j: Hence, xj is a best response of player j to pro�le �: Consider two cases:

� If xj 6= aj; then, by ordinal GR�dominance, aj is a best response of player j to ��:
Let ��0 be such that ��0�j = ���j and ��0j = aj. Then, �� is a-dominated by ��0; pro�les
�0; ��0 are a-associated (almost a-associated), and cKMR (��; ��

0) = 0 by the de�nition
of cost function cKMR.
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� If xj = aj; then take ��0 := ��: Pro�le �� is a-dominated by itself. Since � is a-dominated
by �0; pro�les �0 and ��0 are a-associated. By de�nition, cKMR (��; ��

0) = cKMR (��; ��) =

0.

This shows that if a is ordinal GR�dominant, then cost function cKMR is asymmetric.
This also shows that if a is strictly ordinal GR�dominant, then part 2 of the de�nition of
robustly asymmetric cost function (De�nition 3) is satis�ed.
Second, notice that if a is strictly ordinal GR�dominant, then it is a strict Nash equilib-

rium. Thus, for any � 2 �; cKMR (a; �) > 0 and part 1 of De�nition 3 holds.
Third, take any pro�les �; �0 such that cKMR (�; �

0) > 0: Assume that cKMR (�; �
0) = 1

(the case cKMR (�; �
0) =1 is trivial). Let �� be a pro�le such that � and �� are a-associated

and take ��0 := ��: Then, cKMR (��; ��
0) = 0 and ��0 is almost a-associated with �0 (the latter is a

consequence of the fact that there is a player j such that �0j 6= �j and �i = �0i for each i 6= j;

hence, for each i 6= j; either ��0i = ai or �0i = ai). Thus, part 3 of De�nition 3 holds.
Fourth, take any pro�les �; �� such that (a) �; �� are almost a-associated and (b) cKMR (�; �

00) >

0 for any pro�le �00 that strictly dominates �: We show that there is pro�le ��0 such that �
and ��0 are a-associated, �� is a-dominated by ��0 and c (��; ��0) = 0. If � and �� are a-associated,
then let ��0 := ��; thus cKMR (��; ��) = 0: If �; �� are not a-associated, then there is a player j
such that �j 6= aj and ��j 6= aj. Because of (b), aj is not a best response to ��j. Because a is
ordinal GR�dominant, aj is a strict best response to ���i: Let ��0 be a pro�le such that ��0j = aj
and for any i 6= j; ��0i = ��i: Then, cKMR (��; ��

0) = 0: Thus, if a is ordinal GR�dominant, then
part 4 of De�nition 3 holds.
This shows that if a is strictly ordinal GR�dominant, then cost function cKMR is robustly

asymmetric. �

The dynamics cKMR di¤er from Kandori, Mailath, and Rob (1993) who allow for multiple
adjustments in each period. In that version, each period, each player is activated with
probability p 2 (0; 1) : Once activated, with a probability of order 1� "; she chooses one of
the best responses to the current pro�le in the population; with a probability of order "; she
chooses an action randomly. The cost function of these dynamics can be de�ned as

cmultipleKMR (�; �0) := jfi : �0i 6= �i and �i is not a best response to ��igj :

This modi�cation does not change the main result: Theorem 2 still holds with cKMR replaced
by cmultipleKMR : The proof of this fact follows the same lines as the proof of Theorem 2 and, as
such, is left out.
Theorem 2 and Lemma 4 imply that
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Corollary 1. If a is 1
2
-dominant in interaction game �, then a is stochastically stable under

dynamics cKMR. Additionally, if the network satis�es condition (3.1), then a is uniquely
stochastically stable under dynamics cKMR.

The Corollary extends the results by Ellison (1993) and Ellison (2000) to all networks.
The role of condition (3.1) is to avoid integer problems that appear when the number of
players is small. To see this, consider two examples. The �rst example comes from Jackson
and Watts (2002).

Example 1 (Star). Suppose that A = fa; bg and � is a payo¤ in a coordination game
with two pure strategy equilibria (a; a) and (b; b) : Consider a network with a central player
connected to all other players and none of the other players are connected to each other.
Then ,both the equilibrium pro�les are stochastically stable. To see this, observe that one
needs exactly one mistake by the central player to switch between coordinating on one of two
actions.

Example 2. Suppose that A = fa; bg ; action a is a best response to any pro�le with at least
40% players playing a, and action b is a best response to any pro�le with at least 60% playing
b: Suppose that there are n players, all connected to each other. If n = 4; then the number of
neighbors of each player is odd, and it takes exactly two mutations to move the process out of
the respective basins of attraction. Hence, both pro�les a and b are stochastically stable. If
there are n = 3 or n = 5 players, then the number of neighbors of each player is even. If one
(in case n = 3) or two (in case n = 5) players change their actions to a; then a becomes a
strict best response for the remaining players. On the other hand, starting from pro�le a; one
needs two (in case n = 3) or three (in case n = 5) players to change their actions to make
b a best response for the remaining players. Hence, with n = 3; 5; only a is stochastically
stable.

4. Cardinal generalized risk-dominance

4.1. De�nition. This section presents a cardinal generalization of risk-dominance.

De�nition 6. Pro�le a =(ai) 2 �iAi is cardinal GR�dominant, if condition (1.2) holds.
Pro�le a is strictly cardinal GR�dominant if for any player i; any pro�les �; �� that are
a-associated,

max
xi 6=ai

ui (xi; �)� ui (ai; �) < ui (ai; ��)�max
xi 6=ai

ui (xi; ��) (strict inequality).

This says that for any player i; any pair of a-associated pro�les �; ��; the di¤erence between
the payo¤ from any action xi 6= ai and the payo¤ from ai against pro�le � is smaller than
the di¤erence between the payo¤ from ai and any other action xi 6= ai against pro�le ��.
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Clearly, cardinal GR�dominance implies ordinal GR�dominance. However, strict cardinal
GR�dominance does not necessarily imply strict ordinal GR�dominance.

4.2. Symmetric conjectures. Suppose that there are only two actions for each player,
Ai = fai; big : Let a =(ai) 2 �iAi: Say that payo¤s are complementary, if for each player i; for
each pro�les � and �0 such that �0 a-dominates �; ui (ai; �)�ui (bi; �) � ui (ai; �

0)�ui (bi; �0) :
For each pro�le �; denote �� as the pro�le with all actions �ipped: �i = ai i¤ (��)i = bi:

Conjecture � 2 �(�iAi) about action pro�les is symmetric with respect to labels if for each
�; � (�) = � (��) :

Lemma 5. If payo¤s are complementary, then ai is player i�s (strict) best response to any
symmetric conjecture for each player i if and only if a is (strictly) cardinal GR�dominant.

Proof. Suppose that ai is player i�s (strict) best response to any symmetric conjecture for
each player i. Take any a-associated pair of pro�les � and ��: Consider a symmetric conjecture
�� that assigns probability 1

2
to pro�le � (and probability 1

2
to pro�le ��). Then,

1

2
ui (ai; �) +

1

2
ui (ai;��) = ui (ai; ��)

� (>)ui (bi; ��) =
1

2
ui (bi; �) +

1

2
ui (bi;��) :

Observe that �� a-dominates ��: By complementarity,

ui (ai;��) � ui (ai; ��) and ui (bi;��) � ui (bi; ��) :

The inequalities imply that a is (strictly) cardinal GR�dominant.
Suppose that a is (strictly) cardinal GR�dominant. Take any symmetric conjecture � and

notice that it is equal to convex combinations of symmetric conjectures that assign positive
probability to only two states, � =

P
���� where a� � 0;

P
�� = 1 and �� (�) = �� (��) =

1
2
: By (strict) cardinal GR�dominance,

ui (ai; �) =
1

2

X
a� (ui (ai; ��) + ui (ai;��))

� (>) 1
2

X
a� (bi (ai; ��) + ui (bi;��)) = ui (bi; �) :

�

4.3. Cardinal GR�dominance and 1
2
-dominance. With two players and two actions,

(strict) cardinal GR�dominance is equivalent to Harsanyi and Selten (1988)�s (strict) risk
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dominance. This is a consequence of Lemma 5.6 A similar argument shows that in two-
player, multi-action games, (strict) cardinal GR-dominance implies Morris, Rob, and Shin
(1995)�s (strict) 1

2
-dominance.

For multi-player games, Morris, Rob, and Shin (1995) de�nes a (p1; :::; pI)-dominant equi-
librium, in which the action of player i is the best response to any conjecture that assigns a
probability of at least pi to the equilibrium action pro�le. If there are only two actions for each
player and complementarities, then cardinal GR�dominance implies

�
1
2
; :::; 1

2

�
-dominance.

This follows from Lemma 5 and the fact that a conjecture according to which each player
randomizes equally between the two actions is symmetric.
In general, there is no further logical relationship between GR�dominance and

�
1
2
; :::; 1

2

�
-

dominance. As we discuss next, there exists a connection between 1
2
-dominance in the

two-player interaction game and cardinal GR�dominance with local interactions.

4.4. Example: Local interactions. Consider the local interaction model described in
section 3.2. Let � : A � A ! R be a symmetric payo¤ in a two-player interaction. Fix
a 2 A and let a =(a; :::; a) : Say that action a 2 A is (strictly) strongly 1

2
-dominant if for

any distribution � 2 �A such that � (a) � 1
2
;

X
a

� (a; x)� (x) � (>)
X
a

max
x0 6=a

� (x0; x)� (x) :

Thus, if action is strongly 1
2
-dominant, it is also 1

2
-dominant, but not necessarily the other

way.

Lemma 6. If a is strongly 1
2
-dominant in the interaction game �, then a is cardinal GR�dominant.

If a is strictly strongly 1
2
-dominant in the interaction game �, then a is strictly cardinal

GR�dominant.

Proof. We verify only the second statement. Suppose that a is strictly strongly 1
2
-dominant

in the interaction game. Take any pair of a-associated pro�les �; �� and �x player i. De�ne
distribution � 2 �A: for any x 2 A

� (x) =
1

gi

X
j 6=i

1

2
(1 (�j = x) + 1 (��j = x)) :

6Note that, if pro�le (ai; aj) is an equilibrium in a two-player, two-action game, then the payo¤s are

complementary.
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Then, � (a) � 1
2
: By strict strong 1

2
-dominance,

ui (a; �) + ui (a; ��)

= 2
X
a

� (a; x)� (x) > 2
X
a

max
x0 6=a

� (x0; x)� (x)

=
1

gi

X
a

X
j 6=i
max
x0 6=a

� (x0; x)1 (�j = x) +
1

gi

X
a

X
j 6=i
max
x0 6=a

� (x0; x)1 (��j = x)

� max
xi 6=ai

ui (xi; �) + max
xi 6=ai

ui (xi; ��) :

Thus, a is strictly cardinal GR�dominant. �

4.5. Payo¤-based dynamics. Let f : [0;1) ! [0;1) be a strictly increasing function
such that f (0) = 0: De�ne cost function cf : for any pro�les �; �0

� if � = �0; then cf (�; �0) = 0;
� if there is player j, such that �i = �0i for all i 6= j; then

cf (�; �
0) = f

�
max
xj

uj (xj; �)� u
�
�0j; �

��
:

� otherwise, cf (�; �0) =1.
These dynamics relates the cost of a transition toward xj to the di¤erence between best

response payo¤ and the payo¤ from xj. By assumption, the cost of a transition is increasing
in the di¤erence between payo¤s. For example, if the cost of a transition is linear in the
di¤erence between payo¤s, f (c) = �c; for some � > 0; then cf is a cost function of Blume
(1993). (If f is increasing rather than strictly increasing and f (c) = 1 fc � 0g ; then cf =
cKMR.)

Theorem 3. If a is cardinal GR�dominant, then it is stochastically stable under dynamics
cf . If a is strictly cardinal GR�dominant, then it is uniquely stochastically stable under
dynamics cf .

Proof. We show that if pro�le a is cardinal GR�dominant (strictly cardinal GR�dominant),
then cost function cf is asymmetric (strictly asymmetric). The result will follow from The-
orem 1.
Take any pro�les �; �0; ��, such that �; �� are a-associated. We show that there exists ��0

such that �� is a-dominated by ��0, �0 and ��0 are a-associated and either cf (��; ��0) = 0 or
cf (��; ��

0) < c (�; �0) : Assume that there is a player j, such that �i = �0i for all i 6= j (the other
case is trivial because of convention that 1 <1). Let xj = �0j. There are a few cases to be
considered.
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� If xj = aj or (�j 6= aj and xj 6= aj), then let ��0 := ��: Pro�les �0 and ��0 are a-associated,
and, by de�nition, cf (��; ��0) = 0 � cf (�; �

0).
� If xj 6= aj, �j = aj and there is x0j 6= aj which is a best response to �; then, by
cardinal GR�dominance, aj is a best response to ��: Take ��0 such that ��0�j = ���j and
��0j = aj. Then, �� is a-dominated by ��0 and pro�les �0; ��0 are a-associated. Because aj
is a best response to ��; cf (��; ��0) = 0 � cf (�; �

0).
� If xj 6= aj, �j = aj and aj is a strict best response to �; then

cf (�; �
0) = f (uj (aj; �)� u (xj; �)) > 0:

Take ��0 such that ��0�j = ���j and ��0j = aj. Then, �� is a-dominated by ��0 and pro�les
�0; ��0 are a-associated. By (strict) cardinal GR�dominance,

uj (aj; �)� u (xj; �)

� uj (aj; �)� max
x0j 6=ai

u
�
x0j; �

�
� (<) max

x0j 6=ai
u
�
x0j; ��

�
� uj (aj; ��)

� max
x0j

u
�
x0j; ��

�
� uj (aj; ��) ;

which implies that

cf (��; ��
0) � cf (�; �

0) ( cf (��; ��0) < cf (�; �
0) ):

This shows that if a is cardinal GR�dominant, then cf is asymmetric and it also shows
that strict cardinal GR�dominance implies part 2 of the de�nition of strictly asymmetric
cost function (De�nition 2).
Finally, if a is strictly cardinal GR�dominant, then for any � 2 �; cf (a; �) > 0: This is

because ai is a strict best response to pro�le a (note that a is a-associated with a). Thus,
part 1 of De�nition 2 holds, and cf is strictly asymmetric. �

It is instructive to compare Theorems 2 and 3. Under cKMR, the probability of a player
switching between two actions depends only on whether these actions are myopic best re-
sponses. That, in turn, depends only on the ordinal properties of the payo¤ function. It is
not surprising that these dynamics select an equilibrium that satis�es certain ordinal proper-
ties. In contrast, the dynamics of Blume (1993), or, more generally, dynamics cf ; depend on
the cardinal di¤erences between payo¤s from various actions. Thus, such dynamics should
select an equilibrium that satis�es certain cardinal properties. This intuition is con�rmed
by two Theorems.

Corollary 2. If a is strongly 1
2
-dominant (strictly strongly 1

2
-dominant) in the interaction

game �, then a is stochastically stable (uniquely stochastically stable) under dynamics cf .
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The Corollary extends the results by Blume (1993) and Young (1998) to all interaction
games with strongly 1

2
-dominant action.
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Appendix A. Proof of Lemma 2

We prove Lemma 2 indirectly, as an application of Lemma 1. Take any cost function c:
Let P" (�; �0) be a family of ergodic Markov processes such that limits (2.1) exist for any
pair of states �; �0 2 �. Let �" be the stationary distribution of P". We construct three
auxiliary ergodic Markov processes on state space S; Q0"; Q

�
" ; Q� (v; v

0) ; and their stationary
distributions q0" ; q

�
" ; q" 2 �S such that:

� �" (a) = q0" (1) = q�" (1) � q" (1) (Lemma 14),
� there exists a sequence "n ! 0 such that limits

lim
n!1

1

log "n
logQ"n (v; v

0) =  (v; v0) (A.1)

exist (Lemma 11),
�  is supermodular and, if c is (robustly, strictly) asymmetric toward a, then  is
(robustly, strictly) asymmetric toward 1 (Lemmas 9 and 10).

Assume that cost function c is (robustly, strictly) asymmetric toward a. Then,

1 2MR (S;  )

) lim inf
"!0

q" (1) > 0

) lim inf
"!0

�" (a) > 0

) a 2MR (�; c) :

The �rst implication is a consequence of (A.1) and the proof of Lemma 1 (indeed, the proof

of Lemma 1 implies that limn!1 q
�
"n (1) � limn!1 "

c(h1)

 X
all trees h

"c(h)

!�1
; where h1 is a
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minimal cost tree with its root at 1); the second one follows from the fact that q1" (1) � �" (a);
the third is yet another application of Lemma 1. Similarly,

f1g =MR (S;  )

) lim inf
"!0

q" (1) = 1

) lim inf
"!0

�" (a) = 1

) fag =MR (�; c) :

This ends the proof of the Lemma.

A.1. Markov processes on lattice S. De�ne a lattice structure on S: For any v; v0 2 S;

let v _ v0 be the join of v and v0 : for each i; (v _ v0)i = max (vi; v0i), and let v ^ v0 be the
meet of v and v0 : for each i; (v _ v0)i = max (vi; v0i) : Set E � S is called upper if for any
v 2 E; v0 2 S; if v � v0; then v0 2 E: For all v; v0; de�ne � (v; v0) = f~v0 : ~v0 ^ v = v0g :
Let�S be the space of probability distributions on S: For distributions �; �0 2 �S say that

� � �0 if for each upper E � S; � (E) � �0 (E) : For any distribution � 2 �S; any Markov
process Q : S ! �S; let Q� 2 �S be de�ned as Q� (v) =

X
v0

� (v0)Q (v0; v) : A Markov

process on S is a mapping Q : S ! �S: For any two Markov processes Q;Q0 : S ! �S;

write Q � Q0 if Q (v) � Q0 (v) for each v 2 S: One shows that if Q � Q"; then Q� � Q0�

for any � 2 �S: A Markov process Q : S ! �S is monotonic if for each v; v0 2 S; if v � v0;

then Q (v) � Q (v0) : One shows that if Q is monotonic and � � �0; then Q� � Q�0:

Lemma 7. Suppose that Q and Q0 are ergodic Markov processes on S and q and q0 are their
respective stationary distribution. If Q is monotonic and Q � Q0, then q � q0:

Proof. (See also Okada and Tercieux (2008).) Observe that

q = lim
n!1

(Q)n q = lim
n!1

(Q::::QQ)n times q

� lim
n!1

(Q::::QQ0)n times q � ::: � lim
n!1

(Q0::::Q0Q0)n times q

= lim
n!1

(Q0)
n
q = q0:

�

A.2. Auxiliary family Q0. Write P" (�; E) =
X
�02F

P" (�; �
0) for any subset F � � and any

pro�le �: Let � : � ! S be a mapping such that for any pro�le � 2 �; (� (�))i = 1 if and
only if �i = ai: For any v; v0 2 S; de�ne

Q0" (v; v
0) :=

X
�2��1(v)

�" (�)

�" (��1 (v))
P"
�
�; ��1 (v0)

�
:
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This de�nes Markov process Q0" on S: For any state v; let q
0
" (v) =

P
�2��1(v)

�" (�) : Then,

q0" 2 �S is the unique stationary distribution of Markov process Q":

Lemma 8. There exists sequence "n ! 0, cost function  0; �v for each v and b0 (v; v0) > 0
for each v; v0, such that for each v; v0 2 S;

lim
n!1

logQ0"n (v; v
0)

log "n
= 1; (A.2)

and, if c is (strictly, robustly) asymmetric toward a, then  0 is (strictly, robustly) asymmetric
toward 1.

Proof. Find subsequence of "n such that for each v;there exists �v so that

lim
n!1

inf
�"n (�v)

�"n (�
�1 (v))

> 0;

and limits

 0 (v; v0) := lim
n!1

logQ0"n (v; v
0)

log "n
2 [0;1]

exist for each v and v0: Notice that for each v 2 S;

0 � lim sup
"!0

logQ0" (v; v)

log "

� lim sup
�
sup
"!0

logP" (�v; �v)

log "
= c (�v; �v) = 0:

Thus,  0 (v; v) = 0: For each v 6= v0;

logQ0"n (v; v
0)

log "n
� (1 + �n)

logP" (�v; �
�1 (v0))

log "n
� (1 + �0n) min

�02��1(v0)
c (�v; �

0)

� (1 + �0n) max
�2��1(v)

min
�02��1(v0)

c (�; �0) ; and

logQ0"n (v; v
0)

log "n
� (1 + �00n) min

�2��1(v)
min

�02��1(v0)
c (�; �0) :

where �n; �0n ! 0: Therefore,

min
�2��1(v)

min
�02��1(v0)

c (�; �0) �  0 (v; v0) � max
�2��1(v)

min
�02��1(v0)

c (��; ��0) : (A.3)

(Strict, robust) asymmetry of  0 is implied by (strict, robust) asymmetry of c and in-
equalities (A.3). We show that the asymmetry asymmetry of cost function c implies the
asymmetry of cost function  0: Take any v; v0, and �v such that v and �v are 1-associated.
There are � 2 ��1 (v) ; �0 2 ��1 (v0) such that  0 (v; v0) � c (�; �0) : Let ��� 2 ��1 (�v) be such
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that for each �� 2 ��1 (�v) ; min�02��1(v0) c (��; ��0) � min�02��1(v0) c (���; ��0) : Then, � and ��� are a-
associated. By asymmetry of c; there exists ��0 that a-dominates ���, ��0 and �0 are a-associated,
and c (���; ��0) � c (�; �0) : But then,  0 (v; � (��0)) � c (���; ��0) � c (�; �0) �  0 (v; v0).
The same argument (with "associated" replaced by "almost associated") implies that if c

is robustly asymmetric then part 2 of De�nition 3 holds for  .
suppose that condition (1) of de�nitions of strict and robust asymmetry holds for cost

function c: Then, because ��1 (1) = fag ; for any v < 1;

 0 (1; v) � min
�02��1(v0)

c (a; �0) > 0;

and condition (1) holds also for cost function  0:
Suppose that c is strictly asymmetric. Take any v; v0; �v, such that v; �v are 1-associated

and  0 (v; v0) > 0: There are � 2 ��1 (v) ; �0 2 ��1 (v0) such that  0 (v; v0) � c (�; �0) : Let
��� 2 ��1 (�v) be such that for each �� 2 ��1 (�v) ; min�02��1(v0) c (��; ��0) � min�02��1(v0) c (���; ��0) :
Then, � and ��� are a-associated. By strict asymmetry of c; there exists ��0 that a-dominates
���, ��0 and �0 are a-associated, and c (���; ��0) < c (�; �0) : But then,  0 (v; � (��0)) � c (���; ��0) <

c (�; �0) �  0 (v; v0). Thus,  0 is strictly asymmetric toward 1.
Suppose that c is robustly asymmetric. A similar argument to the one given above shows

that condition (3) of De�nition 3 holds for  0:We will show that condition (4) of De�nition
3 holds for  0: Take v,v0; and �v such that v0 is almost 1-dominated by v and �v is 1-associated
with v0: If  0 (v; v0) > 0; then there are � 2 ��1 (v) ; �0 2 ��1 (v0) such that c (�; �0) > 0:

By robust asymmetry of c; for each �� 2 ��1 (�v) ; there is ��0 that is a-associated with �; �� is
a-dominated by ��0; and c (��; ��0) = 0: Thus,

min
�v0��v;�v0 is 1�associated with v

 0 (�v; �v0)

� min
�v0��v;�v0 is 1�associated with v

max
��2��1(�v)

min
��02��1(�v0)

c (��; ��0)

� max
��2��1(�v)

min
��0 a-dominates ��, ��0 is a�associated with �

c (��; ��0) = 0;

and  0 is robustly asymmetric. �

A.3. Cost function  . We de�ne cost function  : S � S ! R on state space S :

 (v; v0) := max
~v�v

min
~v0�~v_v0

 0 (~v; ~v0) for each v < v0;

 (v; v0) := min
~v�v

min
~v02�(v;v0)0

 0 (~v; ~v0) for each v < v0;

 (v; v) := 0; and in all other cases

 (v; v0) :=1.

Lemma 9.  is supermodular.



28 MARCIN PESKI

Proof. Take any v; v0; �v; such that v � �v: If v0 � v; then take �v0 = �v and notice that
0 =  (�v; �v0) �  (v; v0) : If neither v0 � v nor v < v0; then take �v0 = 1: By convention
1 < 1; we have  (v; v0) = 1 >  (�v;1) : Finally, suppose that v < v0: Then, because
v � �v;

 (v; v0) = max
~v�v

min
~v0�~v_v0

 0 (~v; ~v0) � max
~v��v

min
~v0�~v_v0

 0 (~v; ~v0)

= min
�v0��v_v0

max
~v��v

min
~v0�~v_�v0

 0 (~v; ~v0) = min
�v0��v_v0

 (�v; �v0) :

Hence,  is supermodular. �

Lemma 10. If c is (strictly, robustly) asymmetric toward a, then  is (strictly, robustly)
asymmetric toward 1.

Proof. Assume that c is asymmetric toward a: By Lemma 8,  0 is asymmetric toward 1.
Take any v; v0; and �v such that v and �v are 1-associated. If v0 � v; then take �v and v0 are 1-
associated and  (�v; �v) = 0 �  (v; v0) : If not v0 > v nor v0 < v; then  (v; v0) =1 �  (�v;1).
If not v0 < v; then � (v; v0) = fv0g and �nd v� � v such that  (v; v0) =  0 (v�; v0) : For any
�v� � �v; �v� and v� are 1-associated. By asymmetry of  0; there is �v0 � �v� such that �v0 and v0
are 1-associated and  0 (�v�; �v0) �  0 (v�; v0) : Hence,

 (�v; v0) = max
~v�v

min
~v0�~v_v0

 0 (~v; ~v0) �  0 (v�; v0) ;

and  0 is asymmetric toward 1.
The same argument (with "associated" replaced by "almost associated") implies that if c

is robustly asymmetric then part 2 of De�nition 3 holds for  .
Suppose that c is either strictly (or robustly) asymmetric. Then, by Lemma 8  0 (1; v) > 0

for any v 6= 1: This implies that  (1; v) > 0 for any v 6= 1 and part 1 of De�nition 2 (or
De�nition 3) holds for  :
Suppose that c is strictly asymmetric. Take any v; v0; �v, such that v; �v are 1-associated

and  (v; v0) > 0: If v < v0; take �v0 := �v; then,  (�v; �v0) = 0 <  (v; v0). If not v < v0

nor v > v0; then  (v; v0) = 1: By convention that 1 < 1;  (�v;1) <  (v; v0) : Finally, if
v > v0; �nd � (v; v0) = fv0g and �nd v� � v such that  (v; v0) =  0 (v�; v0) : For any �v� � �v;
�v� and v� are 1-associated. By strict asymmetry of  0; there is �v0 � �v� such that �v0 and v0

are 1-associated and  0 (�v�; �v0) <  0 (v�; v0) : Hence,

 (�v; v0) = max
~v�v

min
~v0�~v_v0

 0 (~v; ~v0) <  0 (v�; v0) ;

and  0 is strictly asymmetric toward 1.
Suppose that c is robustly asymmetric. A similar argument to the one given above shows

that condition (3) of De�nition 3 holds for  :We will show that part 4 of De�nition 3 holds



GENERALIZED RISK-DOMINANCE AND ASYMMETRIC DYNAMICS 29

for  : Take v,v0; and �v such that v0 is almost 1-dominated by v and �v is 1-associated with
v0: If v > v0; then, for any �v that is 1-associated with v: �v is also 1-associated with v and
 (�v; �v) = 0: If not v < v0 nor v > v0; then  (v; v0) = 1; and by convention that 1 < 1;

 (�v;1) <  (v; v0) : Finally, if v < v0; and  (v; v0) < 0; then �nd v� � v such that

 (v; v0) = min
v00�v�_v0

 0 (v�; v00) > 0:

Find v0� > v� such that v� almost 1-dominates v0�, and v0� � v� _ v0: Then,  0 (v�; v0�) > 0:
For any �v� � �v; �v� is 1-associated with v0�: By robust asymmetry of  0; there is �v0� � �v�

such that �v0� is 1-associated with v � v� and  0 (�v�; �v0�) = 0: Thus,

min
�v0��v;�v0 is 1�associated with v

 (�v; �v0) � max
�v���v

min
�v0���v�;�v0� is 1�associated with v

 0 (�v�; �v0�) = 0;

and  satis�es condition (4) of De�nition 3. �

A.4. Auxiliary family Q�. Take � 2
�
0; 1

jSj

�
and de�ne auxiliary process Q�

"n :

Q�
"n (v; v

0) = �Q0"n (v; v
0) for each v 6= v0; and

Q�
"n (v; v) = 1� �+ �Q0"n (v; v) :

It is easy to check that Q�
"n is ergodic, the stationary distribution of Q

�
"n is equal to q

�
"n = q0"n

and

lim
n!1

1

log "n
logQ�

"n (v; v
0) =  0 (v; v0)

For � � 1
jSj ; we can decomposeQ

�
"n (v) =

1
2
Q�;U
"n (v)+ 1

2
Q�;D
"n (v) such thatQ�;U

"n (v) ; Q�;D
"n (v) 2

�S and

Q�;U
"n (v) (fv0 : v0 � vg) = 1�Q�;D

"n (v) (fv0 : v0 � vg) = 0:

A.5. Auxiliary family Q. We construct Markov processes Q"n (v) so that (A.1) holds, Q"n

is monotonic, and Q"n � Q�
"n : Fix  <

1
2jSj� and let  (v) = #fi:vi=1g and de�ne

QU
"n (v; v

0) := #fi:vi=0g+1min
~v�v

max
~v0�~v_v0

Q�;U
"n (~v; ~v0) for v < v0;

QU
"n (v; v) := 1�

X
v0>v

QU
"n (v; v

0) ;

QU
"n (v; v

0) := 0 in all other cases,

QD
"n (v; v

0) :=
X
~v�v

X
~v02�(v;v0)

Q�;D
"n (~v; ~v0) for v0 < v;

QD
"n (v; v) := 1�

X
v0<v

QD
"n (v; v

0)

QD
"n (v; v

0) := 0 in all other cases.
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Because �;  � 1
jSj ; Q

U
"n (v; v) ; Q

D
"n (v; v) � 0: Thus, Markov processes QU

"n and Q
D
"nare well-

de�ned. Let

Q"n (v) =
1

2
QU
"n (v) +

1

2
QD
"n (v) :

It is easy to check that the ergodicity of Q0"n implies ergodicity of Q"n (v). Let q"n be the
stationary distribution of Qen

Lemma 11. (A.1) holds.

Proof. If v < v0; then

lim
n!1

1

log "n
logQ"n (v; v

0)

= lim
n!1

1

log "n
logQU

"n (v; v
0)

= lim
n!1

1

log "n

�
log #fi:vi=0g+1 + logmin

~v�v
max
~v0�~v_v0

Q�;U
"n (~v; ~v0)

�
= min

~v�v
max
~v0�~v_v0

lim
n!1

1

log "n
Q�;U
"n (~v; ~v0)

= max
~v�v

min
~v0�~v_v0

 0 (~v; ~v0) =  (v; v0) ;

where the second to last equality follows from the fact that limits (A.2) exist. If v > v0;

lim
n!1

1

log "n
logQ"n (v; v

0)

= lim
n!1

1

log "n
logQD

"n (v; v
0)

= lim
n!1

1

log "n
log
X
~v�v

X
~v02�(v;v0)

Q�;D
"n (~v; ~v0)

= min
~v�v

min
~v02�(v;v0)

 0 (~v; ~v0) =  (v; v0) :

In all the other cases, the result is trivial. �

Lemma 12. Q"n is monotonic.

Proof. It is enough to show that QU
"n and QD

"n are monotonic. First, we show that QU
"n

is monotonic. Take any upper E � S and v0 < v1: If v1 2 E; then QU
"n (v

0; E) � 1 =
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QU
"n (v

1; E) : If v1 =2 E; then

QU
"n

�
v0; E

�
= #fi:v0i=0g+1

X
v02E;v0�v0

min
~v�v0

max
~v0�~v_v0

Q�;U
"n (~v; ~v0)

� #fi:v0i=0g+1
X

v02E;v0�v0
min
~v�v1

max
~v0�~v_v0

Q�;U
"n (~v; ~v0)

= #fi:v0i=0g+1
X

v02E;v0�v0
min
~v�v1

max
~v0�~v_(v0_v1)

Q�;U
"n (~v; ~v0)

� #fi:v0i=0g+1
X

v02E;(v0_v1)�v1
min
~v�v1

max
~v0�~v_(v0_v1)

Q�;U
"n (~v; ~v0)

� #fi:v0i=0g+1 jSj
X

v02E;v0�v1
min
~v�v1

max
~v0�~v_v0

Q�;U
"n (~v; ~v0)

� #fi:v1i=0g
X

v02E;v0�v1
min
~v�v1

max
~v0�~v_v0

Q�;U
"n (~v; ~v0) = QU

"n

�
v1; E

�
:

where the second equality comes from the fact that for each ~v � v1 and ~v0 � ~v _ v0; it must
be that ~v0 � ~v _ (v0 _ v1) ; the third inequality comes from the fact that if v0 2 E and E
is upper, then v0 _ v1 2 E and that there is at most jSj elements in set E; and the fourth
inequality follows from  jSj � 1 and # fi : v1i = 0g < # fi : v0i = 0g :
Next, we show that QD

"n is monotonic. Take any upper E � S and v0 < v1: If v0 =2 E;

then QD
"n (v

0; E) = 0 � QD
"n (v

1; E) : If v0 2 E; then v1 2 E; and

QD
"n

�
v0; SnE

�
=
X
~v�v0

X
~v0:~v0^v0 =2E;
and not ~v0�v0;

Q�;D
"n (~v; ~v0)

�
X
~v�v1

X
~v0:~v0^v1 =2E;
and not ~v0�v1;

= QD
"n

�
v1; SnE

�
:

The last inequality follows from the fact that if ~v � v1; then ~v � v0; if ~v0 ^ v1 =2 E; then
~v0 ^ v0 � ~v0 ^ v0 =2 E; and because v0 2 E; if ~v0 ^ v1 =2 E; then it cannot be that ~v0 � v0: �

Lemma 13. Q"n (v) � Q�
"n (v) for each v 2 S:

Proof. It is enough to show that QU
"n (v) � Q�;U

"n (v) and QD
"n (v) � Q�;D

"n (v). First, we show
that for any upper E; any v 2 S; QU

"n (v; E) � Q�;U
"n (v; E) : If v 2 E; then 1 = QU

"n (v; E) =
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Q�;U
"n (v; E). If v =2 E; then # fi : vi = 0g � 1; and

QU
"n (v; E) = #fi:vi=0g+1

X
v02E;v0>v

min
~v�v

max
~v0�~v_v0

Q�;U
"n (~v; ~v0)

� 2
X

v02E;v0>v

max
~v0�v_v0

Q�;U
"n (v; ~v0)

� 2 jSjmax
~v0>v

Q�;U
"n (v; ~v0)

� 2 jSj2
X

v02E;v0>v

Q�;U
"n (v; v0) � Q�;U

"n (v; E) ;

where the last inequality follows from  jSj � 1 and the fact that set E cannot contain more
than jSj elements. Next, we show that for any upper E; any v 2 S; QD

"n (v; E) � Q�;D
"n (v; E) :

If v =2 E; then QD
"n (v; E) = 0 � Q�;D

"n (v; E) : If v 2 E; then

QD
"n (v; SnE) =

X
v0<v;v0 =2E

X
~v�v

X
~v02�(v;v0)

Q�;D
"n (~v; ~v0)

�
X

v0<v;v0 =2E

X
~v02�(v;v0)

Q�;D
"n (v; ~v0)

=
X
v0 =2E

Q�;D
"n (v; v0) = Q�;D

"n (v; SnE) :

�

Lemma 14. �" (a) = q0" (1) = q�" (1) � q" (1) :

Proof. This follows from Lemmas 7, 12, and 13. �

Appendix B. Proof of Lemma 3

The algorithm of �nding minimal tree roots is de�ned as a

(1) sequence of sets, V 0 = S � V 1 � ::: � V n,
(2) sequence of costs functions  k : V k � V k ! [0;1) ; such that  k (v; v) = 0 and
(3) sequence of projections jk : V k�1 ! V k; such that jk (v) = v for any v 2 V k:

Let j0 := idS and denote composition Jk = jk � ::: � j0 : V ! V k: Thus, Jk (v) = v for
each v 2 V k:

Below, we describe how to choose sets, cost functions and projections in a way that allows
to recover MR

�
V k;  k

�
fromMR

�
V k+1;  k+1

�
. Next, we discuss how to trace properties of

cost functions  k along steps k. Finally, we use these properties to prove Lemma 3.



GENERALIZED RISK-DOMINANCE AND ASYMMETRIC DYNAMICS 33

B.1. Tracing the algorithm - roots. Take a sequence of sets and projection functions
as given. Let  min = minv 6=v0  (v; v

0) : Let  0 (v; v0) =  (v; v0) �  min for any v 6= v0 and
 (v; v) = 0. For any k � 0; de�ne inductively: for any v; v0 2 V k+1

~ k+1 (v; v0) := min
v0;v1;:::;vl2V k, st. v=v0; v0=vs

Xs�1

t=0
 k (vt; vt+1)

 k+1 (v; v0) := ~ k+1 (v; v0)� min
u 6=u0 and u;u02V k+1

~ k+1 (u; u) : (B.1)

The cost ~ k+1 is equal to the minimum of  k+1-costs across all paths in set V k that link
states v and v0: The cost function  k+1 is obtained from ~ k+1 by subtracting a constant
chosen so that  k+1 has 0-cost transitions. From now on, we assume that cost functions are
de�ned as above.
Say that there is a 0-cost path between v; v0 2 V k if there is a sequence of states v0; v1; :::; vl 2

V k st. v = v0; v
0 = vs so that

Ps�1
t=0;  

k (vt; vt+1) = 0: A state v 2 V k is called k-attractor if
for any v0 2 V k; if there is a 0-cost path from v to v0; then there is a 0-cost path from v0 to
v: For any v 2 V k; let Uk (v) denote the set of all k-attractors v0 such that there is 0-cost
path from v to v0:

Lemma 15. Suppose that for each k; v 2 V k; jk+1 (v) 2 Uk (v). Then,

MR
�
V k;  k

�
=

[
v2MR(V k+1; k+1)

Uk (v) : (B.2)

If the sequence of projections satis�es the assumption of the Lemma, then formula (B.2)
leads to a simple procedure of recovering MR

�
V k;  k

�
from MR

�
V k+1;  k+1

�
.

Proof. This result is standard and it is satis�ed by most known algorithms (Chu and Liu
(1965), Edmonds (1967); Proposition 1 of Nöldeke and Samuelson (1993) and the Appendix
in Young (1993) contain a version of the Lemma for k = 1). We present the proof for the
sake of completeness. Let V k+1 = Im jk+1 �

S
v

Uk (v) :

(1) For any k

MR
�
V k;  k

�
�
[
v2V k

Uk (v) :

Suppose that h is a tree with a root that is not a k-attractor, vh =2
S

v2V k
Uk (v) : Then,

there is at least one state v� 2 Uk (vh) ; such that  (v�; h (v�)) > 0: There is also
a 0-cost path from vh to v�: One can modify h into a new tree h� with the root at
v�, where the only changes are those that are necessary to connect vh to v� via the
0-cost path. The cost of tree h� is lower than the cost of h by  (v�; h (v�)) :
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(2) For any tree h on
�
V k;  k

�
with the root at vh; there is a tree h� on

�
V k+1; ~ k+1

�
with at most the same cost and a root at jk+1 (vh) 2 Uk (vh) : This is a consequence
of the de�nition of ~ k+1.

(3) For any tree h� on
�
V k+1; ~ k+1

�
with a root at v�h; for any vh 2 Uk (v�h) ; there is

a tree h on
�
V k;  k

�
with at most the same cost and the root at vh: Indeed, let

n :
�
1; :::;

��V k+1
��� 1	 ! V k+1n fv�hg be an enumeration of set V k+1n fv�hg with the

property that if a path from v to v�h passes through v
0; then n�1 (v) < n�1 (v0) : By

induction on n; we can construct a sequence of functions h(n) : H(n) ! V k; where

V k=V k+1 [ n�1 f1; :::; ng � H(n) � V k

and such that for each v 2 H(n); there is a unique path along h to some v0 =2 H(n)

and X
v2H(n)

 
�
v; h(n) (v)

�
�
X
m�n

 
�
v; h(n) (v)

�
Indeed, let h(0) consist of 0-cost paths which connect each v =2 V k+1 with jk+1 (v) and
then inductively modify h(m�1) to h(m) by adding lowest cost path (on V k) between

n (m� 1) to n (m). This gives a tree h0 = h(jV k+1j�1) on V k with a cost at most
equal to the cost of tree h� and with a root at some v0 2 Uk (v�h) : Such a tree can be
easily modi�ed to a tree with exactly the same cost and the root at vh 2 Uk (v�h) :

(4) By (2) and (3), the cost of minimal cost tree in problem
�
V k;  k

�
is equal to the cost

of the minimal cost tree in problem
�
V k; ~ k

�
: Let us denote the cost as ckmin: Then,

MR
�
V k;  k

�
is equal to the set of all elements of V k that are roots of trees with

 k-cost cmin; similarly, MR
�
V k+1; ~ k+1

�
is equal to the set of all elements of V k+1

that are roots of trees with ~ k+1-cost cmin:
(5) Take any v 2MR

�
V k;  k

�
: By (2) and (4), jk+1 (vh) 2MR

�
V k+1; ~ k+1

�
: By (1),

MR
�
V k;  k

�
�

[
v2MR(V k+1; ~ k+1)

Uk (v) :

(6) Take any v� 2MR
�
V k+1; ~ k+1

�
: By (3) and (4), Uk (v�) �MR

�
V k;  k

�
; and[

v2MR(V k+1; ~ k+1)

Uk (v) �MR
�
V k;  k

�
::

(7) Notice that any minimal cost tree on
�
V k+1; ~ k+1

�
is also a minimal cost tree on�

V k+1;  k+1
�
and vice versa (subtracting a constant from the cost function does
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not change the comparison of cost between trees.) Thus, MR
�
V k+1; ~ k+1

�
=

MR
�
V k+1;  k+1

�
:

�

B.2. Tracing the algorithm - supermodularity. Next, we describe how to choose jk+1 (v) 2
Uk (v) : Step k of the algorithm is supermodular if

� for any v; v0 2 S, if v � v0, then Jk (v) � Jk (v0) and
� for any v; v0; �v 2 V k, st. v � �v; there is �v0 � v0; �v; such that

 k (v; v0) �  k
�
�v; Jk (�v0)

�
: (B.3)

For any v; v0 2 S; de�ne v _ v0 = inf fv00 : v00 � v; v0g as the joint of v and v0 (i.e., for each
player i, (v _ v0)i = 1 i¤ vi = 1 or v0i = 1). The next result guarantees that supermodularity
is inherited along the sequence of steps.

Lemma 16. If step k is supermodular, then for any v 2 V k:_
v02Uk(v)

v0 2 Uk (v) ;

i.e., set Uk (v) contains its largest element. De�ne

jk+1 (v) :=
_

v02Uk(v)
v0 and (B.4)

V k+1 := jk+1
�
V k
�
=

�_
v02Uk(v)

v0 : v 2 V k

�
.

Then, step k + 1 is supermodular.

Proof. Suppose that u; u0 2 V k are k-attractors that are connected by a 0-cost path in V k:

Let u = v0; v1; :::; vs = u0 be a 0-cost path between u and u0: Inductively construct a 0-cost
path path v0 := va0 � ::: � vas such that v

a
s � u; u0: (This can be done as follows: For any

t = 0; :::; s � 1; suppose that vat is constructed and vat � vt; v
a
t�1. By the supermodularity

of kth step, there is vat+1 � vt+1; v
a
t , such that  

k
�
vat ; v

a
t+1

�
= 0:) Thus, vas is a k�attractor

and there is a 0-cost path from vas to both u and u
0. Hence, for any two k-attractors that

are connected by a 0-cost path there is another k-attractor that is larger than both of them
and connected to them by a 0-cost path. Because set V k is �nite, this shows that any subset
of k-attractors Uk (v) contains its largest element and demonstrates the �rst part of the
Lemma.
A similar argument shows that if v; v0 2 V k and Jk (v) � Jk (v0), then

W
u2Uk(Jk(v)) u �W

u2Uk(Jk(v0)) u, which implies that J
k+1 (v) � Jk+1 (v0) :
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Next, take v; v0; �v 2 V k+1 st. v � �v; and suppose that v = v0; :::; vs 2 V k is the minimal
cost path from v to v0 = vs :Xs�1

t=0
 k (vt; vt+1) = ~ k+1 (v; v0) :

The same argument as above leads to the existence of a path �v = va0 � ::: � vas such that
vat � �v; vt for each t � s and

 k (vt; vt+1) �  k
�
vat ; v

a
t+1

�
for any t = 0; :::; s� 1.

By construction, there is a 0-cost path from vas to j
k+1 (vas ) = Jk+1 (vas ) : Thus,

~ k+1
�
�v; Jk (�v0)

�
�
Xs�1

t=0
 k
�
vat ; v

a
t+1

�
= ~ k+1 (v; v0) :

Because vas � �v; vt; by the �rst part of this proof,

Jk+1 (vas ) � Jk+1 (�v) = �v and

Jk+1 (vas ) � Jk+1 (vs) = Jk+1 (v0) = v0:

�

Because J0 = idS; if cost function  0 =  is supermodular, then step 0 is supermodular.
By induction on k; de�ne jk+1 (v) as in (B.4). Then, the Lemma implies that each step k is
supermodular.

B.3. Tracing the algorithm - asymmetry. Step k is asymmetric (strictly asymmetric)
if

� for any v; �v 2 S; if v; �v are 1-associated, then Jk (v) ; Jk (�v) are 1-associated and
� for any states v; v0; �v 2 V k, such that v; �v are 1-associated, there is �v0 2 V k, such
that �v � �v0, states v0; �v0 are 1-associated and

 k (�v; �v0) �  k (v; v0) (  k (�v; �v0) <  k (v; v0) ): (B.5)

The next lemma guarantees that the asymmetry is inherited along the sequence of steps:

Lemma 17. Suppose that step k is supermodular and jk+1 is de�ned by (B.4). If step k is
asymmetric (strictly asymmetric), then step k + 1 is asymmetric (strictly asymmetric).

Proof. Suppose that v; �v 2 S are 1-associated. In two steps, we show that Jk+1 (v) ; Jk+1 (�v)
are 1-associated. First, observe that by the asymmetry of kth step, Jk (v) ; Jk (�v) are 1-
associated. Suppose that Jk (v) = v0; :::; vs = Jk+1 (v) is a 0-cost path from Jk (v) to
Jk+1 (v) = jk+1

�
Jk (v)

�
: for each t < s;  k (vt; vt+1) = 0. Inductively construct a path

Jk (�v) := va0 � ::: � vas such that

� for each t < s;  k
�
vat ; v

a
t+1

�
= 0 and

� for each t � s; vt; v
a
t are 1-associated.
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(This can be done as follows: For any t = 0; :::; s� 1; suppose that vat is such that states
vat ; vt are 1-associated. By the asymmetry of kth step, there is v

a
t+1 � vat ; such that states

vat+1; vt+1 are 1-associated and  k
�
vat ; v

a
t+1

�
= 0.) Hence, states vas ; vs = Jk+1 (v) are 1-

associated and there is a 0-cost path from Jk (�v) to vas � Jk (�v) : By Lemma 16 and the
de�nition of jk+1;

Jk+1 (�v) = jk+1
�
Jk (�v)

�
= Jk+1 (vas ) :

Second, let vas = vb0; :::; v
b
s0 = Jk+1 (�v) be a 0-cost path from vas to J

k+1 (vas ) : Inductively
construct a path Jk+1 (v) := vc0 � ::: � vcs0 such that

� for each t < s0;  k
�
vct ; v

c
t+1

�
= 0 and

� for each t � s; vbt ; v
c
t are 1-associated.

(This can be done as follows: For any t = 0; :::; s� 1; suppose that vct is such that states
vbt ; v

c
t are 1-associated. By the asymmetry of kth step, there is v

c
t+1 � vct ; such that states

vbt+1; v
c
t+1 are 1-associated and  

k
�
vct ; v

c
t+1

�
= 0.) Hence, states Jk+1 (�v) ; vcs0 are 1-associated

and there is a 0-cost path from Jk+1 (v) to vcs � Jk+1 (v) : Because of Lemma 16 and the
de�nition of jk+1; Jk+1 (v) = vcs. Hence, states J

k+1 (v) ; Jk+1 (�v) are 1-associated.
Next, take v; v0; �v 2 V k+1 st. v; �v are 1-associated and suppose that v = v0; :::; vs 2 V k is

a minimal cost path from v to v0 = vs :Xs�1

t=0
 k (vt; vt+1) = ~ k+1 (v; v0) :

Inductively construct path �v := va0 � ::: � vas : For any t = 0; :::; s � 1; suppose that vat
is constructed such that vat � vat�1 and v

a
t ; vt are 1-associated. By the asymmetry of kth

step (strict asymmetry of kth step), there is vat+1 � vt+1; such that states vat+1; vt+1 are
1-associated and such that

 k
�
vat ; v

a
t+1

�
�  k (vt; vt+1) (  k

�
vat ; v

a
t+1

�
<  k (vt; vt+1) ):

It is shown above that, if states v0; vas are 1-associated, then states v
0 = Jk+1 (v0) ; Jk+1 (vas )

are 1-associated. By construction, there is a 0-cost path from vas to �v
0 := Jk+1 (vas ). Hence,

~ k+1 (v; v0) � ~ k+1 (�v; �v0) ( ~ k+1 (v; v0) < ~ k+1 (�v; �v0) ).

�

Because J0 = idS; if cost function  0 =  is asymmetric, then step 0 is asymmetric. The
Lemma implies that each step k is asymmetric. The next Lemma shows that if the cost
function is strictly or robustly asymmetric, then step 1 is strictly asymmetric.

Lemma 18. Suppose that step 0 is supermodular and j1 is de�ned by (B.4). If cost function
 is strictly or robustly asymmetric, then step 1 is strictly asymmetric.
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Proof. Take any states v; v0; �v 2 V 1, such that v; �v are 1-associated. Because v 2 V 1 and
j1 is de�ned by (B.4), there is no state v00 > v such that  (v; v00) = 0. We show that if  
is strictly or robustly asymmetric then there is �v0 2 V 1, such that �v � �v0, states v0; �v0 are
1-associated and

 1 (�v; �v0) <  1 (v; v0) : (B.6)

This will demonstrate that step 1 is strictly asymmetry.
Suppose �rst that  is strictly asymmetric. Let v = v0; :::; vs = v0 be a minimal cost path

between v and v0 :

~ 1 (v; v0) =
Xs�1

t=0
 (vt; vt+1) :

Because v; v0 2 V 1 and v 6= v0; it must be that ~ 1 (v; v0) > 0: Thus, there is t st.  (vt; vt+1) >
0. Strict asymmetry of  allows to inductively construct a path �v = �v0; :::; �vs = �v0 such that

� for any t � s, vt; �vt are 1-associated,
� for any t < s, �vt � �vt+1;
� for any t < s, either  (vt; vt+1) =  (�vt; �vt+1) = 0; or  (vt; vt+1) >  (�vt; �vt+1) :

Then, �v � �v0; states v0 and �v0 are 1-associated and ~ 1 (�v; �v0) < ~ 1 (v; v0) : The latter implies
that (B.6) holds.
Next, suppose that  is robustly asymmetric and let v = v0; :::; vs = v0 be a minimal cost

path between v and v0: Because v; v0 2 V 1 and v 6= v0; ~ 1 (v; v0) > 0 and there is t� < s st.
 (vt� ; vt�+1) > 0. Using robust asymmetry, construct a path �v = �v0; ::; �vt� ; ::; �vs+1 = �v0 such
that

� for any t � t�; vt; �vt are 1-associated; for any t� < t � s; vt; �vt are almost 1-associated;
vs; �vs+1 are 1-associated.

� for any t < s+ 1, �vt � �vt+1;
� for any t � t�;  (�vt; �vt+1) �  (vt; vt+1) : This is due to asymmetry of  ,
� 0 �  (�vt� ; �vt�+1) <  (vt� ; vt�+1) : This is possible due to part (3) of De�nition 3;
� for any t� < t < s;  (�vt; �vt+1) �  (vt; �t+1) : This is possible due to part (2) of
De�nition 3,

�  (�vs; �vs+1) = 0: This follows from the following argument: Because �vs is almost 1-
associated with vs; there is v00 that is almost 1-dominated by vs and v00 is 1-associated
with �vs: Because vs = v0 2 V 1 and V 1 is de�ned through Lemma 16,  (vs; v00) > 0:
By part (4) of De�nition 3, there is �vs+1 � �vs that is 1-associated with vs and
 (�vs; �vs+1) = 0:

Then, �v � �v0; states v0 and �v0 are 1-associated and ~ 1 (�v; �v0) < ~ 1 (v; v0) : The latter implies
that (B.6) holds. �
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Suppose that cost function  is supermodular and strictly or robustly asymmetric and j1

is de�ned by (B.4). Together with Lemma 17, the above implies that all steps k � 1 are
strictly asymmetric.

B.4. Proof of Lemma 3. Suppose that cost function  is asymmetric and supermodular,
cost functions  k are de�ned by (B.1) and sets and projections are de�ned by (B.4). Let
k� be the lowest k � 0; such that V k = V k+1: Since S is �nite, k� is well-de�ned. Also,��V k�

�� = 1. Indeed, there are two states v; v0 2 V k� ; v 6= v0 such that  k
�
(v; v0) = 0: Either

one of states v; v0 is not a k�-attractor, or they are both k�-attractors which can be connected
by 0-cost paths. In both cases, (B.4) eliminates some of these states and V k�+1  V k�, which
is a contradiction.
The supermodularity and asymmetry along the steps of the algorithm can be used to

characterize attractors of state 1.

Lemma 19. For each k � 0; 1 2 Uk (1) : If cost function  is strictly or robustly asymmetric,
then f1g = Uk (1) for each 0 � k � k�:

Proof. By the remarks after Lemmas 16 and 17, all steps are supermodular and asymmetric.
We show �rst that 1 2 U0 (1) : Note that states 1;0 are 1-associated. Suppose that

 0 (1; v0) = 0 for some v0 2 S: By asymmetry,  0 (0; �v0) = 0 for some �v0 such that v0; �v0

are 1-associated. By supermodularity,  0 (v0; �v00) = 0 for some �v00 � v0; �v0: Because v0; �v0 are
1-associated, it must be that �v00 = 1. Hence, 1 =

W
v02U0(1) v

0 2 U0 (1) :
We show by induction on k � 0 that 1 2Uk (1) : Assume that this is true for k�1: Suppose

that  k (1; v0) = 0 for some v0 2 V k: By the asymmetry of kth step,  k
�
Jk (0) ; �v0

�
= 0 for

some v0 2 V k, such that v0; �v0 are 1-associated. By supermodularity,  k (v0; �v00) = 0 for some
�v00 2 V k, such that �v00 � v0; �v0: Because v0; �v0 are 1-associated, it must be that �v00 = 1. Hence,
1 =

W
v02Uk(1) v

0 2 Uk (1) :

Suppose now that the cost function is, in addition, strictly or robustly asymmetric. Then,
 (1; v0) > 0 for any v0 6= 1: Thus, f1g = U0 (1) :

We show by induction on k that f1g = Uk (1) : Assume that f1g = Uk�1 (1) for k � 1:

By the remarks after Lemma 18, step k is strictly asymmetric. Suppose that  k (1; v0) = 0
for some v0 2 V k: By strict asymmetry of step k,  k

�
Jk (�v) ; �v0

�
< 0 for some �v0 2 V k: A

contradiction shows that  k (1; v0) > 0 for any v0 2 V k and f1g = U
�
Uk�1 (1)

�
= Uk (1). �

Trivially, MR
�
V k� ;  k

��
= V k� : By Lemma 19, MR

�
V k� ;  k

��
= f1g : Lemma 3 follows

from Lemmas 15 and Lemma 19.
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