Value of persistent information

Marcin Pęski, Juuso Toikka

University of Toronto, MIT

October 31, 2017

- Informational advantage in repeated interactions
- Trade-off: use information now or save for later.
- Applications: insider trading, arms race, bargaining.
- Original motivation for repeated games with incomplete information (Aumann-Maschler).
- But, persistence of information seems important!
- How exactly?

Model

- Zero-sum stochastic game:
 - payoffs g(a, b, s),
 - actions a (maximizer) and b (minimizer),
 - state s with Markov transitions $P: S \to \Delta S$,
 - maximizer (player 1) observes the state,
 - minimizer (player 2) observes player 1's actions, but not the state,
 - initial beliefs.
- Value $v^{\delta}(\pi; g, P)$, where $\delta < 1$,

$$v(\pi, g, P) = \lim_{\delta \to 1} v^{\delta}(\pi; g, P).$$

The limit value does not depend on π if P is ergodic.

Example (Renault, 2006)

- Two states s_1, s_2
 - ullet states stay the same with prob. ho and change with probability 1ho,
 - ullet the larger ho, the more persistent is the state,
- Maximizer chooses U or D and the payoffs are

	<i>s</i> ₁	L	R		
	U	1	0	,	
Ì	D	0	0		

s ₂	L	R
U	0	0
D	0	1

- Value is notoriously difficult to compute (Hörner at al, 2010).
- Monotonicity of value?

Question

Definition

Operator Q is better for maximizer than P (i.e., $Q \succeq P$) if $v(g,Q) \ge v(g,P)$ for each game g.

- Goal: Characterize relation $P \prec Q$.
- Idea:
 - persistence is bad for maximizer,
 - the above relation should capture some notion of persistence.

Motivation

- Stochastic games
 - vs. repeated games with incomplete information (i.e., Aumann-Maschler)
 - Stochastic zero-sum games with Markovian private information Renault 06, Neyman 08, Hörner-Rosenborg-Solan-Vieille 10
- Comparison of information literature: (Blackwell 1953, Mertens-Gossner 01, Peski 08).
 - intuition: more information (in the Blackwell sense) is better for the minimizer,
 - here: more information means that *P* is more persistent.
 - however, it is difficult to separate the information and the payoff effects of transitions.
- Applications:
 - zero-sum stochastic games: value is monotonic in (Hörner at al, 2010),
 - individual rationality constraint in repeated games with Markov types (Athey-Bagwell 08, Escobar-Toikka 13, Hörner-Takahashi-Vieille 15),
 - one long-run vs. many short run players (zero-sum).

Plan

- Introduction
- Notations and definitions
- Value of stochastic game
- lacktriangle Comparison of operators (characterization of order \preceq)
- Characterizations and corollaries
- Extensions

Notations and Definitions Beliefs

- $p, q \in \Delta S$ space of (minimizer's) beliefs,
 - prior beliefs in period t: beliefs before the actions are chosen (and information revealed),
 - posterior beliefs in period t: beliefs after the actions are chosen,
- $\mu, \nu \in \Delta^2 S = \Delta (\Delta S)$ distributions over beliefs,

Notations and Definitions Beliefs

- $P: \Delta S \to \Delta S$ Markov operator,
- p are posteriors today $\Rightarrow Pp$ are prior beliefs tomorrow,
- ullet μ is a distribution of posteriors today \Rightarrow $P\mu$ is a distribution of priors tomorrow, where

$$(Pp)(s) = \sum_{s'} p(s) P(s|s'),$$

 $(P\mu)(A) = \mu \{q : Pq \in A\} = \mu (P^{-1}A).$

Special cases

- No persistence: D_{π} i.i.d. draws from distribution $\pi \in \Delta S$,
- Persistent information : P is aperiodic and irreducible,
 - $P^n\pi \to \pi_P$, where π_P is unique stationary distribution,
 - value v(g, P) does not depend on the initial distribution.
- Permanent information: P = I,
 - repeated game with incomplete information,
- Alternating case: |S| = 2 and $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,
 - $(Ap)_s = 1 p_s$.

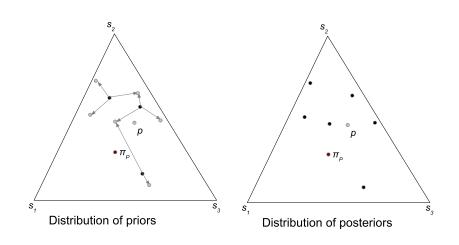
Mean preserving spread

Definition

A mean preserving spread is a measurable $m:\Delta S o \Delta^2 S$ such that

$$Em(.|q) = q$$
 for each q

Mean preserving spread



 ν is a mean preserving spread of μ .

Distributions over beliefs μ : Mean preserving spread

Definition

u is a mean preserving spread of μ , if there exists a m.p.s. $m:\Delta S \to \Delta^2 S$ such that

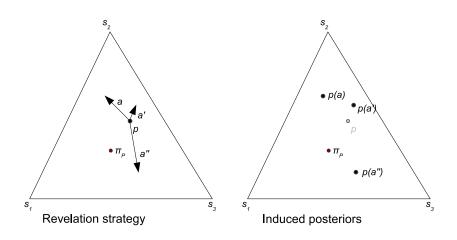
$$\nu = \mu \star m$$
,

or

$$\nu(dp) = \int m(dp|q) d\mu(q).$$

- We write $\mu \leq^B \nu$.
- If $\mu \leq^B \nu$, then $P\mu \leq^B P\nu$.

Revelation of information



Value of stochastic zero-sum game Behavior

- Maximizer's Markov strategy $\alpha: \Delta S \times S \to \Delta A$
- Decompose the maximizer's behavior into
 - revelation strategy m,
 - actions that reveal information: a: supp $m(p) \rightarrow A$.
- For each $m \in \Delta^2 S$, define

$$\hat{g}(m) = \max_{a: \text{supp} m(p) \to A} \min_{\beta \in \Delta B} \int g(a(q), \beta, q) dm(q).$$

 \bullet payoff in a zero-sum game, in which minimizer chooses β and the maximizer chooses actions that respect the revelation m.

Distributions over beliefs μ : stationarity

- Elements of equilibrium
 - $m:\Delta S o \Delta^2 S$ (Markov) revelation strategy
 - μ stationary distribution over priors (i.e., beliefs at the beginning of the period),
 - the average payoff is equal to

$$\int \hat{g}(m(p)) d\mu(p).$$

- ullet Stationary distribution μ over priors:
 - $\mu \star m$ is a distribution over posteriors, and
 - $P(\mu \star m)$ is a distribution over prior beliefs in the next period,
 - ullet because μ is stationary:

$$P(\mu \star m) = \mu.$$

Theorem

For each g, each ergodic P, each stationary distribution π of P,

$$v(g,P) = \max_{\mu,m:\ P(\mu \star m) \leq B\mu} \int \hat{g}(m(p)) d\mu(p).$$

- ullet when $\delta o 1$, the value converges to the average revelation payoff over the stationary distribution,
- the second inequality can be replaced by equality
- proof: "stationarity" of the problem.

$$v\left(g,P\right) = \max_{\mu,m:\ P(\mu\star m)\leq^{B}\mu} \int \hat{g}\left(m\left(p\right)\right) d\mu\left(p\right).$$

- maximization of a functional that depends on g, but not P
- ullet over the set of (μ, m) that depends on P but not on g.

• Operator Q is better for maximizer than P (i.e., $Q \succeq P$) if $v(g,Q) \ge v(g,P)$ for each game g.

Theorem

Let P, Q be ergodic . The following are equivalent.

- (a) $P \preceq Q$.
- (b) for all μ , m,

$$P(\mu * m) \leq^B \mu \Longrightarrow Q(\mu * m) \leq^B \mu,$$

(c) for all ν ,

$$P\nu \leq^B \nu \Longrightarrow Q\nu \leq^B P\nu.$$

$$P\nu \leq^B \nu \Longrightarrow Q\nu \leq^B P\nu$$
.

- Fixed point-ish flavor.
- Here, ν is a distribution of posteriors (i.e., $\mu * m$),
 - $P\nu \leq^B \nu$ means that ν is "stabilizable",
 - $Q\nu \leq^B P\nu$ is exactly the condition for next period's priors to be more informative under P than under Q,
- For each "stabilizable" end-of-the-period information ν , the next-period information is worse under Q than under P,
 - "P leads to smaller loss of information"; "Q adds more noise"
 - that is, information is *more persistent* under *P* than under *Q*.

- Proof: (b) <-> (c) easy,
- Proof: (b) -> (a) immediate from the characterization of value.

- Proof: not (b) -> not (a)
 - suppose that $P(\mu_0 * m_0) \leq^B \mu_0$ and $Q(\mu_0 * m_0) \nleq^B \mu_0$.
 - Blackwell: there exists a concave function $f: \Delta S \to R$ st.

$$\mu_0[f] - Q(\mu_0 * m_0)[f] > 0.$$

Use f to construct g and \hat{g} st.

$$\int \hat{g}(m(p)) d\mu(p) = \mu[f] - Q(\mu * m)[f].$$

It follows that

$$v\left(g,P\right)\geq\int\hat{g}\left(m_{0}\left(p\right)\right)d\mu_{0}\left(p\right)>0.$$

 \bullet Because f is concave,

$$\forall_{(\mu,m) \text{ st. } Q(\mu*m) \leq^B \mu} \mu[f] - Q(\mu*m)[f] < 0,$$

Hence, v(g, Q) < 0.

• W.l.o.g. there is a finite set L of functions $I: S \to R$.

$$f(p) = \min_{l \in L} \sum p(s) l(s),$$

• Let A = B = L, and for each $a, b \in L$,

$$g\left(a,b,s\right)=b\left(s\right)-\sum_{s'}Q\left(s'|s\right)a\left(s'\right).$$

We show that

$$\int \left(\min_{\beta \in \Delta B} \int \left(\max_{a} g\left(a, \beta, q\right)\right) dm\left(q|p\right)\right) d\mu\left(p\right) = \mu\left[f\right] - Q\left(\mu * m\right)\left[f\right].$$

We have

$$\max_{\alpha} \sum_{s} q(s) g(a, \beta, s)$$

$$= \sum_{s} \beta(s) q(s) - \min_{\alpha} \sum_{s} q(s) \sum_{s'} Q(s'|s) a(s)$$

$$= \sum_{s} \beta(s) q(s) - f(Qq),$$

and

$$\min_{\beta \in \Delta B} \left(\int g^* (\beta, q) \, dm(|qp) \right) \\
= \left(\min_{\beta \in \Delta B} \sum_{s} \beta(s) \, p(s) \right) - \left(\int f(Qq) \, dm(q|p) \right) \\
= f(p) - \left(\int f(Qq) \, dm(q|p) \right).$$

Order properties

Corollary

Let P, Q, Q' be ergodic.

- If $P \leq Q$ or $Q \leq P$, then $\pi_P = \pi_Q$.
- If $P \leq Q$ and $Q \leq P$, then P = Q.
- If $P \leq Q$ and $P \leq Q'$, then $P \leq \lambda Q + (1 \lambda) Q'$.

Simple (but not complete) characterization

• For each $\alpha \in \mathcal{A} := \{(\alpha_1, \alpha_2, ..., \alpha_\infty) : \alpha_i \geq 0, \sum \alpha_i = 1\}$, let

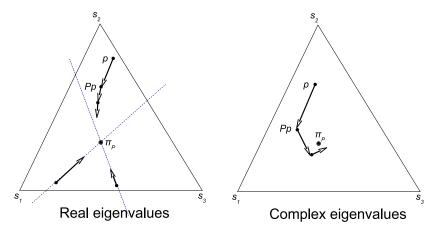
$$P^{\alpha} := \sum_{k=1}^{\infty} \alpha_k P^k$$

Theorem

For each ergodic P, Q:

- Sufficient condition: If $Q = P^{\alpha}$ for some $\alpha \in A$, then $P \leq Q$.
- **2** Necessary condition: If $P \leq Q$, then, for each p, there exists $\alpha_p \in \mathcal{A}$ such that $Qp = P^{\alpha_p}p$.
- (3) If P has purely real eigenvalues, then the necessary and the sufficient conditions are equivalent.

Operator $P:\Delta S \to \Delta S$



Action of operator P

Simple (but not complete) characterization

- For general operators, the sufficient is not necessary.
 - we do not know whether the necessary condition is sufficient,
 - but the necessary condition is not really easier than our full characterization.
- Persistence of information:
 - $P \leq P^n$,
 - for each $\alpha \in [0,1]$, if π is P-invariant:

$$P \leq \alpha P + (1 - \alpha) D_{\pi}$$
.

Best operator

Corollary

 $P \leq D_{\pi}$ for each P-invariant π .

ullet D_{π} is the best operator.

Permanent case is not the worst

- There is no worst operator (unless |S| = 2).
- In particular, permanent case (P = I) is not the worst.

Corollary

If $P \neq \alpha I + (1 - \alpha) D_{\pi}$ for some $\alpha \in (0, 1)$ and $\pi \in \Delta S$, then, there exists game g such that

$$v(\pi,g,I) > v(g,P).$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

No worst operator: Example

Example

(s_1,s_2,s_3)	L	R
U	-2,0,3	0,-2,3
D	-1,1,0	1,-1,0

- Suppose P = I.
- Minimizer play L if $p_1 \geq p_2$ and R if $p_2 \geq p_1$.
- Maximizer plays U if $s = s_3$ and to play D otherwise.
- Minimizer only ever learns $\{s_1, s_2\}$ or $\{s_3\}$.
- If $\pi=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$, then the value of the game is $\frac{2}{3}\cdot 0+\frac{1}{3}\cdot 3=1$.
- The argument also applies for each $P = \alpha I + (1 \alpha) D_{\pi}$.

No worst operator: Example

Example

(s_1,s_2,s_3)	L	R
U	-2,0,3	0,-2,3
D	-1,1,0	1,-1,0

Suppose that

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

- $\pi = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is *P*-invariant.
- If maximizer reveals s_3 , then, the next period belief is that s_2 is much more likely than s_1 and better payoff for the minimizer for s_2 .
- If maximizer does not reveal s_3 , she does not benefit from payoff 3 at this state.

Partial characterizations |S| = 2

- Suppose that |S|=2, and ergodic distr. is $\pi=\left(\frac{1}{2},\frac{1}{2}\right)$.
- ullet Then, each operator is $P\left(
 ho
 ight)=\left[egin{array}{cc}
 ho&1ho\\1ho&
 ho\end{array}
 ight],$
 - larger $\rho > \frac{1}{2}$ means more persistence,
 - smaller $\rho < \frac{1}{2}$ means more alternating

Partial characterizations |S| = 2

Corollary

If $\frac{1}{2} \leq \xi \leq \rho$, then

$$D_{\pi}=M\left(\frac{1}{2}\right)\succeq M\left(\xi\right)\succeq M\left(\rho\right).$$

If
$$\rho < \frac{1}{2}$$
 and $\frac{1}{2} + \frac{1}{2}(2\rho - 1)^2 \ge \xi \ge \rho \ge 0$, then

$$D_{\pi}=M\left(\frac{1}{2}\right)\succeq M\left(\xi\right)\succeq M\left(\rho\right)\succeq M\left(0\right)=A.$$

• monotonicity of value in $\rho > \frac{1}{2}$ in Renualt's example (for any game).

∢ロト <個ト < 差ト < 差ト = 9000</p>

Partial characterizations |S| = 2

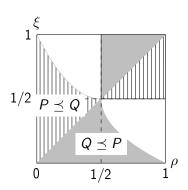


Figure: $P = M(\rho)$ and $Q = M(\xi)$.

- Main results (i.e. value and comparison) extend to
 - non-ergodic operators,
 - public signal,
 - imperfect monitoring.
- Partial characterization (sufficient condition) for finite discount factor.

Non-ergodic operators

 (Discounted) distribution over prior beliefs if no information is ever revealed

$$P^{\infty,\delta}\pi = \sum_{k=0}^{\infty} (1-\delta) \, \delta^k \mathsf{Dirac}_{P^k\pi}.$$

- Limit $P^{\infty}\pi = \lim_{\delta \to 1} P^{\infty,\delta}\pi$ always exists:
 - if P is ergodic, then $P^{\infty}\pi=\mathsf{Dirac}_{\pi^*}$ (does not depend on π),
 - if P = I, then $P^{\infty}\pi = \mathsf{Dirac}_{\pi}$,
 - if P = A, then $P^{\infty}\pi = \frac{1}{2}\mathsf{Dirac}_{\pi} + \frac{1}{2}\mathsf{Dirac}_{-\pi}$.
- \bullet In equilibrium, stationary distribution μ must "respect" the initial information of the minimizer,
 - it must be that

$$P^{\infty}\pi \leq^B \mu$$
.

Characterization of value

Theorem

(Value of the stochastic zero-sum game) For each g, each P, each stationary distribution π of P,

$$v\left(\pi,g,P\right) = \max_{\mu,m:P^{\infty}\pi \leq^{B}\mu \text{ and } P(\mu\star m)\leq^{B}\mu} \int \hat{g}\left(m\left(p\right)\right)d\mu\left(p\right).$$

Main Result

Characterization of value: Special cases

$$v\left(\pi,g,P\right) = \max_{\mu,m:P^{\infty}\pi \leq^{B}\mu \text{ and } P(\mu\star m)\leq^{B}\mu} \int \hat{g}\left(m\left(p\right)\right)d\mu\left(p\right).$$

• ergodic *P*:

$$v(g,P) = \max_{\mu,m \text{ st. } P(\mu \star m) \leq B_{\mu}} \int \hat{g}(m(p)) d\mu(p),$$

repeated game with incomplete information,

$$v(\pi, g, I) = \max_{\mu: E\mu = \pi} \int \hat{g}(\mathsf{Dirac}_p) \, d\mu(p),$$
$$= (\mathsf{cav}\hat{g})(\pi)$$

• repeated game with incomplete information and alternating state

$$v\left(\pi,g,A
ight)=\left(\mathsf{cav}\left(rac{1}{2}\hat{g}+rac{1}{2}\hat{g}^{-}
ight)
ight)\left(\pi
ight).$$

Public signal

- Public signal observed before actions (beginning of the period) $F: S \to \Delta Z$.
 - $n^F: \Delta S \rightarrow \Delta^2 S$.
- Value: For every game g and ergodic P,

$$v(g,P,F) = \max_{\mu,m:P(\mu*m)*n^F \leq B\mu} \int \hat{g}(m(p))d\mu(p).$$

- Comparison $(P, F) \leq_{Pub} (Q, G)$.
 - for every $(\mu, m) \in \Delta^2 S \times \mathcal{M}$ such that $P(\mu * m) * n^F \leq^B \mu$, we have $Q(\mu * m) * n^G \leq^B \mu$.
 - for every $\nu \in \Delta^2 S$ such that $P\nu * n^F \leq^B \nu$, we have $Q\nu * n^G \leq^B P\nu * n^F$.

Imperfect monitoring

- Monitoring: $F_a \in \Delta Z$,
 - signal z (and not action a) is observed.
- Value: the same, if we replace \hat{g} by

$$\hat{g}_{F}(\nu) = \min_{\beta \in \Delta B \ \alpha \ \text{st.}} \ \max_{m^{\alpha,p,F} \leq B_{\nu}} \sum_{s} p(s) g(\alpha(s), \beta, p).$$

• Comparison: $P \leq_{lm} Q$ if for each game g and each imperfect monitoring F,

$$v(\pi; g, F, P) \leq v(\pi; g, F, Q).$$

• the Comparison Theorem holds verbatim.

Finite discounting

Theorem

For any zero-sum game, any ergodic P, any zero-sum g, any discount factor, any $\alpha \in (0,1)$, if π is invariant dist. of P, then

$$v^{\delta}\left(\pi;g,P\right)\leq v^{\delta}\left(\pi;g,\alpha P+\left(1-lpha
ight)D_{\pi}
ight).$$

• $P \prec_{\delta,\pi} \alpha P + (1-\alpha) D_{\pi}$.

Conclusions

- We analyze stochastic games with incomplete information.
 - formula for the value,
 - comparison of operators with respect to the value of the game
- More persistence (in some sense) is good for the minimizer,
- The main result is interpretable, and easy to use in proofs, but not in calculations.