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Introduction

Informational advantage in repeated interactions
Trade-off: use information now or save for later.

Applications: insider trading, arms race, bargaining.

Original motivation for repeated games with incomplete information
(Aumann-Maschler).

But, persistence of information seems important!

How exactly?
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Introduction

Model

@ Zero-sum stochastic game:

payoffs g (a, b, s),

actions a (maximizer) and b (minimizer),

state s with Markov transitions P : S — AS,

maximizer (player 1) observes the state,

minimizer (player 2) observes player 1's actions, but not the state,
initial beliefs.

o Value v (m; g, P), where 6 < 1,

v(m, g, P) = ggnl Vo (g, P).

The limit value does not depend on 7 if P is ergodic.
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Introduction

Example (Renault, 2006)

@ Two states s, 5

e states stay the same with prob. p and change with probability 1 — p,
o the larger p, the more persistent is the state,

@ Maximizer chooses U or D and the payoffs are

(s [L[R] [ [L[R]
Uuj1(0}, |U|O0O|0O,
D|0]O D|0|1

e Value is notoriously difficult to compute (Hérner at al, 2010).

o Monotonicity of value?
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Introduction

Question

Definition
Operator Q is better for maximizer than P (i.e., Q = P) if
v(g, Q) > v(g, P) for each game g.

o Goal: Characterize relation P < Q.
o ldea:

e persistence is bad for maximizer,
o the above relation should capture some notion of persistence.
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Introduction

Motivation

@ Stochastic games

o vs. repeated games with incomplete information (i.e., Aumann-Maschler)
e Stochastic zero-sum games with Markovian private information Renault 06,
Neyman 08, Horner-Rosenborg-Solan-Vieille 10

@ Comparison of information literature: (Blackwell 1953, Mertens-Gossner 01, Peski
08).

@ intuition: more information (in the Blackwell sense) is better for the
minimizer,
o here: more information means that P is more persistent.

o however, it is difficult to separate the information and the payoff effects of
transitions.

@ Applications:

@ zero-sum stochastic games: value is monotonic in (Horner at al, 2010),

o individual rationality constraint in repeated games with Markov types
(Athey-Bagwell 08, Escobar-Toikka 13, Horner-Takahashi-Vieille 15),

@ one long-run vs. many short run players (zero-sum).
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Introduction

Plan

@ Introduction

@ Notations and definitions

© Value of stochastic game

© Comparison of operators (characterization of order <)
@ Characterizations and corollaries

@ Extensions
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Notations and Definitions

Beliefs

@ p,q € AS - space of (minimizer's) beliefs,
o prior beliefs in period t: beliefs before the actions are chosen (and
information revealed),
e posterior beliefs in period t: beliefs after the actions are chosen,

o 1, v € A%S = A(AS) - distributions over beliefs,
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Notations and Definitions

Beliefs

e P:AS — AS Markov operator,

@ p are posteriors today = Pp are prior beliefs tomorrow,

@ 4 is a distribution of posteriors today = Py is a distribution of priors
tomorrow, where

(Pp)(s) =) _p(s)P(sls),

(Pu)(A) =pu{q: Pge A} = u(P1A).

October 31, 2017 9 /43
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Notations and Definitions

Special cases

No persistence: D, - i.i.d. draws from distribution 7 € AS,

Persistent information : P is aperiodic and irreducible,

e P"m — 7p, where 7p is unique stationary distribution,
o value v (g, P) does not depend on the initial distribution.

@ Permanent information: P = |,
o repeated game with incomplete information,

Alternating case: |S| =2 and A= [ 01 ]

10
o (Ap), =1—ps.
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Notations and Definitions

Mean preserving spread

Definition

A mean preserving spread is a measurable m : AS — A?S such that

Em(.|q) = q for each g
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Notations and Definitions

Mean preserving spread

e o .
p
* rrF’ \ * TTP
‘\
L Y .
S1 . . . . Sa 81 83
Distribution of priors Distribution of posteriors

v is a mean preserving spread of p.
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Notations and Definitions

Distributions over beliefs ;i Mean preserving spread

v is a mean preserving spread of yu, if there exists a m.p.s. m: AS — A%S

such that
v=p*m,

or

v(dp) = /m(dplq) du(q).

o We write 1 <B v.
o If n <Bu, then Py <B Pu.

October 31, 2017
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Value of stochastic zero-sum game

Revelation of information

® p(a’)

Revelation strategy Induced posteriors
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Value of stochastic zero-sum game

Behavior

@ Maximizer's Markov strategy o : AS x § — AA
@ Decompose the maximizer's behavior into

e revelation strategy m,
o actions that reveal information: a: suppm (p) — A.

@ For each m € A2S, define

g(m)=  max min/g(a(q),mdm(q).

a:suppm(p)—A BEAB

e payoff in a zero-sum game, in which minimizer chooses 8 and the
maximizer chooses actions that respect the revelation m.
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Value of stochastic zero-sum game

Distributions over beliefs u: stationarity

@ Elements of equilibrium

e m:AS — A2S (Markov) revelation strategy
o u stationary distribution over priors (i.e., beliefs at the beginning of the

period),
o the average payoff is equal to

/éf(m(p))du (p).

@ Stationary distribution g over priors:

e /1% m is a distribution over posteriors, and
o P(u*m)is a distribution over prior beliefs in the next period,
o because p is stationary:

P (pxm) = p.
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Value of stochastic zero-sum game

For each g, each ergodic P, each stationary distribution 7 of P,

v(eP)=  max [ g(m(p)dn(p).

pom: P(uxm)<Bpu

@ when § — 1, the value converges to the average revelation payoff over
the stationary distribution,

@ the second inequality can be replaced by equality
@ proof: “stationarity” of the problem.
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Value of stochastic zero-sum game

v(eP) = max [ E(m(p)dn(e).

pum: Pjem) <

@ maximization of a functional that depends on g, but not P

@ over the set of (1, m) that depends on P but not on g.
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Comparison of operators

e Operator Q is better for maximizer than P (i.e., Q = P) if
v(g, Q) > v(g, P) for each game g.

Theorem

Let P, Q be ergodic . The following are equivalent.
(a) P=Q.
(b) for all y, m,
Ppxm) <P = Q(uxm)<Pp,

(c) for all v,

Pv<Bv— Quv<BPu
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Comparison of operators

Py <By— Qu <8 Pu.

@ Fixed point-ish flavor.
@ Here, v is a distribution of posteriors (i.e., pu* m),

o Pv <B u means that v is “stabilizable”,
o Qu <B Py is exactly the condition for next period's priors to be more
informative under P than under Q,

@ For each “stabilizable” end-of-the-period information v, the
next-period information is worse under @ than under P,
o “P leads to smaller loss of information”; “ @ adds more noise”
e that is, information is more persistent under P than under Q.
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Comparison of operators

Proof

@ Proof: (b) <-> (c) easy,

@ Proof: (b) -> (a) immediate from the characterization of value.
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Comparison of operators

Proof

@ Proof: not (b) -> not (a)

o suppose that P (g * mg) <B 119 and Q (pio * mo) %8 po-
o Blackwell: there exists a concave function f : AS — R st.

po [f] = Q (1o * mo) [f] > 0.
Use f to construct g and g st.
[ &(m(e)) du(p) = nlf - @ m) 1]
It follows that
v(g,P)= /é’(mo (p)) do (p) > 0.
e Because f is concave,

v(u,m) st. Q(,u,*m)SB;uu [f] -Q (/J * m) [f] < 07
Hence, v (g, Q) < 0.

Marcin Peski, Juuso Toikka (University o Value of persistent information October 31, 2017



Comparison of operators

Proof

@ W.lo.g. there is a finite set L of functions /: S — R.
P o)
@ Let A=B =1L, and for each a,b € L,
g(a,b,s)=b(s) — Z Q(s
@ We show that

J (smin, [ (maxe (2.5.0)) am(ale) ) s (9) = 11~ Qo m) 11,

BeAB

Marcin Peski, Juuso Toikka (University o Value of persistent information October 31, 2017 23 /43



Comparison of operators
Proof

o We have
maqu g(a,p,s)
:Zﬂ —mJan(s)ZQ(ssas
_25 ) — f(Qq),
and
ﬁ?&( q) dm( |qp>

— (B?EB p(s) (/f Qq) dm ( q!P))

:f(p) ( f(Qq)dm Q|P)>
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Partial characterizations
Order properties

Let P, Q, Q' be ergodic.
@ IfP<QorQ=P, then tp = 1q.
o IfP=<XQ and Q X P, then P = Q.
e IfP=Qand P=<Q, then P AQ+(1-))Q".
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Partial characterizations

Simple (but not complete) characterization

e Foreach v € A:={(a1,a2,....,a00) 1 j > 0,> aj = 1}, let

o
P = Z o P¥
k=1

For each ergodic P, Q:

@ Suftficient condition: If @ = P® for some oo € A, then P < Q.

@ Necessary condition: If P =< Q, then, for each p, there exists o, € A
such that Qp = P%p.

© If P has purely real eigenvalues, then the necessary and the sufficient
conditions are equivalent.
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Partial characterizations

Operator P : AS — AS

P
P T.’p
=
/4 N~
S1 53 S1 S3
Real elgenvalues Complex eigenvalues

Action of operator P
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Partial characterizations

Simple (but not complete) characterization

e For general operators, the sufficient is not necessary.
e we do not know whether the necessary condition is sufficient,
e but the necessary condition is not really easier than our full
characterization.
@ Persistence of information:
o PP
o for each « € [0, 1], if 7 is P-invariant:

P<aP+(1-a)D;.
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Partial characterizations

Best operator

P < D, for each P-invariant .

@ D, is the best operator.
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Partial characterizations

Permanent case is not the worst

@ There is no worst operator (unless |S| = 2).

@ In particular, permanent case (P = /) is not the worst.

If P# al + (1 — «) Dy for some o € (0,1) and w € AS, then, there exists
game g such that

v(m,g,1)>v(g,P).
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Partial characterizations

No worst operator:Example

‘ (s1, 52, 53) ‘ L ‘ R ‘
U -2,03 | 0,-2,3
D -1,1,0 | 1,-1,0

Suppose P = |I.

Minimizer play L if p1 > p, and R if p» > p1.
Maximizer plays U if s = s3 and to play D otherwise.
Minimizer only ever learns {s1, s} or {s3}.

If 7= (%, 1. 1), then the value of the game is 2-0+1-3=1.

The argument also applies for each P = ol + (1 — &) D
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Partial characterizations

No worst operator:Example

‘ (s1,52,53) ‘ L ‘ i ‘
U -2,03 | 0-2,3
D 1,10 | 1,-1,0
@ Suppose that
1 0 0
P= 1|0 % % s
o {1
o m— (%7 %, %) is P-invariant.

@ If maximizer reveals s3, then, the next period belief is that s, is much more likely
than s; - and better payoff for the minimizer for s,.

@ If maximizer does not reveal s3, she does not benefit from payoff 3 at this state.
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Partial characterizations

S| =2

3):

N =

@ Suppose that |S| =2, and ergodic distr. is ™ = (
P 1—p]

1—p p

o larger p > 1 means more persistence,

o smaller p <  means more alternating

@ Then, each operator is P (p) = [
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Partial characterizations
5| =2

Corollary

lf%§§§p, then

@ monotonicity of value in p > % in Renualt’s example (for any game).
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Partial characterizations

S| =2

1/2 H“"-

P=<Q1M

Q=P

0 1/2 1

Figure: P = M(p) and Q = M (§).
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Extensions

@ Main results (i.e. value and comparison) extend to

e non-ergodic operators,
e public signal,
e imperfect monitoring.

e Partial characterization (sufficient condition) for finite discount factor.
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Extensions

Non-ergodic operators

o (Discounted) distribution over prior beliefs if no information is ever

revealed
o0

PO = (1 — 6) 6*Diracpu,.
k=0

o Limit P71 = lims_1 P97 always exists:
o if P is ergodic, then P>°m = Dirac,- (does not depend on 7),
e if P =1, then P°°m1 = Dirac,,
o if P=A, then P®1 = %Dirac7T + %Dirac,ﬂ.
@ In equilibrium, stationary distribution p must “respect” the initial
information of the minimizer,
e it must be that
Per <B .
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Extensions

Characterization of value

(Value of the stochastic zero-sum game) For each g, each P, each
stationary distribution 7 of P,

v(m,g, P) = max / &(m(p)) du (p).

w,m:Pon<Bu and P(uxm)<Bp

Marcin Peski, Juuso Toikka (University o Value of persistent information October 31, 2017 38 /43



Main Result

Characterization of value: Special cases

v(mg.P) = max / & (m(p)) du ().

u,m:Poon<Bp and P(uxm)<Bp

@ ergodic P:

v@P)=  max /é(m(P))du(p),

w,m St P(uxm)<Bp

@ repeated game with incomplete information,

v(m g, 1) = H{gggﬂ/é(Diracp)du(p),

= (cavg) (m)

@ repeated game with incomplete information and alternating state

v (r, g, A) = (cav (;g + ;g—» (7).
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Extensions

Public signal

@ Public signal observed before actions (beginning of the period)
F:S— AZ,

o nf: AS— A%S.
@ Value: For every game g and ergodic P,

Vg P.F)=  max / &(m(p))dp(p).

p,m:P(pxm)xnfF <Bp

e Comparison:(P, F) =<pu (Q, G).

o for every (u, m) € A%2S x M such that P(u* m) x nf <B 11, we have
Q(u* m)*n® <B .

o for every v € A2S such that Pv * nf <B v, we have
Qu x nS <B Py« nf.
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Extensions

Imperfect monitoring

@ Monitoring: F, € AZ ,
e signal z (and not action a) is observed.

@ Value: the same, if we replace g by

gr (v) = min Zp (s),5,p)-

BEAB o st. maPF<B

o Comparison: P =<, Q if for each game g and each imperfect
monitoring F,
v(mg F,P)<v(meg,F,Q).

e the Comparison Theorem holds verbatim.
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Extensions

Finite discounting

For any zero-sum game, any ergodic P, any zero-sum g, any discount
factor, any o € (0,1), if 7 is invariant dist. of P, then

Vo (m g, P) <V (m;g,aP + (1 —a)Dy).

® P<5raP+(1—a)D:x.
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Conclusions

@ We analyze stochastic games with incomplete information.

e formula for the value,
e comparison of operators with respect to the value of the game

@ More persistence (in some sense) is good for the minimizer,

@ The main result is interpretable, and easy to use in proofs, but not in
calculations.
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