# Bargaining with Mechanisms and Two-Sided Incomplete Information

Marcin Pęski

University of Toronto

December 6, 2024

### Introduction

- Bargaining with incomplete information at least 50 years of literature,
- ... but no satisfactory strategic solution:
  - alternating offers with two-sided uncertainty: signaling problems => folk-theorem multiplicity, possible refinements to eliminate some equilibria,
  - Coasian bargaining (one-sided uncertainty): robustness problems,
  - typically, the offer = allocation.
- This paper:
  - single good with transfers
  - private values, two types for each player,
  - random-proposer bargaining.

### Introduction

- We show that offers = mechanisms leads to a (generically) unique and robust outcome.
- Bargaining with mechanisms (i.e., sophisticated offers) in the real world
  - menus,
  - menus of menus ("I divide, you choose"),
  - mediation, arbitration,
  - change in bargaining protocols,
  - deadlines or delays, etc.
- Intuition: larger space of actions help to deal with signaling issues.
- Challenge: How to model mechanisms as actions?

- Two players i = 1, 2, sometimes third player ("mediator")
  - $T_i = \{l_i, h_i\}$ , assume  $l_1 \le l_2$ ,
  - belief profiles  $\Delta T = \Delta T_1 \times \Delta T_2$
- Single good and transfers: preferences:  $q_i t_i \tau_i$ ,
  - feasibility:  $q_1 + q_2 \le 1$ ,  $q_i \ge 0$ ,  $\tau_1 + \tau_2 \le 0$ ,
- Bargaining game
  - ullet multiple rounds until offer is accepted, discounting  $\delta < 1$ ,
  - player *i* is proposer with prob.  $\beta_i \geq 0$ , where  $\beta_1 + \beta_2 = 1$ ,
  - proposer offers a mechanism,
  - if the offer is accepted, it is implemented, and the bargaining game ends (commitment!).
- Perfect Bayesian Equilibrium: no updating beliefs about player i after -i's action.



#### Mechanisms

- Game G: finite or compact actions + outcome function,
- Equilibrium payoffs correspondence:  $m(p; G) \subseteq \mathcal{U}(p)$  for  $p \in \Delta T$ ,
  - $\mathcal{U}\left(p\right)\subseteq R^{T_{1}\cup T_{2}}$  is the set of feasible and incentive compatible payoffs.

#### Mechanisms

- (Abstract) mechanism is correspondence m st. m is u.h.c.,  $m \subseteq \mathcal{U}$ , non-empty valued, and
  - it can be approximated by continuous functions  $m_n : \Delta T \to R^{T_1 \cup T_2}$ ,  $m_n \subseteq \mathcal{U}$  in the sense that  $\lim_n \operatorname{Graph}(m_n) \subseteq \operatorname{Graph}(m)$ .
  - the space of mechanism is compact under Hausdorff distance induced by d.

#### Theorem

(Virtual implementation) If G is a game, then m(.; G) is a mechanism. If m is a mechanism, then, there is a sequence of games  $G_n$  that "approximate" m:

$$\lim_{n} Graph(m(.; G_n)) \subseteq Graph(m)$$
.



#### Mechanisms

- (Abstract) mechanism is correspondence m st. m is u.h.c.,  $m \subseteq \mathcal{U}$ , non-empty valued, and
  - it can be approximated by continuous functions  $m_n : \Delta T \to R^{T_1 \cup T_2}$ ,  $m_n \subseteq \mathcal{U}$  in the sense that  $\lim_n \operatorname{Graph}(m_n) \subseteq \operatorname{Graph}(m)$ .
  - the space of mechanism is compact under Hausdorff distance induced by *d*.

#### Theorem

(Virtual implementation) If G is a game, then m(.; G) is a mechanism. If m is a mechanism, then, there is a sequence of games  $G_n$  that "approximate" m:

$$\lim_{n} Graph(m(.; G_n)) \subseteq Graph(m).$$

#### Derived mechanisms

- Given a mechanism m or a set of mechanisms A, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$ .
- $\delta m$  discounted mechanism m
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- MM<sub>i</sub> (A) menu of mechanisms a ∈ A for player i,
   including public randomization and cheap talk by i
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$



#### Derived mechanisms

- Given a mechanism m or a set of mechanisms A, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$ .
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- MM<sub>i</sub> (A) menu of mechanisms a ∈ A for player i,
   including public randomization and cheap talk by i
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_{i}(m) = MM_{i} \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$



#### Derived mechanisms

- Given a mechanism m or a set of mechanisms A, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- MM<sub>i</sub> (A) menu of mechanisms a ∈ A for player i,
   including public randomization and cheap talk by i
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_{i}(m) = MM_{i} \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$



#### Derived mechanisms

- Given a mechanism m or a set of mechanisms A, we can construct new ones:
- ullet  $lpha\in\Delta A$  randomly chosen mechanism according to distribution lpha.
- $\delta m$  discounted mechanism m.
- $I_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- MM<sub>i</sub> (A) menu of mechanisms a ∈ A for player i,
   including public randomization and cheap talk by i
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_{i}(m) = MM_{i} \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$



#### Derived mechanisms

- Given a mechanism m or a set of mechanisms A, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- $MM_i(A)$  menu of mechanisms  $a \in A$  for player i,
  - ullet including public randomization and cheap talk by i.
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$



#### Derived mechanisms

- Given a mechanism m or a set of mechanisms A, we can construct new ones:
- ullet  $lpha\in\Delta A$  randomly chosen mechanism according to distribution lpha.
- $\delta m$  discounted mechanism m
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- MM<sub>i</sub> (A) menu of mechanisms a ∈ A for player i,
   including public randomization and cheap talk by i.
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = \left( \mathsf{IP}_1 \left( \delta \mathcal{B} \right) \right)^{eta_1} \left( \mathsf{IP}_2 \left( \delta \mathcal{B} \right) \right)^{eta_2}$$



#### Derived mechanisms

- Given a mechanism m or a set of mechanisms A, we can construct new ones:
- $\alpha \in \Delta A$  randomly chosen mechanism according to distribution  $\alpha$
- $\delta m$  discounted mechanism m.
- $l_i(m)$  information revelation game: public randomization plus i's cheap talk followed by m.
- MM<sub>i</sub> (A) menu of mechanisms a ∈ A for player i,
   including public randomization and cheap talk by i
- $IP_i(m)$  informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (\mathit{IP}_{1}(\delta\mathcal{B}))^{\beta_{1}}(\mathit{IP}_{2}(\delta\mathcal{B}))^{\beta_{2}}$$



Benchmarks

• (Maskin, Tirole 90) Informed principal with private values ( $\beta_i=1$  and  $\delta=0$ ): monopoly payoff

$$M(t_i; p_{-i}) = \max_{\tau} p_{-i} (t_{-i} \leq \tau) t_i + (1 - p_{-i} (t_{-i} \leq \tau)) \tau,$$

- Special features:
  - ullet continuation value =0 (and it does not depend on beliefs)
  - private information of the principal does not matter due to private values.
  - none of this holds in bargaining.

# Random monopoly

#### Theorem

For each  $\delta < 1$ , each  $u \in \mathcal{B}^{\delta}\left(p\right)$ , each player i, each  $t_{i}$ ,

$$u_i(t_i) \geq \beta_i M_i(t_i; p_{-i}).$$

- Each player gets at least their random monopoly payoff.
- Rubinstein-style argument, but ....
- not easy to extend to more than two types.

- In many cases, Theorem 2 is enough to characterize payoffs and equilibrium behavior, as there is unique interim efficient allocation that satisfies the random monopoly condition:
  - $\beta_i \in \{0, 1\}$ ,
  - $p_i \in \{0,1\}$  for one of the players,
  - $l_1 = l_2$  or  $l_2 = h_1$  or  $h_1 = h_2$ .
- In general, there is a gap between random monopoly payoffs and efficiency.
- The gap is not larger than Gap  $(p) \le 6.25\%$  of max  $(h_1, h_2)$  for all p.

#### Theorem

For generic payoffs and generic p,  $\mathcal{B}(p) = \lim_{\delta} \mathcal{B}^{\delta}(p)$  contains a single element  $|\mathcal{B}(p)| = 1$ .

The entire gap goes to player 1: If  $u \in \mathcal{B}(p)$ , then

$$p_1 \cdot u_1 = \max_{\substack{u' \text{ is IC, feasible at } p \ u'_2\left(t_2
ight) \geq eta_2 M_2\left(t_2;p
ight) \text{ for } t_2 = \mathit{l}_2,\mathit{h}_2} p_1 \cdot u'_1$$

 $l_2 < h_1$ 



 $h_1 < l_2$ 



## Conclusions

- A natural modification of a standard random-proposer bargaining has unique payoffs under
  - single good plus transfers, private values environment,
  - two types for each player.
- Fun project: dynamic games, persuasion (information revelation), mechanism design, and informed principal problems.
- A proof of concept better results and a general theory would be nice:
  - better implementation results.
  - more types, other environments.
- Possible progress
  - $T_1 = \{I, h\}$  and arbitrary  $T_2$  such that  $I < t_2$  for each  $t_2 \in T_2$ ,
  - arbitrary  $T_1$  and  $T_2$ , but verifiable types of player 1.

