
FUZZY CONVENTIONS

MARCIN PĘSKI

Abstract. We study binary coordination games with random utility played in net-
works. A typical equilibrium is fuzzy - it has positive fractions of agents playing
each action. The set of average behaviors that may arise in an equilibrium typically
depends on the network. The largest set (in the set inclusion sense) is achieved by
a network that consists of a large number of copies of a large complete graph. The
smallest set (in the set inclusion sense) is achieved in a lattice-type network. It con-
sists of a single outcome that corresponds to a novel version of risk dominance that
is appropriate for games with random utility.

1. Introduction

An individual’s behavior in social or economic situations is often positively influenced
by similar decisions made by their friends, acquaintances, or neighbors. Examples
include the decision to maintain a neat front yard, to obey speed limits or tax laws,
to engage in criminal activity, or to adopt a technology with network externalities. A
substantial literature has shown that the details of the network of social interactions
may affect which of the equilibria is more likely to arise (see, for example, references in
[Jackson and Zenou(2015)]). A typical result in this literature establishes conditions
under which a particular behavior is adopted by everyone and becomes a convention
(see [Young(1993)], [Ellison(1993)], among many others). At the same time, completely
uniform behavior is very rare in the real world. Even in situations which clearly involve
positive externalities, there will often be interactions in which neighbors make the
opposite choices. For instance, there are families where some members use iPhone and
others use Android.
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An obvious reason for heterogeneous behavior is that individuals are different and
their tastes and unique circumstances play just as important of a role in determining
their decisions as the behavior of their neighbors. The goal of this paper is to analyze
the impact of heterogeneity in a systematic way. A natural question is how adding
heterogeneity in tastes affects our ability to predict the unique outcome. What can we
say about the set of possible equilibrium conventions and how does it depend on the
network and other parameters of the model, like the taste distribution?

To address these questions, we study a random utility coordination game played in
a network. Each player chooses a binary action and the relative gain from the action
is increasing in the fraction of neighbors who make the same choice. Additionally,
payoffs are subject to individual i.i.d. shocks. The independence assumption is key
for our results, and it is appropriate for some but not all applications. An individual’s
equilibrium action as well as the aggregate distribution of equilibrium actions depend
on the realization of the entire profile of payoff shocks. We are interested in the
asymptotic of the average (i.e., aggregate) behavior as the network becomes arbitrarily
large and, importantly, as the graph becomes sufficiently fine i.e., the weight of the
largest neighbor in a neighborhood of each player becomes sufficiently small. The
latter ensures that no single individual has a disproportionate impact on another, and
it is the second key assumption in our model.

In contrast to a simple model of coordination games, a typical equilibrium in our
model is fuzzy - it has positive fractions of populations playing each action. Also,
despite there being only two potential actions, a coordination game may have many
more than two equilibria. To illustrate the latter point, consider a continuum toy
version of the model, in which individual payoffs depend on the fraction x of agents
choosing the high action in the entire population. Let P (x) be the probability of
a payoff shock for which the agent best response is to choose the high action as well.
Function P has values between 0 and 1 and is increasing in x, but is otherwise arbitrary.
An example is illustrated in Figure 1. Fixed points of P , i.e., intersections of the graph
of P with 45◦ diagonal, correspond to the equilibria of the toy model.

The goal of this paper is to study the set of all possible equilibrium conventions
or, more precisely, the set of equilibrium average actions. Our results characterize the
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Figure 1. Continuum best response function P

asymptotic upper and lower bounds in the sense of set inclusion on the equilibrium
sets, across all networks. Two results characterize the upper bound:

• Theorem 1 shows that if players live on a sufficiently large complete graph,
all stable fixed points of P (essentially, fixed points where the graph of P
crosses the diagonal from above) are arbitrarily close to average actions in some
equilibrium. (This and all subsequent results are stated “with a probability
arbitrarily close to 1.” ) That, generically, includes the largest xmax and the
smallest xmin fixed point of P . The proof of Theorem 1 is straightforward.
A corollary shows that when players live on sufficiently many disjoint copies of
sufficiently large complete graphs, different equilibria on component networks
can be mixed and matched so that the total average approximates an arbitrary
point on the interval [xmin, xmax] .
• Theorem 2 shows that, for all sufficiently large and fine networks, there are
no equilibria with average payoffs above xmax or below xmin. Although the
statement is very intuitive, our proof is surprisingly complicated. The difficulty
is to show that none of the profiles with average payoffs outside of the range
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is an equilibrium. There are many such candidate profiles and the claim must
simultaneously address all of them. The difficulty is compounded by the lack
of additional assumptions on the network.

Together, the two theorems show that the interval [xmin, xmax] is a tight upper bound on
the sets of equilibrium average actions across all networks. In this way, we obtain the
strongest possible partial identification theory: without any further information about
the network, an econometrician who uses observed average behavior x, can conclude
that the parameters of the model must be such that the parameter-dependent set
[xmin, xmax] contains x.

In particular, xmin = xmax is a sufficient condition for the uniqueness of an equi-
librium convention, regardless of the network. As the subsequent results show, this
condition is not necessary for some networks.

In order to characterize the lower bound on the equilibrium sets, define a random
utility-dominant, or RU -dominant, outcome x∗ as a solution to the maximization prob-
lem

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy.

(See Figure 1.) Generically, an RU -dominant outcome is unique, in which case, it
is always a stable fixed point of P . The notion of RU-dominance is one of the con-
tributions of this paper. When the impact of payoff shocks on an individual utility
converges to 0, the RU-dominant outcome converges to the risk-dominant outcome (as
in [Harsanyi and Selten(1988)]) of the deterministic 2× 2 coordination game.

We have two results:

• Theorem 3 shows that there exist networks where the average payoff in each
equilibrium is arbitrarily close to x∗. One example of such a network is a 2-
dimensional lattice. The idea of the proof is to show that, for each profile with
an average behavior that is not RU -dominant, contagion-like best response dy-
namics would bring the behavior close to x∗. The proof uses an idea from
[Morris(2000)] to show how a contagion wave spreads across lattice networks.
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This is supplemented with explicit calculations of (a) the likelihood that a fa-
vorable configuration of payoff shocks may initiate such a wave, and (b) the
likelihood that such a wave would not be stopped by an unfavorable config-
uration of payoff shocks. The problem with the latter is the reason why the
1-dimensional network of [Ellison(1993)] is not a good example for the result
and a 2-dimensional lattice is needed.
• Theorem 4 shows that any sufficiently large and fine network has an equilibrium
with average payoffs close to x∗. The starting point of the proof is a beautiful
idea from [Morris(2000)], where it is shown that it is not possible to spread
risk-dominated actions by contagion. This idea is adapted to work for RU -
dominance, random utilities, etc.

The two results together show that the single-element set {x∗} is a tight lower bound on
all sets of equilibrium average payoffs across all networks. This leads to an equilibrium
selection theory: x∗ is the only outcome that is robust to changes in the underlying
network.

Coordination games form one of three main approaches in the literature that stud-
ies games in networks ([Jackson and Zenou(2015)]). The second set of results of this
paper is very closely related, and it greatly benefits from the literature on contagion
in networks, especially from two beautiful papers, [Ellison(1993)] and [Morris(2000)].
[Ellison(1993)] (see also [Ellison(2000)]) is the first to show that a risk-dominant action
can spread from a small initial set of deviators to an entire 1-dimensional lattice net-
work by a simple best response process. [Morris(2000)] describes properties of networks
for which Ellison’s contagion wave exists. Among others, any contagion wave from 1-
dimensional lattices can also be used in higher dimensions. [Morris(2000)] also shows
that risk-dominated actions cannot spread through a best response process regardless
of the geometry of the network.

Evolutionary game theory ([Kandori et al.(1993)Kandori, Mailath and Rob], [Young(1993)],
[Blume(1993)], [Newton(2021)], and many others) studies the long-run behavior of per-
turbed best response processes, where players commit mistakes with a small probability,
and instead of choosing a best response, take some other action. One of the key results
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of this literature is that risk-dominant coordination is (uniquely) stochastically stable
regardless of the underlying network ([Peski(2010)]). Our current results (specifically,
Theorems 3 and 4) are closely related, but with some key differences. On the one
hand, there i s a relation between “noise” in the behavioral rules of the evolutionary
literature and “noise” in the payoffs of the current paper. On the other hand, there are
two important differences: We are interested here in static equilibria instead of a dy-
namic adjustment process, and our payoff shocks are permanent instead of temporary
mistakes. (The best response dynamic plays an important role in the proofs as a tool
to identify equilibria.) Finally, the evolutionary literature is subject to the criticism
that one may need to wait for a really long time before reaching a stochastically stable
outcome ([Ellison(1993)]). That criticism does not apply to our model.

There is a literature that studies evolutionary equilibrium selection in games with
heterogeneous populations. The interests in such games arises naturally from evolu-
tionary biology like predator-prey models. For instance, [Friedman(1991)] describes a
general framework with multiple continuum populations choosing actions and receiving
payoffs and studies evolutionary steady states of continuous time adjustment dynamics.
More closely related to this paper is [Neary(2012)], who studies a similar model to us
but with two payoff shocks (more precisely, two subpopulations of deterministic size)
and agents located on a complete graph. The paper presents conditions under which
the evolutionary dynamics of [Kandori et al.(1993)Kandori, Mailath and Rob] selects
a fuzzy convention, i.e., an equilibrium where members of different subpopulations play
different actions. [Neary and Newton(2017)] study general payoff shock and present a
sufficient condition under which the logit dynamics of [Blume(1993)] selects a fuzzy
convention.

Section 2 contains the model. Sections 3-6 state and discuss the four theorems
mentioned above. Section 7 concludes.

2. Model

2.1. Coordination game in a network. There are N agents i = 1, ..., N who live in
the nodes of a network. The network is defined as an undirected weighted graph with
weights gij = gji ≥ 0 for i, j ≤ N . We assume that gii = 0 and that gi = ∑

j g > 0 for
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each player i. Let

d (g) = max
i,j

gij
gi

and w (g) = maxi gi
mini gi

,

where d (g) ∈ [0, 1] is a bound on the importance of a single player in another player’s
neighborhood and it describes how fine the network is, and w (g) ≥ 1 is a rough
measure of the degree inequality. A network is balanced if all players have the same
degree gi = gj for each i, j. In balanced networks, w (g) = 1.

The agents play a binary action coordination game. Each agent chooses an action
ai ∈ {0, 1} and receives a payoff

1
gi

∑
j

giju (ai, a−i, εi) , (1)

which depends on the actions of her neighbors and a payoff shock εi ∈ [0, 1] drawn
i.i.d. from a probability distribution F (.). The payoffs are supermodular in actions:
for each ε,

u (1, 1, ε) + u (0, 0, ε) > u (1, 0, ε) + u (0, 1, ε) .

Mixed actions are represented by the probability a ∈ [0, 1] of pure action 1. Due to
expected utility, payoffs are linear in mixed actions. We refer to the tuple (u, F ) as the
random utility game.

Example 1. In an additive payoff shock model, the payoffs of player i from interaction
with j are equal to

u (ai, aj) + Λεi1 (ai = 1) , (2)

where u is a symmetric 2×2 coordination game. Although (1) seems more general than
(2), the two models are equivalent in the sense that the payoff shocks can be matched
so that the best responses to mixed strategies in both models are identical. Parameter
Λ measures the importance of the payoff shocks. When Λ → 0, the model converges
to the deterministic game.

2.2. Equilibria. We assume that the payoff shocks are publicly observable, i.e., players
know the preferences of the other players. Each network g, and each realization of
payoff shocks ε leads to a many-player complete information static game G (g, ε). Let
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(ai) be a (possibly, mixed) profile of actions. Let

Av (a) = 1∑
i gi

∑
i

giai

be the average action weighted by each player’s neighborhood size. This turns out
to be the natural notion of average behavior. If gi ∈ {0, 1}, then gi is a count of
the interactions in which agent i participates, and Av (a) is the average number of
interactions in which action 1 is played.

For each profile a, let βai = 1
gi

∑
j gijaj be the weighted average number of agents

in the neighborhood of i who play 1. We refer to profile βa = (βai ) as the profile of
average neighborhood behaviors.

Profile a is a Nash equilibrium if, for each player i, u (ai, βai , εi) ≥ u (1− ai, βai , εi).
Denote the set of average behaviors attained in Nash equilibria as

Eq (g, ε) = {Av (a) : a is a Nash eq. of G(g, ε)} ⊆ [0, 1] .

Eq (g) as a set-valued random variable, i.e., mapping from the space of payoff shock
profiles to subsets of [0, 1]. The goal of the paper is to analyze the behavior of Eq (g)
as the network becomes larger and the importance of individual players decreases,
d (g)→ 0.

For any x ∈ [0, 1] and any two compact subsets A,B ⊆ [0, 1], say A is η-included in
B, write A ⊆η B, if maxx∈A miny∈B |x− y| ≤ η. If A ⊆η B and B ⊆η A, then we write
A =η B.

2.3. Continuum best response function. For each x ∈ [0, 1], let

P (x) = F (ε : u (1, x, ε) ≥ u (0, x, ε)) .

P (x) is the ex-ante probability that action 1 is a best response if a player faces x
fraction of opponents who also play 1. A typical graph of P is illustrated on Figure 1.
The assumptions imply that P is increasing, right-continuous, and that P (x) ∈ [0, 1].
We do not assume that P is invertible (and it will not be, if, for instance, F has atoms).
Instead, we define P−1 (y) = inf {(x : P (x) ≥ y)}.
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It is helpful to think about P (x) as a best response function in a continuum toy
version of the game, where each agent’s payoff depends on the fraction of the entire
population who choose to play 1. Due to the continuum law of large numbers, P (x)
is the fraction of the population for whom 1 is a best response. Fixed points of P , i.e.,
intersections of the graph on Figure 1 with the 45°-line, correspond to Nash equilibria
in the continuum version of the game.

3. Equilibria on complete graphs

In this section, we consider a complete graph, i.e., network g such that gij = 1 for
each i 6= j. For large N , such a graph should approximate well the continuum toy
model.

We say that a fixed point x = P (x) is strongly stable if there exist γ < 1 and
a neighborhood U 3 x, such that for each y ∈ U , if y ≤ x (resp. y ≥ x), then
P (y) ≥ P (x) + γ (y − x) (resp., P (y) ≤ P (x) + γ (y − x)).

Theorem 1. Suppose that x is a strongly stable fixed point of P . Let gN be a complete
graph with N nodes. For each η > 0, there is N > 0, such that

P
(
{x} ⊆η Eq

(
gN , ε

))
≥ 1− η.

Large complete graphs have equilibria that are close to strongly stable points of x.
The result is a sanity check, as it confirms our interpretation of P as a best response
function on the continuum toy model. The proof is straightforward (see Appendix B).

When there are (finitely many) multiple strongly stable points, Theorem 1 implies
that, with a large probability, all of them are close to the average behavior in some
equilibrium. In particular, if xmin and xmax are, respectively, the smallest and the
largest of the fixed points of P , then {xmin, xmax} ⊆η Eq (g) with a large probability
for a sufficiently large complete graph.

One can obtain other equilibrium averages by mixing and matching networks. By
taking a large number of disjoint copies of large complete graphs (see Figure 2), and
considering a variety of equilibria on component networks, we can approximate an
arbitrary point on the interval [xmin, xmax].
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Figure 2. Multiple complete graphs

Corollary 1. Suppose that xmin and xmax are strongly stable. For each η > 0, there
exists a balanced network g such that

P ([xmin, xmax] ⊆η Eq (g, ε)) ≥ 1− η.

4. Upper bound on equilibrium set

The next result shows that [xmin, xmax] is an upper bound on the equilibrium set.

Theorem 2. Suppose that xmin and xmax are strongly stable. For each η > 0 and
w <∞, there is δ > 0 such that for each network g, if d (g) ≤ δ, w (g) ≤ w, then

P (Eq (g) ⊆η [xmin, xmax]) ≥ 1− η.

The theorem yields a partial identification theory of the parameters of the model.
Consider an econometrician who studies a coordination game on a network. The econo-
metrician may not know the network g on which the game is played, nor the parameters
of the random utility model, and she treats them as parameters. If she observes the
average behavior x, she may reject all parameters for which x /∈ [xmin, xmax].

Theorem 2 and Corollary 1 together show that the interval [xmin, xmax] is a tight
upper bound (in the sense of set inclusion) on the average behavior across all networks.
In particular, the partial identification obtained from the result cannot be improved.

4.1. Proof intuition. Although the statement of Theorem 2 is intuitive, our proof
is surprisingly complicated. To explain the issue, notice first that it is not difficult to



FUZZY CONVENTIONS 11

show that the probability of any given profile being an equilibrium is small. In fact,
one can easily find an exponential bound exp (−ρN) on such a probability, where N is
the number of agents and ρ > 0 is some constant. In order to show that, with a large
probability, none of the profiles with an average payoff x > xmax + η is an equilibrium,
one could try a brute force method: multiply (a) the above exponential bound by
(b) the number of such profiles. The problem is that the number (b) is exponentially
large in N and there is no guarantee that the product of (a) and (b) converges to 0 as
N →∞.

The brute force method relies on the worst-case scenario, where events “profile a is
an equilibrium” across different a are treated as disjoint. However, they are typically
correlated, more so for profiles that are similar, in some way. The idea of the proof is to
divide profiles a into groups of similar profiles such that (a) there exists an exponential
bound on the probability that none of the profiles in a group is an equilibrium (Lemma
9 in the Appendix), and (b) the number of groups grows at a much slower rate than
the exponent of the part from (a).

In order to explain the division into groups, define the notion of closeness of two
profiles a and b as a weighted version of the Euclidean metric:

d (a, b) =
√

1∑
g2
i

∑
g2
i (ai − bi)2. (3)

For some δ > 0, and each profile a, let

B (a, δ) =
{
b : d

(
βa, βb

)
≤ δ

}
.

B (a, δ) consists of profiles that have similar average neighborhood behavior for all
agents. Lemma 10 in the Appendix shows that the number of sets B (a, δ) required to
cover the whole space of profiles is exponentially large, but not bigger than exp

(
1
δ2 cd(g)N

)
,

where cd(g) is a constant that decreases to 0 as d (g) → 0. Because the exponent con-
verges to 0 for sufficiently fine networks, the division deals with step (b).

We give more details for step (a). We start with some preparatory remarks. First,
observe that it is enough to work with a continuum best response function P ∗ (x) =
max (xmax, xmax + γ (x− xmax)), where γ < 1 is chosen so that P (x) ≤ P ∗ (x) for each
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x. (Such a γ exists due to xmax being the largest fixed point that is also strongly stable.)
The reason is that one can construct game payoffs with continuum best response P ∗

and show that the equilibria of the latter dominate the equilibria of the original game.
Next, for each profile a, define the best response profile b∗ (a, ε)=(b∗i (a, ε)), where

for each i, b∗i (a, ε) is the highest best response of agent i with payoff shock εi against
profile a. The expected value of agent i’s best response is equal to E b∗i (a, εi) = P ∗ (βai ),
or the continuum best response function applied to the average neighborhood behavior.
Let pa = (P ∗ (βai ))i be the profile of the expected best responses.

The form of the continuum best response function P ∗, and specifically the fact that
x − P ∗ (x) ≥ (1− γ) (x− xmax) for each x > xmax, implies that the expected best
response behavior pa to a profile with average neighborhood behavior above βai ≥ xmax

is strictly smaller than the average action in the average neighborhood behavior. More
generally, we establish the following fact (Lemma 6): if profile a is close (in the sense
of metric (3)) to some other profile b with the property that bi ≥ xmax for each i,
the average action in the expected best response profile pa is strictly smaller than the
average neighborhood action βa by a factor (1− γ) (Av (a)− xmax).

The rest is divided into three steps.

• If agent i has sufficiently many neighbors and none of the neighbors are too im-
portant, the average best response action in the neighborhood of i is likely to be
similar to the average expected best response, 1

gi

∑
j gijb

∗
i (a.εi) ≈ 1

gi

∑
j gijP

∗
(
βaj
)
.

More precisely, we show (Lemma 7 in the Appendix) that, if the network is suf-
ficiently fine, then, with a large probability, the average neighborhood behavior
βb
∗(a,ε) is close (in the sense of metric (3)) to the average neighborhood behavior

βp
aobtained from the expected best response profile pa. The probability bound

is exponential, where the exponent depends on the measure of fineness of the
network d (g).
• Take any two profiles a and b and consider best responses b∗ (a, ε) and b∗ (b, ε)
of agent i to such profiles. The probability that the payoff shock εi is such
that the best responses are different, b∗i (a, ε) 6= b∗i (b, ε) is closely related to the
difference between the neighborhood behavior witnessed by player i, i.e., βai
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and βbi . The smaller the difference, the smaller the probability. For any two
profiles a and b ∈ B (a, δ), the vast majority of agents observe a similar neigh-
borhood behavior βai ∼ βbi , which means that their best responses are likely to
be identical (Lemma 7 in the Appendix makes this argument precise). Further,
it means that, with a large probability, the distance (3) between the average
neighborhood behavior profiles βb∗(a,ε) and βb∗(b,ε) is small (and decreasing with
δ), with a large probability. Together with the previous paragraph, this shows
that, with a large probability, βb∗(b,ε) is close to βpa uniformly across all profiles
b ∈ B (a, δ). A similar statement about the uniform closeness of βpb and βp

a

holds as well.
• Take a that Av (a) > xmax and suppose that the above large probability events
hold. Because of the form of the continuum best response function P ∗, we
clearly have βpa

i ≥ xmax for each i. Suppose that b ∈ B (a, δ) is an equilibrium,
b∗ (b, ε) = b. On the one hand, the above fact applied to profiles βb and βp

a

implies that the average action in profile βb must be strictly smaller than the
average action in profile βpb and the gap between two average actions can be
shown to be of the same order as (1− γ) (Av (a)− xmax). On the other hand,
the probabilistic assumption implies that profile βb = βb

∗(b,ε) is close to βpb in
the sense of metric (3). It is straightforward to show that the average action
in profiles that are close in the sense of metric (3) is also close. Contradiction
between the two claims means that no profile in B (a, δ) is an equilibrium.

5. RU-dominant selection

In this section, we introduce an equilibrium selection tool appropriate for coordina-
tion games with random utility (RU): the RU -dominant outcome. We show that there
are networks in which the RU -dominant outcome is essentially the only equilibrium
average.
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5.1. RU-dominant outcome. An equilibrium action x∗ ∈ [0, 1] is RU-dominant if it
is a maximizer of

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy. (4)

It is strictly RU-dominant, if it is a unique maximizer. Generically, any game with
random utility has a RU -dominant action.

The following example shows that, if the impact of the random utility impact disap-
pears, the RU-dominant outcomes converge to standard risk dominance of [Harsanyi and Selten(1988)].

Example 2. (Cont. of Example 1) Suppose w.l.o.g. that 0 is the unique strictly
risk-dominant action of the coordination game with payoffs u. Then, each player is
indifferent between two actions if a fraction α > 1

2 of players plays action 1. When
Λ→ 0, P−1 (y)→ α for each y ∈ (0, 1), and we have

xˆ

0

(
y − P−1 (y)

)
dy →

xˆ

0

(y − α) dy = 1
2x

2 − αx = x
(1

2x− α
)
.

The last expression is maximized by x = 0. Hence the RU-dominant outcome(s)
converge to 0, i.e., the risk-dominant action of deterministic game u.

The main result of this section shows that there are networks where, with a large
probability, all equilibrium averages are close to the strictly RU -dominant outcome x∗.

Theorem 3. Suppose that x∗ is the strictly RU-dominant outcome and that either
x∗ > 0 and P (0) > 0, or x∗ < 1 and P (1) < 1. For each η > 0, there is a network g
such that

P (Eq (g) ⊆η {x∗}) ≥ 1− η.

5.2. Proof intuition. The network constructed in the proof is a 2-dimensional lattice,
parameterized with M and m. There are M2 agents living on square

[
0, M

m

]2
⊆ R2

at fractional points
(
k
m
, l
m

)
for some k, l = 1, ...,M . Any two agents i and j are

connected, gij = 1, if the (Euclidean) distance between them is no larger than 1. To
make the network balanced and to simplify the arguments, we assume that all distance
calculations are done modM

m
, which turns the square

[
0, M

m

]2
into a torus.
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We show that, if m and M
m

are sufficiently large, then for a large probability set
of realizations, there is no equilibrium in which the average action is significantly
higher than x∗. Together with an analogous argument for the other side, this suffices
to establish the theorem. Our argument should extend to K-dimensional lattices for
K > 2, but not to K = 1.

The proof relies on the idea of a contagion through best response dynamics in-
troduced in [Ellison(1993)] and further expanded in [Morris(2000)]. If the lattice is
sufficiently large, with a large probability, there exists a contiguous group of agents
for whom 0 is strictly dominant. We refer to these agents as initial infectors. Assume
that, initially, all the other agents play 1. Consider a best response process in which
agents, in some order, are offered an opportunity to revise their actions to a myopic
best response. Because of the payoff complementarities, the revisions will always go
in the same direction, i.e., towards action 0. The process must eventually stop and
the action profile at which it stops is the highest equilibrium for a given realization of
payoff shock.

It is helpful to imagine downwards revision of actions as a wave of 0s moving away
from the set of initial infectors. We are going to show that, for almost all realizations,
the contagion wave spreads throughout the entire network in such a way that, even-
tually, in almost every neighborhood, the average fraction of agents who play 1 is not
much higher than x∗.

The rest of the argument is divided into two parts.

5.2.1. Contagion wave on line. First, we explain how the existence of the contagion
wave is related to the maximization problem (4). It is convenient to explain this part
of the argument using a version of the line network from [Ellison(1993)]. Suppose
that agents are located along a line at equally spaced locations. We assume that each
location in the network contains a continuum population of mass 1. We further assume
that the weight of connection between agents in locations i and j depends only on their
distance gij = gi−j =: gj−i, where we take no connections between agents in the same
location, i.e., g0 = 0. We normalize the weights so that ∑ gd = 1. The continuum
assumption allows us to use the law of large numbers to compute the average best
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response action of agents in node i as equal to P (∑d gdai+d), where aj is the average
current action played by agents in node j. Initially, locations i ≤ 0 consist of initial
infectors i.e. those agents who play 0. All locations i > 0 initially play action 1.

Let a∗i be the average action in location i ≥ 0 when the best response process stops.
Due to payoff complementarities, a∗i must be increasing in i. Let ai = max (x∗, a∗i ) and
a = limi→∞ ai = supi a∗i . Suppose that a > x∗. Because x∗ ≤ P (y) for each y ≥ x∗ and
because a∗i is the limit action of the best response process, the average action cannot
be larger than the best response

ai = max (x∗, a∗i ) = max
(
x∗, P

(∑
d

gda
∗
i+d

))
≤ max

(
x∗, P

(∑
d

gdai+d

))
= P

(∑
d

gdai+d

)
.

Taking the inverse, we obtain

P−1 (ai) ≤
∑
d

gdai+d = x∗ +
∑
j

 ∑
d≥j−i

gd

 (aj+1 − aj) ,

where the equality is due to a discrete version of the “integration by parts” formula
and the fact that ai ≥ x∗ for each i. After multiplying by ai+1 − ai ≥ 0, and summing
up across all locations i, we obtain

∑
i

(
P−1 (ai)− x∗

)
(ai+1 − ai) ≤

∑
i,j

 ∑
d≥j−i

gd

 (ai+1 − ai) (aj+1 − aj) . (5)

The left-hand side of the inequality is approximately equal to
´ a
x∗

(P−1 (y)− x∗) dy.
To compute the right-hand side, notice that we can switch the roles of i and j in the
summation, and using the fact that ∑d≥j−i gd +∑

d≥i−j gd = ∑
gd = 1, we have

∑
i,j

 ∑
d≥j−i

gd

 (ai+1 − ai) (aj+1 − aj) = 1
2

∑
i,j

 ∑
d≥j−i

gd +
∑
d≥i−j

gd

 (ai+1 − ai) (aj+1 − aj)


= 1
2

∑
i,j

(ai+1 − ai) (aj+1 − aj)
 = 1

2 (a− x∗)2

= 1
2 (a− x∗)2 =

aˆ

x∗

(y − x∗) dy.
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Putting the two sides together, inequality (5) implies that
aˆ

x∗

(
y − P−1 (y)

)
dy ≥ 0,

which contradicts the fact that x∗ is the unique maximizer of the integral on the right-
hand side. Hence, the contagion must spread across the entire network.

More formally, Lemma 12 in the Appendix uses similar calculations to establish, for
each η > 0, the existence of δ > 0, L <∞, and a δ-contagion wave: a strategy profile
σi with the property that (a) σi ≤ x∗+η for i ≤ 0 and σi ≥ 1 for i ≥ L and (b), for each
location i, the best response strategy of the agents to σ + δ in that location is smaller
than the current strategy σi−δ in the location that is δ away on the left side. The
idea is that, starting from σ, the best response dynamics move the population strategy
σ rightwards by at least δ at each stage of the dynamics - eventually spreading the
behavior of at most x∗ + η to the entire network. We refer to L as the length of the
wave.

The spread of a contagion wave from a small set of initial infectors extends from
the line to higher-dimensional lattices due to an elegant argument from [Morris(2000)].
The idea is that if the front of the wave is sufficiently smooth, i.e., with a sufficiently
low curvature, then it can be locally approximated by a hyperplane. The spread of the
wave in the direction that is orthogonal to its front can be analyzed using the same
techniques as the spread of the wave on a one-dimensional line.

5.2.2. Obstacles. The continuum assumption used in the above argument ensures that
the average best response action of agents in a location is given by the continuum
best response function P (.). The assumption makes it easy to compute average best
responses. At the same time, it ignores a positive probability of a contiguous group of
“bad” agents for whom 1 is the strictly dominant action. If sufficiently large, such a
group of “bad” agents will stop the best response revisions towards action 0 and block
the contagion wave (see the left panel on Figure 3).

One could try to compare the relative frequency of initial infectors necessary to start
the wave versus the sets of “bad” agents who may block it. Unfortunately, for some
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initial infectors

Line

initial infectors

Lattice

Figure 3. Obstacles to contagion wave

P s, the latter are more frequent. As a result, the line network is not a good candidate
example for Theorem 3.

At the same time, the “bad” sets are intuitively less likely to block the contagion
wave on higher-dimensional lattices (see the right panel of Figure 3). The reason is
that to block the wave, the “bad” sets would have to be arranged so as to surround it.
Even if the number of “bad” sets is much larger than the number of initial infectors,
the probability of a bad arrangement can be quite small.

We show that, indeed, the likelihood of “bad” sets surrounding the initial infectors
is very small if the lattice is sufficiently large. Below, we sketch the main ideas. The
details of the proof can be found in Appendix D.

First, the lattice is divided into large and small cubes (see Figure 4) so that the
number of large cubes in the lattice is very large, each large cube contains a very large
number of disjoint neighborhoods, each neighborhood contains a very large number
of small cubes, and each small cube contains a very large number of agents. These
numbers are chosen so that the following series of claims holds:

(1) The numbers of small cubes in a neighborhood and the number of agents in a
small cube are sufficiently large, so that the fraction of shared agents and the
fraction of shared small cubes in neighborhoods of any two agents i and j is
well approximated by the area of the intersection of two 1-radius circles with
centers at i and j (Lemma 13).
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Large cubeLattice Large cube

NeighborhoodSmall cube

Figure 4.

(2) The size of the small cube is sufficiently large so that, for each small cube, with
a probability close to 1, the empirical distribution of payoff shocks within the
cube is close to the true distribution. We say that a small cube is (γ-)bad if,
for some fraction x, the average best response action of the agents within the
cube is (γ-)larger than P (x). Agents in bad cubes may tilt toward higher best
responses than a statistical agent. Agents in a small cube that is not bad are
well approximated by the continuum assumption in the following sense: the
average best response in the small cube is not higher than P (β), where β is
the average “belief” (i.e., the average neighborhood action) for members of the
cube (Lemma 15).

(3) A large cube is good if it contains no bad small cubes. The ratio of the size of
the small cube (i.e., the number of agents within) to the number of small cubes
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in a large cube is sufficiently large, so that the probability p that a large cube
is not good is arbitrarily close to 0.
A large cube is extraordinary, if it contains only agents for whom 0 is the
strictly dominant action. Extraordinary cubes play the role of the set of the
initial infectors. The number of large cubes is sufficiently large, so that the
probability that an extraordinary large cube exists is arbitrarily close to 1.

(4) Two large cubes are connected if they share a wall. The number of large
cubes is sufficiently large, and the probability p that a large cube is not good
is sufficiently small, so that there exists a giant component of good large
cubes - a set of good large cubes that contains almost all large cubes on
the lattice and such that all of its elements are connected with each other
by paths of large cubes that share a wall. This argument is the content of
Lemma 17) and it relies on definitions and results from the percolation theory
([Bollobás et al.(2006)Bollobás, Riordan and Riordan]).
(a) First, we show that each connected set S can be surrounded by a connected

“boundary” ∂S that isolates set S (and, possibly, some other large cubes)
from the remaining large cubes. The total number of large cubes isolated
away from set S is not larger than |S|2. (On a two-dimensional lattice,
the worst-case scenario bound comes from elements of set S arranged in
a way that surrounds an interior proportional in size to the square of its
perimeter.)

(b) For a collection of connected sets S1, ..., SJ that are not connected with
each other, the giant connected component that omits all sets Sj contains
all but at most ∑ |Sj|2 large cubes.

(c) Let S1, ..., SJ be the collection of all maximally connected collections of
large bad cubes. We estimate the expected value of ∑ |Sj|2 as proportional
to the number of all large cubes multiplied by the probability p that a single
large cube is bad (Lemma 24). An application of the Markov inequality
shows that, if p is sufficiently small, the giant connected component that
contains only good cubes contains a fraction of all large cubes that is
arbitrarily close to 1.
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(5) If the curvature of the two-dimensional contagion wave is sufficiently small rel-
ative to the curvature of an individual neighborhood, the contagion wave will
spread, as long as its path contains only good small cubes (Lemma 16).

Putting it together, the contagion wave is going to spread through a vast majority of
the giant connected component of good large cubes, and thus a vast majority of the
lattice. Hence, with a large probability, the average action in the largest equilibrium
on a sufficiently large two-dimensional lattice is close to x∗.

6. RU-dominant equilibrium in each network

The previous section identified an RU -dominant outcome as a candidate solution for
equilibrium selection theory. Next, we ask whether there are other potential candidates,
i.e., whether there are other outcomes that can be unique equilibria on some networks.

The next result shows that the answer is negative.

Theorem 4. Suppose that x∗ is the strictly RU-dominant outcome. For each η > 0,
there is d > 0 such that, for each network g, if d (g) ≤ d, then

P ({x∗} ⊆η Eq (g)) ≥ 1− η.

If the network is sufficiently fine, then, for almost all realizations of payoff shocks,
there is an equilibrium with action distribution close to the RU-dominant action. In
particular, no outcome other than the RU -dominant outcome can be a unique equilib-
rium in some network.

Theorems 3 and 4 lead to an equilibrium selection theory: only the RU -dominant
outcome x∗ is robust to changes in the underlying network. This claim is made precise
by the proof of Theorem 4. In the proof, we consider a profile in which almost all
players choose best responses as if x∗ neighbors play action 1. We show that any best
response dynamics starting from such a profile will stop in an equilibrium profile in
which a great majority of players never revise their actions. It follows that, if players
play such an equilibrium under one network, and then the network is changed (in a
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manner independent of actions and payoff shocks), then the best response process will
end up with a very similar profile as an equilibrium.

6.1. Proof intuition. We start with an initial profile a0 in which all players choose
their best response as if fraction x∗ of their opponents plays 1,

a0
i ∈ arg max u (ai, x∗, εi) .

Although each agent chooses depending on their payoff shock, the law of large numbers
and the fact that x∗ is an equilibrium of the continuum game imply that the average
action in the population is unlikely to be far from x∗.

Starting from the initial profile, we consider an upper best response dynamics, where
at each stage, a single player is allowed to revise their action towards the best response,
but only upwards, i.e., if the best response is the action 1. Such dynamics must
stop eventually, and the resulting profile aU does not depend on the order in which
players revise their actions, as long as all players for whom 1 is the best response
has the opportunity to revise. We argue below that the average action under aU

is not too far from the average action under a0, and hence from x∗. Similarly, an
analogous result holds when we analyze a downward counterpart of the best response
dynamics. Because of payoff complementarities, there must be an equilibrium action
profile sandwiched between the limit profiles obtained by the upward and downward
best response dynamics. The two results imply that such an equilibrium is not far
away from x∗.

In order to motivate the key step, it is helpful to begin with a special case when
the game is (almost) deterministic and x∗ ≈ 0 (i.e., a small perturbation of Example
1). In this case, Theorem 4 follows from an argument that is based on the proof of
Proposition 3 in [Morris(2000)]. First, because x∗ ≈ 0 and the definition of a0, the
initial profile a0 has a small number (∼ x∗N) of agents who play action 1. Second,
let at be the tth stage of the upper best response dynamics. At each stage, we define
the infection capacity of profile at as the mass of links that connects agents who play



FUZZY CONVENTIONS 23

action 1 with agents who play action 0,

F0 (a) =
∑

i,j:at
i=1,at

j=0
gij. (6)

If, at stage t+1, player i revises her action upwards, then (a) the capacity will increase
by the weight ∑j:at

j=0 gij of links that i has with agents who play 0, and (b) decrease
by the weight ∑j:at

j=1 gij of links that i has with agents who play 1 in profile at. Recall
that α > 1

2 is a fraction of neighbors that makes players indifferent between the two
actions. Since action 1 is i’s best response, we have ∑j:at

j=1 gij ≈ α
∑
j gij = αgi and∑

j:at
j=0 gij ≈ (1− α)gi, which implies that the capacity in each stage must decrease by

αgi− (1− α) gi = (2α− 1) gi > 0. Because the capacity cannot fall below 0, we obtain
a bound on the total mass of players who switch actions

(2α− 1)
∑

i:0=a0
i<a

U
i =1

gi ≤ F0
(
a0
)
.

As the initial profile had a small number of agents playing 1, the number of agents who
revise their actions must be small as well.

There are two important features of the above argument: the initial capacity is
small and it must appropriately decrease with each upward-revised action. The proof
of Theorem 4 preserves the two features, but with a modified notion of capacity. We
cannot use (6), because, for general payoff shocks and x∗ ∈ (0, 1), a substantial fraction
of the population plays each action, and (6) is too large. Instead, we replace actions
ai by their expected best response versions pi = P

(
1
gi

∑
j gijaj

)
= P (βsi ) and define

F (p) = 1
2
∑
i,j

gij (pi − pj)2 . (7)

(To motivate the definition, notice that if we replace pi by ai, then (6) and (7) are
equal.)

The law of large numbers implies that, under the initial profile a0, the average action
among the neighbors, β0

i = 1
gi

∑
j gija

0
j , and hence the expected best response pi must

also be close to x∗. Thus, the capacity of the initial profile is appropriately small and
the first required feature of capacity is preserved.
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The second feature is preserved as well. We sketch the idea here and leave the details
to the Appendix. Due to symmetry in the weights gij = gji for each i, j, we have for
each t,

F
(
pt+1

)
−F

(
pt
)

=
∑
i

gi
(
pt+1
i

)2
−
∑
i

gi
(
pti
)2
−
∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1
psj

=
∑
i

gi
(
pt+1
i

)2
−
∑
i

gi
(
pti
)2
−
∑
i

gi
(
pt+1
i − pti

) ∑
s=t,t+1

βsi

+
∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1

(
asj − psj

)
,

where, in the third line, we use βsi = 1
gi

∑
j gija

s
j . Because psi = P (βsi ), we have

(
pt+1
i − pti

) ∑
s=t,t+1

βsi ≈ 2
ˆ pt+1

i

pt
i

P−1 (y) dy + small terms,

where, here and below, the “small terms” depend on the stage increase in βt+1
i − βti ,

which is small due to our assumption that at most one agent revises her action per
period and because the impact of a single agent in the neighborhood of another is
smaller than d (g). They may also depend on the difference β0

i − x∗, which is small
because the initial profile is close to x∗.

Summing across t ≤ T , and noting that
(
pt+1
i

)2
− (pti)

2 = 2
´ pt+1

i

pt
i

ydy, we obtain

F
(
pT+1

)
−F

(
p0
)

=
∑
t≤T

(
F
(
pt+1

)
−F

(
pt
))

=− 2
∑
i

gi


pT +1

î

p0
i

(
P−1 (y)− y

)
dy

+
∑
t≤T

∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1

(
asj − psj

)
(8)

+ small terms.

The details of the calculations can be found in Appendix E.
The second term of the right-hand side is small for probabilistic reasons. Notice that

the probability that action 1 is a player j’s best response in period s is not higher than
the expected action psj . In fact, the probability is not higher even if conditioned on
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the actions of other agents. The reason is that agent j’s behavior positively affects the
actions of other players only after she revises her action. This observation, together
with the fact that each agent j is small in the neighborhood of i, allows us to show that
the second last term is small, with a large probability, due to a version of the finite law
of large numbers.

Ignoring all the small terms (including terms discussed in the previous paragraph),
summing across t, and remembering that pti = P (βti) and that β0

i ≈ x∗ = P (x∗) ≈
P (β0

i ), we obtain

F
(
p0
)
≥2

∑
i

gi


P(βT

i )ˆ

x∗

(
P−1 (y)− y

)
dy

 .
The definition of the RU-dominant outcome implies that, at least locally, the integral is
increasing in βTi . Hence, if the original capacity is small, then, for each T , the average
behavior in the neighborhood of a great majority of players cannot be too far away
from x∗. Hence, the limit of the upper best response dynamics cannot be to far away
from x∗, which concludes the argument.

7. Discussion

7.1. Unweighted average. Our definition of the average action stated in Section
2.2 weights individuals by their neighborhood size gi. An alternative is to use the
unweighted average

Avunweighted (a) = 1
N

∑
i

ai.

When the network is balanced, i.e., when gi = gj for each i and j, the two notions of
average are identical.

Because Theorem 1, Corollary 1, and Theorem 3 are proven using balanced networks,
they continue to hold verbatim if we change the notion of average to an unweighted one.
A version of Theorem 4 holds with the following modification: for each w > 0, and
each η > 0, there is d > 0 such that, for each network g, if d (g) ≤ d and w (d) ≤ w,
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then
P ({x∗} ⊆η Eq (g, )) ≥ 1− η.

The required modification of the proof is very minor and it can be found in Appendix
E.8.

We were not able to find an immediate way of extending Theorem 2.

7.2. Small number of links. The results of this paper focus on the limit case d (g)→
0, and they apply to networks with a large number of connections (i.e., large degrees),
like networks of acquaintances. If d (g) > 0, none of the results hold. The small-degree
case requires different techniques and separate analysis. We leave it for future research.

7.3. Independence. Another key assumption of the model is that the payoff shocks
are independent across agents. An alternative and natural assumption is that the payoff
shocks of directly connected agents can be correlated. If imperfect, such a correlation
dies out exponentially with the distance between agents, making distant agents roughly
independent. For this reason, we suspect that the results of this paper continue to hold.
However, the proper analysis of this case is left to future research.

Appendix A. Monotonicity

This part of the Appendix shows that if P is a continuum best response function of
random utility game (u, F ), then, for any increasing and right-continuous function P ′ ≥
P , there is a random utility game that has P ′ as a continuum best response function,
and such that the distribution of equilibria first-order stochastically dominates the
distribution of equilibria in the original game.

Formally, the space of (mixed) action profiles A = [0, 1]N is a lattice with coordinate-
wise comparison: for any a, b ∈ A, we have a ≤ b iff ai ≤ bi for each i. Let ≤S denote
the strong set order on subsets or R and, as a lattice extension, of A. We say that a
probability distribution µ ∈ ∆A is dominated by µ′ ∈ ∆A in the sense of first-order
stochastic dominance, and write µ ≤FOS µ′ if, for each a ∈ A, µ ({a′ : a′ ≥ a}) ≤
µ′ ({a′ : a′ ≥ a}).

Let (u, F ) be a random utility game. Let E (u, ε) denote the set of equilibrium
profiles in random utility game (u, F ). We compare sets using the strong set order.
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Let µ (u, F ) denote the probability distribution over the sets of equilibrium profiles
induced by the distribution over profiles of payoffs shocks. We say that random utility
game (u, F ) is dominated by game (u′, F ′) if µ (u, F ) ≤FOS µ (u′, F ′).

Lemma 1. Suppose that P is a continuum best response function of random utility
game (u, F ). Then, for each increasing, right-continuous P ′ ≥ P , there exists a random
utility game (u′, F ′) such that (a) P ′ is a continuum best response function of (u′, F ′),
and (b) random utility game (u, F ) is dominated by game (u′, F ′).

Proof. First, observe that any two random utility models with the same continuum
best response function P have the same distributions over sets of equilibria. Second,
we show that we can construct different models over the same probability space. Let
Ω = [0, 1]N and let λN be the product uniform measure on Ω. For each increasing,
right-continuous P , define utility function uP so that

uP (1, x, ε) = x− P−1 (ε) and uP (0, x, ε) = 0.

Then, the continuum best response function of (uP , λ) is equal to P . Finally, notice
that if P ′ ≥ P and the two games uP and u′P are considered on the same probability
space

(
Ω, λN

)
, then the best response of each player in the second model is always

higher (in the sense of strong set order) than the best response of the player in the first
model. A consequence is that, for each ε, E (uP , ε) ≤ E (uP ′ , ε), which concludes the
proof of the result. �

Appendix B. Proof of Theorem 1 and Corollary 1

B.1. Proof of Theorem 1. Let U be an open set from the definition of a strongly
stable x. Fix δ > 0 and N <∞ such that [x− 2δ, x+ 2δ] ⊆ U and γ 1

N−1 ≤
1
2 (1− γ) δ.

Let η = 1
2 (1− γ) δ. Then,

x−δ ≤ x−δ+
(

(1− γ) δ − γ 1
N − 1

)
−η ≤ P (x)−γ

(
δ + 1

N − 1

)
−η ≤ P

(
x− δ − 1

N − 1

)
−η,

and similarly, P
(
x+ δ + 1

N−1

)
+ η ≤ x+ δ. Additionally, choose a sufficiently large N

so that 2 exp (−2Nη2) ≤ η.



28 MARCIN PĘSKI

Let
Pε (x) = 1

N

∑
i

1 (β (εi) ≤ x)

be the empirical distribution of best response thresholds. Define event P = {supx |Pε (x)− P (x)| ≤ η}.
By the Dvoretsky-Kiefer–Wolfowitz–Massart inequality, for each η > 0,

Prob (not P) ≤ 2 exp
(
−2Nη2

)
≤ η.

For each profile a, define βai = 1
N−1

∑
j 6=i aj as the average action in player i’s neigh-

borhood. The average action is not far from the average action in the population,
|βai − Av (a)| ≤ 1

N−1 .

Suppose that event P holds. Let b (a, ε) be the best response profile to profile a,
where, in case of a tie, we assume that an agent chooses 1. Then,

Av (b (a, ε)) = 1
N

∑
1 {β (εi) ≤ βai } .

If Av (a) ∈ [x− δ, x+ δ], the above inequalities imply that

x− δ

≤P
(
Av (a)− 1

N − 1

)
− η ≤ 1

N

∑
1
{
β (εi) ≤ Av (a)− 1

N − 1

}
≤Av (b (a, ε))

≤ 1
N

∑
1
{
β (εi) ≤ Av (a) + 1

N − 1

}
≤ η + P

(
Av (a) + 1

N − 1

)
≤x− δ.

Hence, mapping b (, .ε) maps the set of profiles a s.t. Av (a) ∈ [x− δ, x+ δ] into itself.
The result follows from the fixed-point theorem.

B.2. Proof of Corollary 1. By Theorem 1, for each η > 0 and for sufficiently large
N ,

P
(
{xmin, xmax} ⊆ 1

8η
Eq

(
gN , ε

))
≤

∑
x∈{xmin,xmax}

P
(
{x} ⊆ 1

8η
Eq

(
gN , ε

))
≤ 1

4η.

Let g = gK,N be a balanced network that consists of K copies of complete N -person
graphs. Let gk denote the kth copy. Let A (g, ε) =

{
k : {xmin, xmax} ⊆ 1

8η
Eq (gk, ε)

}
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be the set of copies that contain equilibria with averages close to the largest and the
smallest of the fixed points. By choice of N and the Central Limit Theorem, for
sufficiently large K,

Prob
( 1
K
|A (g, ε)| ≤ 1− 3

8η
)
≤ η.

Let ψmax, ψmin : {1, ..., K} → [0, 1] be functions such that ψs (k) ∈ Eq (gk, ε) for each
s = max,min and each k, and, if k ∈ A (g, ε), then |ψs (k)− xs| ≤ 1

8η. Then, for each
subset B ⊆ {1, ..., K} of copies, there is an equilibrium a with average payoffs equal to

Av (a) = 1
K

∑
k∈B

ψmax (k) +
∑
k/∈B

ψmin (k)
 .

Because of the choice of ψ. (.),

|B|
K
xmax + K − |B|

K
xmin −

1
2η ≤ Av (x) ≤ |B|

K
xmax + K − |B|

K
xmin + 1

2η.

If K ≥ 2
η
, for any x ∈ [xmin, xmax], we can choose B, and hence arrive at equilibrium

a, so that the average payoffs in a are at most η-far from x, |Av (a)− x| ≤ η.

Appendix C. Proof of Theorem 2

The first subsection introduces notation and metric d. Section C.2 derives various
deterministic inequalities connecting metric d and average behavior. Section C.3 de-
rives probabilistic bounds. The next two sections contain steps (a) and (b) described
in the introduction. The last section concludes the proof of the theorem.

C.1. Preliminary remarks. We make some preliminary remarks with an intention
to simplify the problem. First, it is sufficient to establish one side of the probability
bound: for each η > 0 and w < ∞, there is δ > 0 such that, for each network g, if
d (g) ≤ δ and w (g) ≤ w, then

P
(
maxEq

(
gN , ε

)
≥ xmax + η

)
≤ η.

The proof of the other probability bound is analogous, and the two bounds together
combine to the statement of the theorem.
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Second, say that a is an upper equilibrium if, whenever indifferent, each agent plays
action 1. Because of supermodularity, if a is an equilibrium, there exists an upper
equilibrium a′ st. a′ ≥ a. Thus, it is enough to show the above probability bound
when set Eq (g, ε) contains only the average payoffs in all upper equilibria.

Third, because xmax is strongly stable, there exists a constant γ < 1 such that for
each x,

P (x) ≤ max (xmax, xmax + (1− γ) (x− xmax)) = P ∗ (x) .

(Such a constant exists locally due to the definition of strong stability. The existence
for all x follows from compactness and the fact that xmax is the largest fixed point of
P .) Because P ∗ is increasing and right-continuous, Lemma 1 implies that there exists a
random utility game (u∗, F ∗) with continuum best response function P ∗ that dominates
(u, F ). Thus, it is enough to show the second claim in Theorem 2 for game (u∗, F ∗).
Henceforth, we assume that P ∗ is the continuum best response function. Notice that
P ∗ is Lipschitz with a Lipschitz constant equal to γ.

Finally, we will use the following notation. Let bi (a, ε) = max (arg maxai
ui (ai, βai , ε))

be the largest best response action of agent i against a−i given payoff shock εi. Let
b (a, ε) be the profile of best responses. If a is an upper equilibrium given ε, then
b (a, ε) = a. Also, we denote pa = (P ∗ (βai ))i to be the profile of expected best re-
sponses.

Let A = [0, 1]N be the space of (mixed) action profiles. Let B = {βa : a ∈ A} be
the set of profiles βa = (βai ) of neighborhood behaviors that can be generated from the
profiles. We assume that A is a subset of a normed space RN with a metric (3). Under
this metric, diamA = 1.

Let gmin = mini gi and gmax = maxi gi.

C.2. Deterministic relationships. This section discusses deterministic relationships
and bounds on profiles.

Lemma 2. For each profile a ∈ A,

Av (a) = Av (βa) .
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Proof. Notice that

Av (βa) = 1∑
i gi

∑
i

gi
1
gi

∑
j

gijaj = 1∑
i gi

∑
i

∑
j

gijaj = 1∑
i gi

∑
j

ajgj = Av (a) .

�

Lemma 3. For any profiles a, b ∈ A,

|Av (P ∗ (a))− Av (P ∗ (b))| ≤ |Av (a)− Av (b)| .

Proof. The inequality follows from P ∗ being Lipschitz with a constant γ < 1. �

Lemma 4. For any profiles a, b ∈ A,

|Av (a)− Av (b)| ≤
√
w (g)d (a, b) .

Proof. Notice that

|Av (a)− Av (b)| ≤ 1∑
gi

∑
gi |ai − bi| ≤

√
1∑
gi

∑
gi (ai − bi)2

≤
√
w (g) 1∑

g2
i

∑
g2
i (ai − bi)2 =

√
w (g)d (a, b) ,

where the second inequality follows from Jensen’s inequality, and the third one from∑
g2
j ≤ gmax

∑
gj ≤ w (g) gi

∑
gj for each i. �

Lemma 5. Suppose that profile b is such that bi ≥ xmax for each i. Then, for each
profile a,

1∑
i gi

∑
i

gi max (xmax − ai, 0) ≤
√
w (g)d (a, b) .

Proof. For each profile a, define profile min (xmax, a) so that (min (xmax, a))i = min (xmax, ai).
Then, because function f (y) = min (y, xmax) is Lipschitz with constant 1, we have

d (min (a, xmax) , xmax) = d (min (a, xmax) ,min (b, xmax)) ≤ d (a, b) ,
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where, abusing notation, we write xmax to denote the constant profile, and we use the
fact that min (b, xmax) = xmax. By Lemma 4,

1∑
i gi

∑
i

gi max (xmax − ai, 0) = Av (xmax)− Av (min (a, xmax))

= Av (min (b, xmax))− Av (min (a, xmax))

≤
√
w (g)d (min (a, xmax) ,min (b, xmax)) ≤

√
w (g)d (a, b) .

�

Lemma 6. Suppose that profile b is such that bi ≥ xmax for each i. Then, for each
profile a,

Av (a)− Av (P ∗ (a)) ≥ (1− γ) (Av (a)− xmax)− 2 (w (g))
1
4
√
d (a, b),

where P ∗ (a) is a profile of actions P ∗ (ai) for each agent i.

Proof. Lemma 5 implies that

1∑
i gi

∑
i

gi max (xmax − ai, 0) ≤
√
w (g)d (a, b) =: δ,

where the last equality defines δ. Let A = ∑
i:ai≤xmax−

√
δ gi and notice that

A =
∑

i:ai≤xmax−
√
δ

gi ≤
1√
δ

∑
i:ai≤xmax−

√
δ

gi (xmax − ai) ≤
1√
δ

∑
i

gi max (xmax − ai, 0)

≤ δ√
δ

∑
gi =

√
δ
∑

gi.

Hence

Av (a)− Av (P ∗ (a)) = 1∑
gi

∑
i

gi (ai − P ∗ (ai))

≥− 1∑
gi

∑
i:ai≤xmax−

√
δ

gi −
√
δ

1∑
gi

∑
i:xmax≥ai≥xmax−

√
δ

gi + 1∑
gi

∑
i:ai≥xmax

gi (ai − P ∗ (ai))

≥− 1∑
gi
A−
√
δ + (1− γ) 1∑

gi

∑
i:ai≥xmax

gi (ai − xmax)

≥ (1− γ) (Av (a)− xmax)− 2
√
δ.
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The first inequality is due to P ∗ (ai) = xmax for ai ≤ xmax and the fact that xmax−ai ≤
1. �

C.3. Probability bounds on distances between profiles. This subsection con-
tains probabilistic bounds on the distances between profiles of neighborhood behaviors.
First, we show that the distance between neighborhood behaviors obtained from the
best response profile b (a, ε) and the expected best response profile pa is likely to be
small.

Lemma 7. There exists a universal constant c <∞ such that, for each profile a,

P
(
d
(
βb(a,ε), βp

a
)
≥ η

)
≤ exp

(
− c

(w (g))4N
(
η2 − d (g)

)2
)
.

Proof. Notice that∑
g2
i

(
d
(
βb(a,ε), βp

a
))2

=
∑

g2
i

(
β
b(a,ε)
i − βp

a

i

)2

=
∑
i

∑
j

gij
(
bj (a, ε)− paj

)2

=
∑
j 6=k

(∑
i

gjigik

)(
bj (a, ε)− paj

)
(bk (a, ε)− pak) +

∑
j

(∑
i

g2
ij

)(
bj (a, ε)− paj

)2
.

Because gij ≤ d (g) gi, the second term is not larger than d (g)∑ g2
i . Let xj = bj (a, ε)−

paj for each j. Then,

P
(
d
(
βb(a,ε), βp

a
)
≥ η

)
≤P

∑
j 6=k

(∑
i

gjigik

)
xjxk ≥

(
η2 − d (g)

)∑
i

g2
i

 .
Let g(2)

jk = ∑
i gjigik and let G(2) be the symmetric matrix of elements g(2)

jk . Observe
that

g
(2)
jk =

∑
i

gjigik =
∑
i

gjigik
gjgi

gjgi ≤ (w (g))2 g2
minπjk,

where we denote πjk = ˙∑
i
gji

gj

gik

gi
. Note that, for each j, ∑k πjk = ∑

k,i
gji

gj

gik

gi
= ∑

i
gji

gj
=

1. Hence πjk ≤ 1.
Because the best response of each player i depends only on independent shock εi (and

not on other payoff shocks), xj and xk are independent for j 6= k. Hence the expected
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value of∑j 6=k (∑i gjigik)xjxk is equal to 0, and we can use the Hansen-Wright inequality
(Theorem 6.2.1 in [Vershynin(2018)]):

P

∑
j 6=k

(∑
i

gjigik

)
xjxk ≥ t

 ≤ 2 exp
(
−ct2

∥∥∥G(2)
∥∥∥−2

F

)
,

where c is some universal constant (note that the random variables xj are bound by
2), and where

∥∥∥G(2)
∥∥∥
F
is the Frobenius norm of matrix G(2):∥∥∥G(2)
∥∥∥2

F
=
∑
i

∑
j

(
g

(2)
ij

)2
≤ (w (g))4 g4

min
∑
i

∑
j

π2
ij

≤ (w (g))4 g4
min

∑
i

∑
j

πjk ≤ (w (g))4 g4
minN.

Take t = (η2 − d (g))∑i g
2
i , and notice that ∑i g

2
i ≥ Ng2

min to obtain the inequality in
the statement of the lemma. �

The second result shows that, for any fixed profile a0, the maximum distance between
neighborhood behaviors obtained as the best response to a0 and the best response to
some other profile a, across all profiles a that have similar neighborhood behaviors to
a0, is small.

Lemma 8. For each profile a0,

P

(
sup

a:d(βa,βa0 )≤δ
d
(
βb(a0,ε), βb(a,ε)

)
≥ η

)
≤ exp

(
− 1

2 (w (g))4N
(
η − 3δ2/3

)2
)
.

Proof. For payoff shock ε, let β (ε) such that β (ε) = max {β : u (1, β, ε) ≤ u (0, β, ε)}
with β = −∞ if the set is empty. For each profile a and player i, bi (a, ε) 6= b (a0, ε)
if and only if either βai ≤ β (ε) < βa0

i or βa0
i ≤ β (ε) < βai . Denote a random variable

β ≥ β (ε)Xi = 1
{
β (εi) ∈

[
βa0
i − δ2/3, βa0

i + δ2/3
]}
. Then, for any profile a,

|bi (a, ε)− bi (a0, ε)| ≤ Xi1
{
|βai − βao

i | ≤ δ2/3
}

+ 1
{
|βai − βao

i | > δ2/3
}
.



FUZZY CONVENTIONS 35

Hence

sup
a:d(βa,βa0 )≤δ

∑
i

g2
i (bi (a, ε)− bi (a0, ε))2

≤
∑

g2
iX

2
i + sup

a:d(βa,βa0 )≤δ

∑
i:|βa

i −β
ao
i |>δ2/3

g2
i

≤
∑

g2
iX

2
i + sup

a:d(βa,βa0 )≤δ
δ−4/3 ∑

i:|βa
i −β

ao
i |>δ2/3

g2
i (βai − βao

i )2

≤
∑

g2
iX

2
i + δ−4/3 sup

a:d(βa,βa0 )≤δ

∑
g2
i (d (βa, βa0))2 ,

≤
∑

g2
iX

2
i + δ2δ−4/3∑ g2

i =
∑

g2
iX

2
i + δ2/3∑ g2

i .

Variables X2
i = Xi are independent Bernoulli variables with parameter EXi =

P ∗
(
βai + δ2/3

)
− P ∗

(
βai + δ2/3

)
≤ 2δ2/3 as P ∗ is Lipschitz with constant 1. The Ho-

effding’s inequality shows that

P
(∑

g2
iX

2
i + δ2/3∑ g2

i ≥ η
∑

g2
i

)
≤ P

(∑
g2
i (Xi − EXi) ≥

(
η − 3δ2/3

)∑
g2
i

)
≤ exp

(
−(∑ g2

i )
2

2∑ g4
i

(
η − 3δ2/3

)2
)
.

Finally, notice that 2∑ g4
i ≤ (w (g))4 g4

minN and (∑ g2
i )

2 ≥ g4
minN

2. �

C.4. Probability bound on the existence of an upper equilibrium. This sub-
section finds a bound on the probability that, for any profile a0, there exists a profile
a with similar neighborhood behaviors as a0, and such that a is an upper equilibrium.

Lemma 9. For each ξ > 0 and each w <∞, there is δ > 0 so that, for each profile a0

such that Av (a0) > xmax +ξ, and for each network g such that d (g) ≤ δ and w (g) ≤ w,

P (there exists a s.t. a is upper equilibrium and d (βa, βa0) ≤ δ) ≤ 2 exp (−δN) .

Proof. Choose η, δ > 0 such that

(1− γ) ξ >
√
w (g) (2δ + 2η) + 2 (w (g))

1
4
√

2η and

δ ≤ c

(w (g))4

(
η2 − δ

)2
+ 1

2 (w (g))4

(
η − 3δ2/3

)2
.
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Assume that d (g) ≤ δ.
Consider the following two events:

A =
{
d
(
βb(a0,ε), βp

a0
)
≤ η

}
,

B =
{

sup
a:d(βa,βa0 )≤δ

d
(
βb(a0,ε), βb(a,ε)

)
≤ η

}
.

Due to Lemmas 7 and 8, the probability that at least one of the two events does not
hold is no larger than

exp
(
− c

(w (g))4N
(
η2 − d (g)

)2
)

+ exp
(
− 1

2 (w (g))4N
(
η − 3δ2/3

)2
)
≤ 2 exp (−δN) .

Assume that the two events hold simultaneously. We will show that there exists no
a such that d (βa, βa0) ≤ δ and such that a is an upper equilibrium.

On the contrary, suppose that such a exists. Then, a = b (a, ε). Because d is a metric
and events A and B hold,

d
(
βa, βp

a0
)

= d
(
βb(a,ε), βp

a0
)
≤ d

(
βb(a,ε), βb(a0,ε)

)
+ d

(
βb(a0,ε), βp

a0
)
≤ 2η.

Because βp
ao

i = 1
gi

∑
i gijP

∗ (a0,j) ≥ xmax for each i, we can apply Lemma 6 to βa instead
of a and βpa0 instead of b (notice that pa = P ∗ (βa) by definition):

Av (βa)− Av (pa) ≥ (1− γ) (Av (βa)− xmax)− 2 (w (g))
1
4
√

2η. (9)

By Lemmas 2, 3, and 4, and because d (βa, βa0) ≤ δ,

|Av (pa)− Av (pa0)| ≤ |Av (a)− Av (a0)| = |Av (βa)− Av (βa0)| ≤
√
w (g)δ.

By Lemmas 2 and 4, and because event A holds,

|Av (pa0)− Av (b (a0, ε))| =
∣∣∣Av (βpa0

)
− Av

(
βb(a0,ε)

)∣∣∣ ≤ √w (g)η.
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By Lemmas 2 and 4, because a is an upper equilibrium, and because event B holds,

|Av (b (a0, ε))− Av (βa)| = |Av (b (a0, ε))− Av (a)|

= |Av (b (a0, ε))− Av (b (a, ε))|

=
∣∣∣Av (βb(a0,ε)

)
− Av

(
βb(a,ε)

)∣∣∣ ≤ √w (g)η.

Putting the three inequalities together, we obtain

|Av (βa)− Av (pa)|

≤ |Av (b (a0, ε))− Av (βa)|+ |Av (b (a0, ε))− Av (paa)|+ |Av (pa)− Av (pa0)|

≤
√
w (g) (δ + 2η) . (10)

Combining inequalities (9) and (10), we obtain(√
w (g) (δ + 2η) + 2 (w (g))

1
4
√

2η
)
≥ (1− γ) (Av (βa)− xmax) .

By Lemmas 2, 4, and because d (βa, βa0) ≤ δ,

|Av (βa)− Av (a0)| = |Av (βa)− Av (βa0)| ≤
√
w (g)δ.

Hence,(√
w (g) (2δ + 2η) + 2 (w (g))

1
4
√

2η
)
≥ (1− γ) (Av (a0)− xmax) ≥ (1− γ) ξ.

However, this violates the choice of the parameters η and δ. �

C.5. Metric entropy bound. For each δ > 0, let N (δ,B) be the covering number
of B, i.e., the smallest cardinality n of a list of profiles b1, ..., bn ∈ B such that, for each
b ∈ B, there is l ≤ n so that d

(
b, bl

)
≤ δ.

Lemma 10. There exists a constant c <∞ such that, for each δ > 0, and each network
g,

N (δ,B) ≤ exp
( 1
δ2 c (w (g))2 d (g)N

)
.

Proof. We will use Sudakov’s Minoration Inequality (Theorem 7.4.1 from [Vershynin(2018)]),
which provides an upper bound on the covering number via the expectation of a certain
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Gaussian process. For this, let Zi for each agent i be an i.i.d. standard normal random
variable. For each (possibly mixed) profile a ∈ A, define

Xa = 1√∑
i g

2
i

∑
i

giaiZi.

For any two profiles a, b ∈ A,

√
E (Xa −Xb)2 =

√√√√√ 1√∑
g2
i

E

(∑
i

gi (ai − bi)Zi
)2

=
√√√√ 1√∑

g2
i

∑
i

gi (ai − bi)2 = d (a, b) .

Given the definition and the above property, Sudakov’s Minoration Inequality implies
that, for some universal (i.e., independent of parameters and the current problem)
constant c1 > 0,

logN (δ,B) ≤ c1
(E supb∈BXb)2

δ2 .

We compute

E sup
b∈B

Xb = E sup
a∈A

Xβa = E

sup
a∈A

1√∑
i g

2
i

∑
i

giZi

(
1
gi

∑
gijaj

)
= 1√∑

i g
2
i

E

sup
a∈A

∑
i

ai

∑
j

gijZj

 ≤ 1√∑
i g

2
i

E
∑
i

∣∣∣∣∣∣
∑
j

gijZj

∣∣∣∣∣∣
≤
√

2
π

1√∑
i g

2
i

∑
i

√∑
j

g2
ij,

where the last inequality is due to a bound on the expectation of the absolute value of
the normal variable ∑ gijZj via its standard deviation σi =

√∑
j g

2
ij. Because

∑
j g

2
ij ≤

d (g) g2
i and (∑i gi)2 ≤ N2 (w (g))2 g2

min ≤ N (w (g))2∑ g2
i , we have

logN (δ,B) ≤
√

2
π
c1

1
δ2

1∑
i g

2
i

(∑
i

√
d (g)gi

)2

d (g) ≤ 1
δ2

√
2
π
c1 (w (g))2 d (g)N.

�
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C.6. Proof of Theorem 2. Fix η > 0 and w < ∞. Use Lemma 9 to find δ > 0
and δ ≤ 1

2
√
w
η such that, for each profile b, and each network g, if Av (b) ≥ xmax + 1

2η,
d (g) ≤ δ, and w (g) ≤ w, then

P
(
there exists a s.t. a is upper equilibrium and d

(
βa, βb

)
≤ δ

)
≤ 2 exp (−δN) .

Use Lemma 10 to find a list of n ≤ exp
(

1
δ2 c (w (g))2 d (g)N

)
profiles b1, ..., bn such

that, for each profile a ∈ A, there is l ≤ n such that d
(
βb

l
, βa

)
≤ δ. Observe that if a

is such that Av (a) > xmax + η and d
(
βb

l
, βa

)
≤ δ for some l, then, by Lemmas 2 and

4,

Av
(
bl
)
−
(
xmax + 1

2η
)
≥ Av (a)− (xmax + η) + 1

2η −
∣∣∣Av (a)− Av

(
bl
)∣∣∣

≥ 1
2η −

∣∣∣Av (βa)− Av
(
βb

l
)∣∣∣ ≥ 1

2η −
√
wd

(
βa, βb

)
≥ 0.

Putting the above observations together yields

P (there exists a st. a is upper equilibrium and Av (a) ≥ xmax + η)

≤
∑

l≤n:Av(bl)≥xmax+ 1
2η

P
(
there exists a st. a is upper equilibrium and d

(
βa, βb

l
)
≤ δ

)

≤2 exp
(
−
(
δ − 1

δ2 c (w (g))2 d (g)
)
N
)

for some universal constant c. Because N ≥ 1
d(g) , if

d (g) ≤ min
(

1
2δ

3c−1 (w (g))−2 ,
1
2

1
log 2− log ηδ log η

)
,

the above probability is smaller than η.

Appendix D. Proof of Theorem 3

D.1. Proof description. The proof consists of five parts. Section D.2 is devoted to
the existence of a contagion wave, i.e., the third step of the proof intuition from the
main body of the paper.

Section D.3 introduces a two-dimensional lattice. In the limit, the neighborhoods
converge to radius-1 balls in R2.
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In Section D.4, we divide the lattice into areas, called small cubes, such that (a)
there are many agents and the law of large numbers can be applied to describe the
empirical distribution of payoff shocks inside each small cube, and (b) the cubes are
sufficiently small so that agents from the same small cube have similar neighborhoods,
which implies that their incentives are similar. The two properties imply that average
behavior in a small cube is close to the behavior of a continuum of agents in the toy
model.

Section D.5 studies the statistical distribution of bad small cubes, i.e. small cubes,
where the empirical distribution of payoff shocks is not close to the distribution from
which the shocks are drawn. We show that bad small cubes are few and sufficiently
sparse, so that the set of small cubes which are far away from the bad cubes contains
a giant connected component.

The last section concludes the proof of the theorem.

D.2. Contagion wave. Consider a toy model, where agents are located on a line, each
location has a continuum of agents, with a continuum best response function Q (not
necessarily the same as P from the statement of the theorem), the connections depend
only on the distance between agents, and the cumulative weight of connections between
agents x and agents in set {y′ : y′ ≤ y} is equal to f (y − x), where f : R → [0, 1] is
a function that is balanced: (a) f (x) is strictly increasing for x ∈ (−1, 1), and (b)
f (−1) = 0 and f (x) + f (−x) = 1 for each x. Given the interpretation of f stated
above, condition f (x)+f (−x) = 1 is a consequence of the symmetry of the connection
weights, and f (−1) = 0 means that agents separated by 1 or more are not connected.
Notice that the weight of connections depends only on the distance between the agents.

Consider a strategy σ that is increasing in locations. For each location x, the average
action of neighbors of agents in location x is equal to (assuming sufficient regularity,
for intuition) ˆ

σ (y) df (y − x) = lim
a→−∞

σ (a) +
ˆ

(1− f (y − x)) dσ (y) .
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We say that σ is a contagion wave for Q if, at each location x, the best response of
agents in such a location is no higher than σ (x) or, in other words, if the above average
action is smaller than Q−1 (σ (x)).

This section contains two results: First, we show the existence of a contagion wave for
a continuum best response function that can be represented by a step function. Next,
we show the existence of a stronger version of a wave for the original best response
function P .

We begin with a definition. An increasing function q : R → [0, 1] is a step function
if the image q (R) is finite. We refer to the elements of the image as steps. If q is a
step function and a ∈ q (R) is a step, then the most recent step before a is denoted as
a− = max {b ∈ q (R) : b < a}. For each a ∈ [0, 1], let q−1 (a) = min (v : q (v) ≥ a) if the
set is non-empty and q−1 (a) = ∞ if the set is empty. We have q−1 (a−) < q−1 (a) for
each step a.

Lemma 11. Let Q be a step function with steps 0 ≤ a0 < ... < aL+1 = 1 and such that
for each a > a0, we have

aˆ
a0

(
Q−1 (x)− x

)
dx > 0. (11)

Suppose that f is a continuous and balanced function. Then, there exist 0 = v0 <

v1... < vL ≤ L such that, for each l = 1, ..., L,

Q−1 (al+1) ≥ a0 +
∑
k≥0

(1− f (vk − vl)) (ak+1 − ak) .

We interpret each vector as a step strategy, where agents in locations vl−1 < x ≤ vl

play action al. Then, the right-hand side of the inequality is equal to the average action
experiences in location vl. The lemma says that, if Q is a step function, and it satisfies
condition (11), then we can choose the step strategy such that the next step action
al+1 is a (Q-)best response for agents living on threshold vl.

Proof. Let V be the set of all vectors v = (v0, ..., vL) such that

0 = v0 ≤ ... ≤ vL and vl+1 ≤ vl + 1 fov each l = 0, ..., L− 1.
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(Abusing notation, we take v−1 = −∞.) Define function F : [−1, L+ 1] × V → R so
that

F (x|v) = a0 +
∑
k≥0

(1− f (vk − x)) (ak+1 − ak) .

Then, for each strategy v, F is the (weighted) average action experienced by agents in
location x.

Due to properties of function f , function F is continuous, strictly increasing in x for
x ∈ (v0 − 1, vL−1 + 1) and decreasing in the lattice order on V ∗ (i.e., F (x, v) ≥ F (x, v′)
for any v, v′ such that ∀kvk ≤ v′k.) For each v ∈ V and l = 1, ..., L, define

bl (v) = inf
{
x ≥ 0 : F (x|v) ≥ Q−1 (al+1)

}
,

and we take bl (v) = ∞ if the set is empty. Here, bl (v) is the first location in which
action al+1 or higher is the best response given the strategy determined by v. The
properties of F imply that bl is weakly increasing in the lattice order on V , and,
because Q−1 (al+1) > Q−1 (al), we have bl (v) ≤ bl+1 (v), with a strict inequality if either
bl (v) ∈ (0,∞) or bl+1 (v) ∈ (0,∞). It is also continuous for v such that bl (v) < ∞.
Let b (v) = (bl (v))Ll=1

Define function b∗ : V → V so that

b∗l (v) = min (bl (v) , vl−1 + 1) , for each l = 1, ..., L− 1.

Then, b∗l (v) ≥ 0, b∗ is continuous and increasing in the lattice order. Moreover,

• if b∗l (v) = vl−1 + 1, then Q−1 (al+1) ≥ F (b∗l (v) |v),
• if b∗l (v) < vl−1 + 1 and b∗l (v) > 0, then Q−1 (al+1) = F (b∗l (v) |v), and
• if b∗l (v) = 0 (which means that bl (v) = 0), then Q−1 (al+1) ≤ F (0|v).

Consider a sequence v0 = (0, 0, ..., 0) and vn = b∗ (vn−1) for n > 0. Because the
sequence is bounded (vn ∈ V ∗ for each n) and b∗ is continuous and increasing, it must
converge to v∗ = b∗ (v∗). The properties of b and b∗ functions imply that if v∗l > 0, then
bl (v∗) ≥ v∗l . (The reason is that if n > 0 is the first element of the sequence such that
vnl > 0, then clearly bl (vn−1) = vnl > 0 = vn−1

l , and by monotonicity, bl (vm−1) ≥ vml

for each m.)
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Let l0 = min (l = 1, ..., L st. vl = vl−1 + 1), where l0 = L+ 1 if the set is empty. We
will show that l0 = 1. On the contrary, suppose that l0 > 1. Then, for each l < l0,
v∗l = b∗l (v) < v∗l−1 + 1. The properties of b∗ stated above imply that

Q−1 (al+1) ≤ F (v∗l |v∗) = a0 +
∑
k≥0

(1− f (v∗k − v∗l )) (ak+1 − ak)

= a0 +
l0−1∑
k=0

(1− f (v∗k − v∗l )) (ak+1 − ak) ,

where the last equality follows from the fact that v∗k − v∗l ≥ 1 for l ≤ l0 − 1 and
k ≥ l0. Multiply both sides of the above inequality by (al+1 − al) and sum across all
l = 0, ..., l0 − 1 to obtain

l0−1∑
l=0

Q−1 (al+1) (al+1 − al)

≥a0 (al0 − a0) +
l0−1∑
k=0

l0−1∑
l=0

(1− f (v∗k − v∗l )) (ak+1 − ak) (al+1 − al)

=a0 (al0 − a0) + 1
2

l0−1∑
k=0

l0−1∑
l=0

(1− f (v∗k − v∗l ) + 1− f (v∗l − v∗k)) (ak+1 − ak) (al+1 − al)

=a0 (al0 − a0) + 1
2

l0−1∑
k=0

l0−1∑
l=0

(ak+1 − ak) (al+1 − al)

=a0 (al0 − a0) + 1
2 (al0 − a0)2 = 1

2
(
a2
l0 − a

2
0

)
=

al0ˆ
a0

xdx.

(The first equality is obtained by exchanging indices k and l. The second one is due to
f being balanced.) Because the LHS of the above inequality is equal to

´ al0
a0

Q−1 (x) dx,
we get a contradiction with (11). The contradiction shows that l0 = 1.

Because l0 = 1, v∗1 = 1 > 0, and we have v∗l ≥ v∗1 > 0 for each l = 0, ..., L − 1. The
properties of the sequence vn imply that bl (v∗) ≥ v∗l > 0, which further implies that
Q−1 (al+1) ≥ F (v∗l |v∗), and, due to the definition of Q−1 , that al+1 ≥ Q (F (v∗l |v∗)) for
each l. Moreover, for each l, either v∗l+1 = bl+1 (v∗) > bl (v∗) ≥ vl, or v∗l+1 = v∗l + 1.
In both cases, v∗l+1 > v∗l . This establishes the existence of vector v with the required
properties. �
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The next lemma strengthens the conclusion of Lemma 11.

Lemma 12. Suppose that P (1) < 1 and x∗ is strictly RU-dominant. For each η > 0,
there exist δ > 0, a∗ ≤ x∗ + η, L < ∞, and a step function σ : R → [0, 1] such that
σ (0) = a∗, σ (L) = 1, and, for each x,

σ (x− δ) ≥ δ + P

δ + a∗ +
∑

a∈σ−1(R)

(
1− f

(
σ−1 (a)− x

))
(a− a−)

 , (12)

where the summation is over the consecutive steps of the step function σ.

We refer to σ as a δ-contagion wave for P .

Proof. Define P δ (x) = P (x) + δ for δ ∈ (0, 1− P (1)) and notice that for sufficiently
small δ1 > 0, for each δ ≤ δ1, if a0 is the highest maximizer

a0 ∈ sup arg max
a

aˆ

0

((
P δ1

)−1
(x)− x

)
dx,

then, a0 ≤ x∗ + 1
2η. Each Pδ1 can be approximated by a step function Q such that (a)

Q ≥ P (hence P−1 ≥ Q−1), (b) each step is bounded by al−al−1 ≤ 1
4δ1, for l = 1, ..., L,

and (c) if a∗ is the highest maximizer of

a∗ ∈ sup arg max
x

aˆ

0

(
Q−1 (x)− x

)
dx,

then a∗ ≤ x0 + 1
2η = x∗ + η. (We omit the details of finding such approximations.)

Find δ2 > 0 s.t. δ2 ≤ 1
2δ1 and, for each a > a∗, we have

aˆ

a∗

(
Q−1 (x)− x− δ2

)
dx > 0.

Such δ2 exists because Q is a step function and limx↘a∗ Q
−1 (x) > a∗.

Let Qδ2 = Q (x+ δ2). Then, Qδ2 is a step function that satisfies the hypothesis of
Lemma 11. Let 0 = v0 < v1... < vL ≤ L be the thresholds from Lemma 11. Then, for
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each l > 0,

al−1 ≥ al+1 −
1
2δ1 ≥ Qδ2

a∗ +
∑
k≥0

(1− f (vk − vl)) (ak+1 − ak)
− 1

2δ1

= Q

δ2 + a∗ +
∑
k≥0

(1− f (vk − vl)) (ak+1 − ak)
− 1

2δ1

≥ P

δ2 + a∗ +
∑
k≥0

(1− f (vk − vl)) (ak+1 − ak)
+ 1

2δ1

≥ P

δ2 + a∗ +
∑
k≥0

(1− f (vk − vl)) (ak+1 − ak)
+ δ2. (13)

The first inequality follows from al+1 − al−1 ≤ al − al−1 + al+1 − al ≤ 1
2δ1; the equality

follows from Q−1
δ2 (a) = Q−1 (a) − δ2; the second inequality follows from Q ≥ P + δ1;

and the last inequality follows from δ2 ≤ 1
2δ1.

Define

σ (x) =


a∗ x < 0

al x ∈ [vl−1, vl) and l = 1, ..., L

P (1) + δ x ≥ vL.

Find δ > 0 such that δ ≤ δ2 and δ ≤ vl+1 − vl for each l = 0, ..., L − 1. Because the
right-hand side of inequality (12) is increasing in x, we have:

• If x < δ, then σ (x− δ) = a∗ = a0. Hence, inequality (12) follows from inequal-
ity (13) for l = 1 and the fact that x ≤ 0 = v0 < v1 .
• If vl−1 + δ ≤ x < vl + δ for l = 1, ..., L, then σ (x− δ) ≥ al−1. Hence, inequality
(12) follows from inequality (13) and x ≤ vl.
• If x ≥ vL + δ, then σ (x− δ) ≥ P ∗ (1) + δ. Hence, inequality (12) is satisfied
automatically.

�

D.3. Lattice. We start by describing the candidate network. For each M ≥ m, the
(M,m)-lattice is a network with



46 MARCIN PĘSKI

• N = M2 nodes from the set IM = {1, ...,M}2. We define a distance on IM by

d (i, j) = 1
m

√∑
l

((il − jl) mod M)2,

and a ball in this metric asB (i, r) = {y : d (x, y) ≤ r} . The subtraction “modM”
turns the lattice into a subset of “Euclidean torus”

[
0, M

m

]2
,

• connections gi,j = 1⇐⇒ j ∈ B (i, 1).

In the course of the proof, we will assume that there exists values b and B such that
0� b� m� B � M , B is divisible by b, and M is divisible by B. This divisibility
assumption simplifies the proof. The theorem remains valid without it, but the proof
requires small modifications to take care of the reminder items. We omit the details.

For each i ∈ IM , and two sets U,W ⊆ IM , let

d (i,W ) = min
j∈W

d (i, j) and d (U,W ) = min
i∈U

min
j∈W

d (i, j) . (14)

For each set W , and each r, define the r-neighborhood of W :

B (W, r) = {i : d (i,W ) ≤ r} =
⋃
i∈W

B (i, r) .

For large m, the neighborhoods of each agent behave in a similar way to open balls
on a Euclidean plane. This is formalized as follows. Let BR2 (x, r) be the ball on the
plane with center x ∈ R2 and radius r. Let |A| be a Lebesgue measure of a measurable
set A ⊆ R2. Let

f0 (d, r1, r2) = 1
π
|BR2 ((0, 0) , r1) ∩BR2 ((d, 0) , r2)|

be the measure of the intersection of two balls, with radii r1 and r2 respectively, sepa-
rated by distance d, and divided by the measure of the unit ball B ((0, 0) , 1).

Lemma 13. (1) For each ρ > 0, there exists Cρ < ∞ such that if m ≥ Cρ, then
for any two agents i, j, for any r1 ≤ 1 ≤ r2, we have∣∣∣∣∣ |B (i, r1) ∩B (j, r2)|

|B (i, 1)| − f0 (d (i, j) , r1, r2)
∣∣∣∣∣ ≤ ρ.

(2) Function f0 has the following properties:
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• f0 is Lipschitz over d and r1 ≤ 1 ≤ r2,
• f0 is decreasing in d, and
• f0 (d, r1, r2) = 0 if r1+r2 ≤ d, and f0 (d, r1, r2) = 1 if r1 = 1 and d ≤ r2−r1.

(3) Functions f1 (x, r1; r2) = f0 (r2 − x, r1, r2) for r1 ≤ 1 and x ∈ R converge uni-
formly to function limr2→∞ f1 (x, r1; r2) = f2 (x, r1). In particular, for each
ρ > 0, there exists Rρ such that, if r1 ≤ 1 and r2 ≥ Rρ, then,

sup
r1≤1,x

|f2 (x, r1)− f1 (x, r1; r2)| ≤ ρ.

Functions f1 and f2 are Lipschitz over d and r1 ≤ 1 and increasing in x.
(4) Let f (x) = f2 (x, 1). Function f is balanced (in the sense of the definition from

Section D.2).

Proof. The properties of f0, f1, f2, and f follow from their geometric interpretations
and from the fact that the counting measure on IM converges weakly to the Lebesgue
measure on the torus. For example, f2 (x, r1) is a circle segment of a radius r1 circle
with height equal to r1 + x for x ∈ (−r1, r1). �

D.4. Small cubes. We divide the lattice into disjoint areas that we refer to as small
cubes. Each cube is much smaller than the diameter of the neighborhood of each node
so that the neighborhoods of nodes in the same cube are largely overlapping. At the
same time, each small cube contains a sufficiently large number of nodes so that the
distribution of payoff shocks within the cube can be probabilistically approximated by
its expected distribution.

Let G be a (M,m)-lattice. Take any b > 0, where we intend b � m. For each real
number x, let bxc be the largest integer no larger than x. For each node i, the set of
nodes

cb (i) =
{
j ∈ {1, ...,M}2 : ∀l bil/bc = bjl/bc

}
is referred to as a cube that contains i. Any two cubes are either disjoint or identical.
Each cube c is uniquely identified by a pair of numbers cl = bil/bc for each l = 1, 2 and
any i ∈ c. Due to the divisibility assumption, each cube contains exactly b2 elements,
and there are

(
M
b

)2
small cubes on the (M,m)-lattice.
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Let Gb =
{
cb (i) : i ∈ G

}
be the set of all cubes. We refer to the elements of Gb

as small cubes, to distinguish them from the large cubes introduced in Section D.5.
Sometimes, we treat Gb as a network with edges

gbc,c′ = 1 iff
∑
l

∣∣∣∣(cl − c′l)modM
b

∣∣∣∣ = 1. (15)

This way, each cube has four neighbors. We refer to
(
Gb, gb

)
as a network of cubes.

For any c, c′ ∈ Gb, let db (c, c′) denote the length of the shortest path between c and
c′ in the network

(
Gb, gb

)
. For any S ⊆ Gb, let db (c, S) = minc′∈S db (c, c′).

For each strategy profile a = (ai)i and each small cube c ∈ Gb, define

a (c) = 1
|c|
∑
i∈c

ai,

βa (i) = 1
|B (i, 1)|

∑
j∈B(i,1)

aj = 1
|B (i, 1)|

∑
j:d(i,j)≤1

aj, and

βa (c) = 1
|c|
∑
j∈c

βa (j) = 1
|c|
∑
i∈c

1
|B (i, 1)|

∑
j:d(i,j)≤1

aj,

where a (c) is the average action within the cube, βa (i) is the fraction of neighbors of
i who choose action 1, and β (c) is the average fraction in cube c.

D.4.1. Average fractions. The next result shows that if the cube is sufficiently small,
individual and average fractions are similar.

Lemma 14. There exists a universal constant D <∞ such that, if b
m
≤ ρ and m > Cρ,

where Cρ and is a constant from Lemma 13, then, for each profile a, each small cube,
and each i, j ∈ c,

|βa (i)− βa (c)| ≤ Dρ.

Proof. It is sufficient to show there exists D < ∞ such that |βa (i)− βa (j)| ≤ Dρ for
each i, j ∈ c. Notice that

|βa (i)− βa (j)| ≤ |B (i, 1) \B (j, 1)|
|B (i, 1)| + |B (j, 1) \B (i, 1)|

|B (j, 1)| .
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By Lemma 13 and the fact that d (i, j) ≤
√

2ρ, the above is no larger than

≤ 2ρ+ 2
(
1− f0

(√
2ρ, 1, 1

))
.

The claim follows from the Lipschitzness of function f0 and the fact that f0 (0, 1, 1) =
1. �

D.4.2. Average best response. For each small cube c ∈ Gb and realization of payoff
shocks, define the empirical cdf of best response thresholds:

Pc (x|ε) = 1
|c|
∑
i∈c

1 {β (εi) < x} .

(Recall that β (εi) is the fraction of neighbors of individual i with payoff shock εi that
would make her indifferent between the two actions.) For γ > 0, say that a small cube
c is γ-bad if there exists x such that Pc (x|ε) > P (x)+γ; otherwise, the cube is γ-good.

Next, we show that if a cube is good, then the average action can be approximated
by a best response to average beliefs.

Lemma 15. There exists a constant D < ∞ such that if b
m
≤ ρ and m > Cρ, where

Cρ is a constant from Lemma 13, then, for each equilibrium profile a, if small cube c
is γ-good, then

a (c) ≤ γ + P (βa (c) +Dρ) .

Proof. Notice that

a (c) = 1
|c|
∑
i∈c

ai ≤
1
|c|
∑
i∈c

1 (β (εi) ≤ βai ) ≤ 1
|c|
∑
i∈c

1 (β (εi) ≤ βa (c) +Dρ)

= Pc (βa (c) +Dρ|ε) ≤ γ + P (βa (c) +Dρ) .

The first inequality comes from the fact that if ai = 1 is a best response, then β (εi) ≤
βai , and the second inequality is a consequence of Lemma 14. �

D.4.3. Behavior dominance. The next definition and result plays an important role
in extending the contagion wave mechanics from a one-dimensional line to a two-
dimensional lattice.
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Let σ be an increasing step function (see Section D.2) for the definition. Let a = (ai)
be a strategy profile. We say that profile a is (W,R, ρ)-dominated by σ given a set
W ⊆ Gb of small cubes and R > 0 if for each small cube c ∈ Gb, we have

a (c) ≤ σ (d (c,W )−R) + ρ,

where the distance between sets is defined in (14).

Lemma 16. There is a constant D < ∞ with the following property: Fix ρ > 0.
Suppose that b

m
< ρ, R > Rρ, and m > Cρ, where Cρ and Rρ are the constants from

Lemma 13. For each increasing step function σ : R→ [0, 1], and for each set of small
cubes W , if strategy profile a is (W,R, ρ)-dominated by σ, then for each cube c,

βa (c) ≤ a∗ +
∑

a∈σ−1(R)

(
1− f

(
σ−1 (a) +R− d (c,W )

))
(a− a−) +Dρ.

Proof. By Lemma 14, there is a constant D0 such that for any i ∈ c,

βa (c) ≤ βa (i) +D0ρ = a∗ + 1
|B (i, 1)|

∑
j∈B(i,1)

(a (j)− a∗) +D0ρ

≤ a∗ + 1
|B (i, 1)|

∑
c′:d(i,c′)≤1−

√
2ρ

|c′| (a (c′)− a∗) +

∣∣∣{j : 1−
√

2ρ < d (i, j) < 1
}∣∣∣

|B (i, 1)| +D0ρ.

Lemma 13 implies that the third term is bounded by

≤ 1− f0
(
0, 1−

√
2ρ, r2

)
≤ D1ρ
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for some constant D1 to the Lipschitzness of function f0 and f0 (0, 1, 1) = 1. For the
second term, we have

1
|B (i, 1)|

∑
c′:d(i,c′)≤1−

√
2ρ

|c′| (a (c′)− a∗)

≤ρ+ 1
|B (i, 1)|

∑
c′:d(i,c′)≤1−

√
2ρ

|c′| (σ (d (c,W )−R)− a∗)

≤ρ+
∑

a∈σ(R)
(a− a−) 1

|B (i, 1)|
∑

c′: d (i, c′) ≤ 1−
√

2ρ and d (c′,⋃W ) ≥ R + σ−1 (a)
|c′|

≤ρ+
∑

a∈σ(R)
(a− a−) 1

|B (i, 1)|
∣∣∣{j : d (i, j) ≤ 1, d

(
j,
⋃
W
)
≥ R + σ−1 (a)

}∣∣∣ . (16)

(Recall that σ (R) is the set of steps of the step function σ.) Let i∗ ∈ arg minj∈⋃W d (i, j).
Then, d (i, i∗) = d (i,⋃W ). Applied again, Lemma 13 implies that

1
|B (i, 1)|

∣∣∣{j : d (i, j) ≤ 1, d
(
j,
⋃
W
)
≥ R + σ−1 (a)

}∣∣∣
≤ 1
|B (i, 1)|

∣∣∣{j : d (i, j) ≤ 1, d (j, i∗) ≥ R + σ−1 (a)
}∣∣∣

=1− |B (i, 1) ∩B (i∗, R + σ−1 (a)− ρ)|
|B (i, 1)|

≤1− f0
(
d
(
i,
⋃
W
)
, 1, R + σ−1 (a)

)
+ ρ

=1− f1
(
R + σ−1 (a)− ρ− d

(
i,
⋃
W
)
, 1;R + σ−1 (a)

)
+ ρ

≤1− f2
(
R + σ−1 (a)− ρ− d

(
i,
⋃
W
)
, 1
)

+ ρ

≤1− f
(
R + σ−1 (a)− d

(
i,
⋃
W
))

+ (K + 1) ρ,

where K is a Lipschitz constant for f . Hence (16) is not larger than

≤
∑

a∈σ(R)
(a− a−)

(
1− f

(
R + σ−1 (a)− d

(
i,
⋃
W
)))

+D2ρ

for some constantD2 <∞ that may depend on the number of steps in the step function
σ. The result follows from putting the estimates together. �
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D.5. Good giant component of cubes. We will show that if the lattice is sufficiently
large then, with an arbitrarily large probability, we can find a set of small cubes that
(a) contains almost all small cubes (we say that it is giant) (b) is connected in the
small cube network, where (c) each cube in the set is far away from bad cubes, and (d)
contains a large set of agents for whom action 0 is dominant. Properties (b)-(c) will
allow the contagion wave to spread across the entire set W , property (a) will ensure
that spreading to set W means spreading almost everywhere, and property (d) will
ensure that the set contains sufficiently many “initial infectors”.

Formally, say that agent x is extraordinary if action 0 is strictly dominant for such
an agent. A small cube c ∈ Gb is extraordinary if it only consists of extraordinary
agents. In any equilibrium, a (c) = 0 for extraordinary cube c.

Say that set W ⊆ Gb of small cubes is (γ,R)-good if

(a) the union of all small cubes inW contains at least a fraction of (1− γ) elements
of the lattice, |⋃W | ≥ (1− γ)M2,

(b) it is connected as a subset of nodes on graph
(
Gb, gb

)
(see the definition of a

small cube network in (15)),
(c) if c ∈ Gb is γ-bad, then d (c, c′) ≥ R for each c′ ∈ W (in particular, each cube

in W is γ-good), and
(d) it contains a cube c0 such that each cube c s.t. d (c, c0) ≤ R is extraordinary.

The goal of this subsection is to prove that large good sets of small cubes exists with
a large probability:

Lemma 17. For each γ, ρ > 0, and R < ∞, there exist constants mγ,ρ,R, Aγ,ρ,R > 0
such that, if m ≥ mγ,ρ,R and M ≥ (Aγ,ρ,R)m

6
, then there exists b so that b

m
≤ ρ and, if

G is (M,m)-lattice with the associated small cube network Gb, then

P
(
there exists (γ,R) -good set W ⊆ Gb

)
≥ 1− γ.

D.5.1. Large cubes. In order to find a set W that is sufficiently far from bad small
cubes, we are going to contain and separate bad small cubes in sufficiently large sets.
Let B be a number that is divisible by b, B = kb, and such that M is divisible by B.
Consider a network of cubes

(
GB, gB

)
defined in the same way as described in Section
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D.4. We refer to elements of GB as large cubes to distinguish from the elements of Gb.
Let K = M

B
; then the number of large cubes is K2.

For each set of large cubes U ⊆ GB, and for each R, define the small cube R-interior
of U as the set of small cubes that are R-away from nodes that do not belong to U

W (U,R) =
{
c ∈ Gb : d

(
c, IM\

(⋃
U
))

> R
}
.

Here, ⋃U is the union of all large cubes in set U , and IM\ (⋃U) is the set of all nodes
on the (M,m)-lattice that do not belong to one of the large cubes in U . We have the
following bound on the size of set W (U,R).

Lemma 18. Suppose that U is a subset of large cubes, U ⊆ GB. Then,

1
|G|

∣∣∣⋃W (U,R)
∣∣∣ ≥ |U |
|GB|

(
1− 41

k

(
Rm

b
+ 1

))
.

.

Proof. Observe that

|⋃W (U,R)|
|G|

=

∣∣∣⋃Gb∣∣∣
|G|

|⋃W (U,R)|
|⋃Gb|
|W (U,R)|
|Gb|

|W (U,R)|
|W (U, 0)|

|W (U, 0)|
|Gb|

.

The bound is a consequence of the following observations:

• Because all small cubes have the same cardinality, we have
∣∣∣⋃Gb∣∣∣ = |G| and

|⋃W (U,R)|
|⋃Gb| = |W (U,R)|

|Gb| .
• For each regular large cube C ∈ U , W (C, 0) consists of k2 small cubes, and
W (C,R) consists of at least

(
k − 2

(
Rm
b

+ 1
))2

small cubes. Hence |W (U,R)|
|W (U,0)| ≥

1− 4 1
k

(
Rm
b

+ 1
)
.

• Finally, notice that |W (U, 0)| = k2 |U | and
∣∣∣Gb∣∣∣ = k2

∣∣∣GB∣∣∣.
�

The next result shows that if U is a connected component of large cubes, then
W (U,R) is a connected component of small cubes.
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Lemma 19. Suppose that R < b
m

(
1
2k − 1

)
. If a set of large cubes U ⊆ GB is a

connected component in the network of large cubes, then the R-interior set of small
cubes W (U,R) is a connected component in the network of small cubes.

Proof. For each large cube C, letW (U,R)∩
{
c ∈ Gb : c ⊆ C

}
be a part of the R-interior

that consists of small cubes which are contained in C. It is clear that W (U,R) ∩{
c ∈ Gb : c ⊆ C

}
is connected in the network of small cubes. If C and C ′ are two

neighboring large cubes, say C1 = C ′1 and C ′2 = C ′2 + 1, then small cubes c and c′ such
that c1 = c′1 = B (C1 − 1) +

(⌈
Rm
b

⌉
+ 1

)
and c′2 = c2 + 1 = BC2 + 1 are neighbors and

they both belong toW (U,R). Hence, setW (U,R) = ⋃
C∈U W (U,R)∩

{
c ∈ Gb : c ⊆ C

}
is connected. �

D.5.2. Percolation theory - deterministic bounds. In order to establish the existence of
a giant connected component of small cubes that are not too close to bad small cubes,
we turn to the percolation theory. The percolation theory studies properties of graphs
obtained by removal of some nodes. In this paper, we are especially interested in the
size of the largest connected component of a so-obtained graph.

We divide the percolation theoretic arguments into two parts: deterministic and
probabilistic.

Lemma 20. For each connected S ⊆ GB st. |S| < K, there are connected sets ∂S ⊆
CS ⊆ GB\S such that

∣∣∣GB\CS∣∣∣ ≤ |S|2,{
c ∈ CS : dB (c, S) ≤ 1

}
⊆ ∂S ⊆

{
c ∈ CS : dB (c, S) ≤ 2

}
.

Proof. Because |S| < K is smaller than the length and width of the network of large
cubes, set S can be contained in a cube of size |S|2 in a way that the complement of the
cube is connected and it contains at least

∣∣∣GB∣∣∣ \ |S|2 elements. Let CS be the connected
component of GB\S that contains the complement of the cube. Using Lemma 1 from
[Bollobás et al.(2006)Bollobás, Riordan and Riordan], we can construct a finite path
c0, ..., ck of neighboring cubes in CS surrounding S in an intuitive way such that, if
∂S = {c0, ..., ck}, then ∂S satisfies the required inclusions. The construction implies
that the path c0, ..., ck may contain cubes that lie in distance 1 from set S (i.e., with a



FUZZY CONVENTIONS 55

shared wall) and a distance of 2 from set S (that, intuitively, share a corner with a set
S). �

For each S ⊆ GB, say that a set S ⊆ GB is k-connected if, for any subset T ⊆ S,
minc∈T,c′∈S\T dB (c, c′) ≤ 2. In other words, a 2-connected set cannot be split into two
parts that are more than 2 away from each other.

Lemma 21. For each k-connected S ⊆ GB st. |S| < K, there are connected sets
∂S ⊆ CS ⊆ GB\S such that

∣∣∣GB\CS∣∣∣ ≤ 24k |S|2,{
c ∈ CS : dB (c, S) ≤ 1

}
⊆ ∂S ⊆

{
c ∈ CS : dB (c, S) ≤ 2

}
.

Proof. If S is k-connected, then its k-neighborhood Sk, i.e., the set of large cubes that
are within k-distance or less from S is connected. The cardinality of Sk is at most
4k |S| as each cube has at most 4 neighbors. The claim follows from Lemma 20. �

Lemma 22. Suppose that S1, ..., SJ is a collection of 2-connected subsets of lattice
GB such that each |Sj| < K and such that for any i 6= j, minc∈Si,c′∈Sj

dB (c, c′) >

2 . Then, graph GB\⋃Sj contains a connected component of size not smaller than∣∣∣GB∣∣∣ \∑j 28 |Sj|2.

The above result says that, for each collection of 2-connected sets S1, ..., SJ that
are at least 3-distant from each other, the network of large cubes without those sets
contains a connected component which size is not smaller than

∣∣∣GB∣∣∣ \∑j |Sj|
2.

Note that the reason why we require sets Sj to be at least 3-distant is that sets that
are 2-distant can form an obstruction to connected paths: our definition of distance
implies that two cubes that share a “corner” but not a “wall” are 2-distant.

Proof. Suppose that S1, ..., SJ is a collection of connected subsets as in the statement
of the lemma. For each j ≤ J , let ∂Sj ⊆ CSj be as in Lemma 20. Let C = ⋂

iCSi.
Then, |C| = |⋂iCSi| ≥ ∣∣∣GB∣∣∣ \∑j 28 |Sj|2.

For each i 6= j, suppose that ∂Si ∩CSj 6= ∅. Then, ∂Si ∩CSj is connected. Because
the distance between Si and Sj is strictly greater than 2, ∂Si ∩ Sj = ∅. Hence,
∂Si ⊆ CSj. It follows that, if ∂Si ∩ C 6= ∅, then ∂Si ⊆ C.
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It is enough to show that C is connected. Take a, b ∈ C and construct an arbitrary
path from a = a0, ..., an = b of neighboring cubes in network GB. Such a path may
go outside set C and, if so, let l = min {m : am /∈ C}. Suppose that al /∈ CSi for
some i. Then, al−1 ∈ ∂Si ∩ C, and, by the above argument, ∂Si ⊆ C. Let k =
max {m : am /∈ CSi}. Such k is well-defined and k < n because an = b ∈ C. Hence
ak+1 ∈ ∂Si ⊆ C.

Because ∂Si is connected, the segment of the path between al−1 and ak+1 can be
replaced by a path that lies completely within ∂Sj ⊆ C. We can repeat such a modifi-
cation for any other segment of the path that lies outside of set C. After finitely many
modifications, we obtain a path from a to b that is entirely within C. It follows that
C is connected. �

The last result in this part provides an upper bound on the number of distinct
2-connected sets.

Lemma 23. The number of distinct 2-connected subsets of GB of cardinality r is no
larger than K2 (12)r.

Proof. Each r-element 2-connected set S can be (not necessarily uniquely) encoded as
a pair of a signature (t0, ..., tr−1) such that ∑ ti = r − 1 and a tuple(

c0, c1, ..., ct0 , ct0+1, ..., ct0+t1+1, ..., ct0+...+tl−1+1, ..., ct0+...+tl , ..., cr
)
,

where

• c1, ..., ct0 is the list of all 2-neighbors (i..e, cubes that have dB distance no larger
than 2) of c0,
• more generally, for each l, ct0+...+tl−1+1, ..., ct0+...+tl is a list of all 2-neighbors of
cl that have not yet been listed.

The number of different signatures is no larger than 2r. Given signature (t0, ..., tr),
notice that there are at most K2 choices of c0; given c0, there are at most (12)T0

choices of c1, ..., ct0 (there are 12 cubes that are at most 2-distant from a given cube),
etc. Thus, the number of encodings is no larger than

K2 · (12)t0 · ... · (12)tr−1 = K2 (12)r−1 .
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The result follows. �

D.5.3. Percolation theory - probabilistic arguments. Next, we consider a standard model
of percolation theory, where nodes are removed i.i.d. with probability p ∈ (0, 1). Let
GB(p) denote a random graph obtained from the lattice of large cubes GB by removing
i.i.d. nodes. The following two results provide the bounds on the probability of the
existence of a giant component of GB(p).

Lemma 24. There exists a universal constant ξ <∞ such that, for each γ ∈ (0, 1) , K,
and p, if p ≤ ξγ2 and K2 (12p)K ≤ 1

2γ, then

P
(
GB(p) has a connected component of size no smaller than (1− γ)K2

)
≥ 1− γ.

Proof. Let E ⊆ IK be the (random) set of nodes removed to obtain graph GB(p). For
each removed node a ∈ E, let S (a) ⊆ E be the maximally 2-connected component of
removed nodes that contains a. In other words, S (a) is 2-connected, and if c ∈ E is
such that dB (c, S (a)) ≤ 2, then c ∈ S (a). Let S = {S (a) : a ∈ E} be a collection of
such components. The construction ensures that, for each S, T ∈ S, if S 6= T , then
minc∈S,c′∈T dB (c, c′) > 2.

Let rmax = maxS∈S |S|. Let

Xr = |{S ∈ S : |S| ≥ r}| for each r ≥ 1,

X = 28 ∑
S∈S
|S|2 = 28∑

r

r2 (Xr −Xr+1) = 28∑
r

(
r2 − (r − 1)2

)
Xr = 28∑

r

(2r − 1)Xr.

We compute the expected value of X. By Lemma 23, the number of r-element 2-
connected sets is bounded byK2 (12)r. The probability that all elements of a particular
r-element tuple are removed is equal to pr. The linearity of the expectation implies
that EXr ≤ K2 (12)r pr and

EX = 28∑
r

(2r − 1) EXr ≤ 28K2∑
r

2r (12p)r ≤ 28K2 24p
1− 24p

The probability that there exists a 2-connected component not smaller than K is no
larger than

P (rmax ≥ K) ≤ EXK ≤ K2 (12p)K .
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By Lemma 22, the probability that GB(p) does not have a connected component weakly
larger than (1− γ)

∣∣∣GB∣∣∣ is not larger than
P
(
GB(p) has no connected component of size weakly larger than (1− γ)K2

)
≤P

(
X ≥ γK2

)
+ P (rmax ≥ K) ≤ EX

γK2 + P (rmax ≥ K) ≤ 1
γ

28 24p
1− 24p +K2 (12p)K .

(The second inequality is due to the Markov inequality.) Assuming that γ < 1, if
p ≤ 1

212·24γ
2 and K22−K ≤ 1

2 , then 1− 24p ≥ 1
2 , and

1
γ

28 24p
1− 24p +K2 (12p)K ≤ 1

γ
· 2 · 28 · 1

212γ
2 +K2 (12√p)K pK/2

≤ 1
2γ +K2

(
12 1

26

)K 1
2γ ≤ γ.

�

Next, we find a probability bound on the existence of a giant component of large
cubes that do not have any bad small cubes. A large cube C ∈ GB is γ-clean if it does
not contain any γ-bad small cube. Let GBγ be the random subgraph of the network of
large cubes that consists only of γ-clean cubes.

Lemma 25. There exists a universal constant ξ <∞ such that, if b ≥ 1
2γ

(
log ξk2

γ2

)1/2

and K22−K ≤ 1
2γ, then

P
(
GBγ has a connected component of γ-clean large cubes and size of at least (1− γ)

∣∣∣GB∣∣∣) ≥ 1−γ.

The giant component from the lemma is obviously uniquely defined. We refer to it
as Uγ.

Proof. Due to the Dvoretzky–Kiefer–Wolfowitz–Massart inequality, the probability
that a small cube c is γ-bad is bounded by

P (c is γ-bad) ≤ e−2b2γ2
.

The probability that a large cube C is not γ-clean is bounded by

P (C is not γ-clean) ≤ k2e−2b2γ2
.
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By Lemma 24 and some algebra, the claim holds if K22−K ≤ 1
2γ and k2e−2b2γ2 ≤ 1

ξ
γ2

for some universal constant ξ <∞. �

D.5.4. Extraordinary set. A large cube C ∈ GB is extraordinary if it only consists of
extraordinary agents. The next result bounds the probability that the large component
identified in the previous section contains an extraordinary large cube.

Lemma 26. There exists a universal constant ξ <∞ such that, if e−(1−γ)K2P (0)k2b2

≤
1
2γ, b ≥

2
γ

(
log ξk2

γ2

)1/2
, and K22−K ≤ 1

4γ, then

P
(
|Uγ| ≥ (1− γ)K2 and Uγ contains an extraordinary large cube

)
≥ 1− γ.

Proof. The probability that a single agent is extraordinary is P (0) = P (β (εi) ≤ 0).
The probability that a cube C ∈ GB is extraordinary is P (0)(kb)2

. Because each
extraordinary cube is also γ-clean, the probability that C is extraordinary, conditional
on C being part of the giant component Uγ and on an arbitrary realization of payoff
shocks outside of C, is no smaller than P (0)(kb)2

. Conditional on |Uγ| ≥ (1− γ)K2,
the probability that the giant component has no extraordinary cube is bounded by

P
(
Uγ has no extraordinary cube| |Uγ| ≥ (1− γ)K2

)
≤
(

1− P (0)(kb)2
)(1−γ)K2

≤ e−(1−γ)K2P (0)k2b2

.

The claim follows from the above bound and Lemma 25. �

D.5.5. Proof of Lemma 17. Assume w.l.o.g. that R ≥ 1 and γ, ρ < 1. Let km =⌈
100
γ
Rm

⌉
and bm =

⌈
20
γ

(
log 100ξk2

m

γ2

)1/2⌉
, where ξ is the constant from Lemma 26. Then,

km, bm ≥ 1 and there is a constant mγ,ρ,R such that, if m ≥ mγ,ρ,R, then bm

m
≤ ρ.

Moreover, the assumptions of Lemma 19 are satisfied:
bm
m

(1
2km − 1

)
≥ km

2m −
bm
m
≥ 50

γ
R− ρ > R.

Find constant Aγ,ρ,R <∞ such that for each m ≥ mγ,ρ,R,

(Aγ,ρ,R)m
6
≥ kmbm max

(
20, 2 log 2

(
− log

( 1
40γ

))
,

2
1− γ

(
− log

( 1
20γ

))
(P (0))−k

2
mb

2
m

)
.
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(Such a constant exists because km ≤ 200
γ
Rm and bm ≤ m.) Take K ≥ Km =⌈

1
kmbm

(Aγ,ρ,R)m
6⌉

and let M = Kkmbm. Then, the assumptions of Lemma 26 are
satisfied with 1

10γ instead of γ:

e−(1−γ)K2P (0)k2
mb2

m ≤ 1
20γ and K22−K ≤ 2− 1

2K ≤ 1
40γ.

Finally,
2bm
M

+ 4 1
km

(
Rm

bm
+ 1

)
≤ 2 1

km
+ 4Rm

km
+ 4

100γ ≤ γ,

which implies that the bound in the brackets of Lemma 18 is larger than 1−4 1
km

(
Rm
bm

+ 1
)
≥

1− γ.
Lemma 26 implies that

P
(
|Uγ| ≥

(
1− 1

10γ
)
K2 and Uγ contains a extraordinary large cube

)
≥ 1− 1

10γ.

If |Uγ| ≥
(
1− 1

10γ
)
K2, Lemma 18 implies that |⋃W (Uγ, R)| ≥ (1− γ)M2, and

Lemma 19 implies that W (Uγ, R) is connected in the network of small cubes. The
definition of W (Uγ, R) implies that each small cube that is not γ-good, and hence not
contained in U , is at least R-distant from each small cube contained in W (Uγ, R).
Finally, because R < bm

m

(
1
10km − 1

)
, if C0 ∈ Uγ is an extraordinary large cube, then

W (C0, R) is non-empty and it contains a small cube c0 ∈ W (C0, R) ⊆ W (Uγ, R) such
that for any c, if d (c, c0) ≤ R, then c ∈ C0 and c is extraordinary. Therefore set
W (Uγ, R) is (γ,R)-good.

D.6. Proof of Theorem 3 . Fix η > 0. We will show that, for each η > 0, there exist
constants A,m0 > 0 such that, if m ≥ m0 and M ≥ Am

6 , and G is a (M,m)-lattice,
then the probability that there is an equilibrium a on the (M,m)-lattice such that
Av (a) = 1

M2
∑
a ≥ x∗ + η is smaller than η. The argument for the lack of equilibria

with average action below x∗−η is analogous (and it follows from exchanging the roles
for binary actions 0 and 1). Combining the two bounds (and taking the maximum of
the respective constants A and m0) delivers the result.

Apply Lemma 12 to 1
2η and find δ > 0, a∗ < x+ 1

2η, L <∞, and a δ-contagion wave
σ for P .
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Let D ≥ 1 be a constant that is larger than the sum of constants from Lemmas 15
and 16. Choose ρ ≤ 1

D
δ and γ ≤ min

(
δ, 1

4η
)
. Let Rρ be the constant from Lemma 13.

Let R = Rρ + L. Let m0 = mγ,ρ,R and A = Aγ,ρ,R. Choose m ≥ m0, M ≥ Am
6 , and

let b be as in Lemma 17.
Let W denote a (γ,R)-good set of cubes in the network of small cubes Gb if such

a set exists. Let c0 ∈ W be the cube such that for each c, if d (c, c0) ≤ R, then c is
extraordinary.

Let a be any equilibrium on the lattice. Let Wd ⊆ W be a maximal subset of small
cubes such that the equilibrium a is (Wd, γ, Rρ)-dominated by σ. If W exists, then
c0 ∈ Wd and Wd is non-empty. (To see why, notice that a (c) = 0 ≤ σ (d (c, c0)−Rρ)
for each extraordinary cube, including all cubes c st. d (c, c0) ≤ R. Additionally,
σ (d (c, c0)−Rρ) ≥ σ (L) = 1 ≥ a (c) for each cube c such that d (c, c0) > R.) By
Lemmas 15 and 16, for each γ-good small cube c,

a (c) ≤ γ + P

a∗ +
∑

a∈σ(R)

(
1− f

(
σ−1 (a) +Rρ − d (c,Wd)

))
(a− a−) +Dρ


≤ δ + P

a∗ +
∑

a∈σ(R)

(
1− f

(
σ−1 (a) +Rρ − d (c,Wd)

))
(a− a−) + δ

 .
Because σ is a δ-contagion wave (see Lemma 12), the above is no larger than

≤ σ (d (c,Wd)−Rρ − δ) .

Suppose that Wd 6= W . Because W is connected, there is a cube cd ∈ W\Wd such
that cd is a neighbor of c′d ∈ Wd in the network of small cubes. Then, d (cd, c′d) ≤ ρ,
and, by the triangle inequality, d (c,Wd ∪ {cd}) ≥ d (c,Wd) − ρ for any cube c. We
have:

• For each γ-good cube c, because ρ ≤ δ,

a (c) ≤ σ (d (c,Wd)−R− δ) ≤ σ (d (c,Wd ∪ {cd})−R) .

• For each cube c that is not γ-good, we have d (c,Wd ∪ {cd}) ≥ R ≥ Rρ +L due
to Wd ∪ {cd} ⊆ W . But then, a (c) ≤ 1 = σ (L) = σ (d (c,Wd ∪ {cd})−R).



62 MARCIN PĘSKI

It follows that equilibrium a is (Wd ∪ {cd} , γ, Rρ)-dominated by σ. But this is a con-
tradiction with the choice of Wd as a maximal set.

Therefore, Wd = W , a is (W, γ,Rρ)-dominated by σ, and for each c ∈ W ,

a (c) ≤ σ (d (c,W )−R) + ρ = σ (−R) + ρ ≤ a∗ + 1
4η.

Hence

Av (a) = 1
M2

∑
ai = a∗ + 1

|Gb|
∑
c∈W

(a (c)− a∗) + |IM\
⋃
W |

M2

∑
i/∈
⋃
W

(ai − a∗)

≤ a∗ + 1
4η + γ ≤ x∗ + η.

Because the probability that (γ,R)-good set of small cubes exists is at least 1−γ ≥ 1−η,
the above inequality demonstrates our claim.

Appendix E. Proof of Theorem 4

E.1. Proof overview. We formally describe the best response dynamics: initial profile
and the updating process. Next, we compute capacity-type bounds on the dynamics,
i.e., calculations (8) from the main body of the paper. We show that the reminder terms
are small. We use this to show that the average payoffs at the end of the dynamics
cannot be significantly different from x∗ and conclude the proof of the theorem.

E.2. Initial profile. In this part of the Appendix, we define the initial profile for
the dynamics and its properties. Let x∗ be the RU-dominant outcome. For each
relation r ∈ {=, <,>}, let Er = {εi : u (0, x∗, εi) r u (1, x∗, εi)}. Then, E= is the
set of payoff shocks that make a player indifferent if exactly a fraction x∗of their
neighbors play action 1. Then, because x∗ is an RU-dominant outcome, F (E<) ≤
x∗ ≤ F (E<) + F (E=). If F (E=) 6= 0, define p = F (E<)+F (E=)−x∗

F (E=) . For each player
i, let Yi be the binomial i.i.d. variable equal to 1 with probability p and equal to 0
otherwise.
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Define an initial strategy profile as a function of the payoff shocks:

a0
i =


BRi (a−i; εi) if |BRi (a−i; εi)| = 1

Yi otherwise.
(17)

For each player i, let β0
i = 1

gi

∑
gija

0
j be the fraction of neighbors of agent i who play

action 1 under profile a0
i . The next result derives a probabilistic bound on the average

distance of neighborhood behaviors from the RU-dominant outcome.

Lemma 27. For each η > 0, there exists d > 0 such that if d (g) ≤ d, then

P
(∑

gi
∣∣∣β0
i − x∗

∣∣∣ > η
(∑

gi
))
< η.

Proof. Variables a0
j are independent of each other and E a0

j = x∗. Hence, for each i,

E
(
β0
i − x∗

)2
=
∑
j

g2
ij

g2
i

E
(
a0
j − x∗

)2
≤
∑
j

d (g) gij
gi

= d (g) .

By Cauchy-Schwartz inequality, we get E |β0
i − x∗| ≤ 2

√
d (g). Let d (g) ≤ d = 1

4η
4.

Then, by Markov’s equality, for each η,

P
(∑

gi
∣∣∣β0
i − x∗

∣∣∣ > η
(∑

gi
))
≤ E (∑ gi |β0

i − x∗|)
η (∑ gi)

≤
2
√
d (g)
η

≤ η.

�

E.3. Best response process. In this subsection, we formally define best response
dynamics: starting from the initial profile a0, agents who play 0 but have 1 as a best
response revise their actions to 1, in an arbitrary (but fixed) order. Assume that all
players are labeled with numbers i ∈ {1, ..., N}. For all t ≥ 0, and for each i, let

βti = 1
gi

∑
gija

t
j, (18)

pti = P
(
βti
)
,

it = min
{
i : ati = 0 and u

(
1, βti , εi

)
≥ u

(
0, βti , εi

)}
,

at+1
i =


1 if i = it

ati otherwise.
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We refer to pti as the expected action of agent i in period t. Because at most one player
changes actions at each step, we have

∣∣∣βti − βt+1
i

∣∣∣ ≤ d (g) for each i. The stochastic
process (at, βt, pt)t depends on the realization of payoff shocks ε.

If the set in the third line is empty, the process stops. Because there are finitely
many players, the dynamics must stop in a finite time. We denote the final outcome
of the process as

(
aUi , β

U
i , p

U
i

)
.

E.4. Main step. For each profile of expected actions p, define the functional

F (p) = 1
2
∑
i,j

gij (pi − pj)2 .

Clearly, F (pt) ≥ 0 for each t. Also, define function

L (x) =
xˆ

x∗

(
P−1 (y)− y

)
dy.

Because x∗ is RU-dominant, it is the unique minimizer of L (x). Hence L (x∗) = 0 and
L (x) > 0 for each x 6= x∗.

The next lemma fills calculations behind formula (8) in the main body of the paper.

Lemma 28. For each t,

2
∑
i

giL
(
pT+1
i

)
≤F

(
p0
)

+ A+ 2
∑
i

gi
∣∣∣β0
i − x∗

∣∣∣+ 2d (g)
∑

gi, (19)

where A is defined as

A =
∑
t≤T

∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1

(
asj − psj

)
.



FUZZY CONVENTIONS 65

Proof. Observe that for each t,

F
(
pt+1

)
−F

(
pt
)

=
∑
i

gi
(
pt+1
i

)2
−
∑
i

gi
(
pti
)2
−
∑
i,j

gij
(
pt+1
i pt+1

j − ptiptj
)

=
∑
i

gi
(
pt+1
i

)2
−
∑
i

gi
(
pti
)2
−
∑
i,j

gij
((
pt+1
i − pti

)
pt+1
j + pti

(
pt+1
j − ptj

))
=
∑
i

gi
(
pt+1
i

)2
−
∑
i

gi
(
pti
)2
−
∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1
psj

=
∑
i

gi
(
pt+1
i

)2
−
∑
i

gi
(
pti
)2
−
∑
i

gi
(
pt+1
i − pti

) ∑
s=t,t+1

βsi +
∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1

(
asj − psj

)
,

where, in the last line, we used giβsi = ∑
j gija

s
j . Summing up across t ≤ T , we obtain

F
(
pT+1

)
−F

(
p0
)

=
∑
t≤T

(
F
(
pt+1

)
−F

(
pt
))

=
∑
i

gi
(
pT+1
i

)2
−
∑
i

gi
(
p0
i

)2
−
∑
t≤T

∑
i

gi
(
pt+1
i − pti

) ∑
s=t,t+1

βsi + A

=A+
∑
i

gi

(pT+1
i

)2
−
(
p0
i

)2
− 2

pT +1
î

p0
i

P−1 (y) dy



+
∑
t≤T

2
pt+1

î

pt
i

P−1 (y) dy −
(
pt+1
i − pti

) ∑
s=t,t+1

βsi

 .
The second term of the above is equal to

∑
i

gi

(pT+1
i

)2
−
(
p0
i

)2
− 2

pT +1
î

p0
i

P−1 (y) dy



=2
∑
i

gi


pT +1

î

p0
i

ydy −
pT +1

î

p0
i

P−1 (y) dy

 = 2
∑
i

gi
(
L
(
p0
i

)
− L

(
pT+1
i

))
.
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Notice that L (x∗) = L (P (x∗)) = 0 and L (P (β0
i )) is Lipschitz with constant 1. Hence

the above is no larger than

≤ −2
∑
i

giL
(
pT+1
i

)
+
∑

gi
∣∣∣β0
i − x∗

∣∣∣ .
Recall that supt≤T

(
βt+1
i − βti

)
≤ d (g). By definition of the Lebesgue integral,

∑
t≤T

βtiλ
(
y : βti ≤ P−1 (y) < βt+1

i

)
≤

pT +1
î

p0
i

P−1 (y) dy

≤
∑
t≤T

(
βti + d (g)

)
λ
(
y : βti ≤ P−1 (y) < βt+1

i

)
,

where λ is the Lebesgue measure on the interval [0, 1]. The definition of inverse function
P−1 as well as pti = P (βti) for each t imply that

λ
(
y : βti ≤ P−1 (y) < βt+1

i

)
= pt+1

i − pti.

Hence
∑
i

gi
∑
t≤T

2
pt+1

î

pt
i

P−1 (y) dy −
(
pt+1
i − pti

) ∑
s=t,t+1

βsi

 ≤ 2d (g)
∑

gi.

The result follows from putting the estimates together and the fact that F
(
pT+1
i

)
≥

0. �

E.5. Estimates. In this section, we provide estimates of the terms on the right-hand
side of (19).

Lemma 29. For each η > 0, there exists dFη > 0 such that, if d (g) ≤ dFη , then

P
(
F
(
p0
)
> η

(∑
gi
))
< η.

Proof. Note that
F
(
p0
)
≤
∑
i

gi (pi − x∗)2 ≤
∑
i

giδ
(
β0
i

)
,
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where δ (x) = (P (x)− x∗)2. Note that δ (x∗) = 0. Choose ξ > 0 such that δ
(√

ξ
)

+
√
ξ < 1

2η. Let d < η be sufficiently small so that Lemma 27 holds for ξ. Then,

P

 ∑
i:β0

i≥
√
ξ

gi >
√
ξ
∑

gi

 ≤ ξ,

and, if the event in the brackets does not hold, we have
∑
i

giδ
(
β0
i

)
≤
∑
i

gi

(
δ
(√

ξ
)

+
√
ξ
)
≤ η

(∑
i

gi

)
.

�

To gain estimates on term A, we need a preliminary lemma:

Lemma 30. For each j and s,

E
(
asj −max

(
x∗, psj

)
|ε−j

)
≤ 0.

Proof. Fix player j. The stochastic process (at, βt, pt)t can be defined on the probability
space Ω = EN composed of the realizations of the payoff shock for each individual.
Consider an auxiliary stochastic processes (a′t, β′t, p′t)t defined on the same probability
space with the same equations (17)-(18) as the original process, but with setting a′tj ≡ a0

j

for each t. Additionally, define

a∗t+1
j = 1 iff u

(
1,max

(
x∗, β′tj

)
, εj
)
≥ u

(
0,max

(
x∗, β′tj

)
, εj
)
.

So defined a∗tj depends on ε−j only through process β′. Hence, for each ε−j,

P
(
a∗t+1
j = 1|ε−j

)
= P

(
u
(
1,max

(
x∗, β′tj

)
, εj
)
≥ u

(
0,max

(
x∗, β′tj

)
, εj
)
|ε−j

)
= P

(
max

(
x∗, β′tj

))
.

Notice that a∗tj ≥ atj for each t. Indeed, let t0 = inf
{
t : atj = 1

}
and equal ∞ if

the set is empty. Then, βti = β′ti for each i and t < t0 . Moreover, at0j = 1 implies
u
(
1, βt0−1

j , εj
)
≥ u

(
0, βt0−1

j , εj
)
, which implies that a∗t0j = 1.
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Further, payoff complementarities imply that, for each s, β′s ≤ βs, and hence p′s ≤
ps. Additionally, p′s−1 ≤ p′s. Thus,

E
(
asj −max

(
x∗, psj

)
|ε−j

)
= P

(
asj = 1|ε−j

)
−max

(
x∗, p′sj

)
≤ P

(
a∗sj = 1|ε−j

)
−max

(
x∗, p′sj

)
= P

(
max

(
x∗, β′s−1

j

))
−max

(
x∗, p′sj

)
= max

(
x∗, p′s−1

j

)
−max

(
x∗, p′sj

)
≤ 0,

where the first equality is due to the fact that p′s−1
j and β′s−1

j are measurable wrt.
ε−i. �

Lemma 31. For each η > 0, there exists dη > 0 such that, if d (g) ≤ d1
η, then

P

(
1
gi

∑
gij
(
asj −max

(
x∗, psj

))
≥ η

)
≤ η.

Proof. By Lemma 30, finite stochastic process Xj = 1
gi

∑
j′≤j gij′a

s
j′ is a supermartin-

gale. Take dη = − η
ln η . Then, the Azuma-Hoeffding’s Inequality implies that

P

(
1
gi

∑
gija

s
j − psj ≥ η

)
≤ exp

− η∑ g2
ij

g2
i

 ≤ exp
(
− 1
d (g)η

)
≤ exp (lnη) = η.

�

Lemma 32. For each η > 0, there exists dAη > 0 such that if d (g) ≤ dAη , then for each
i and s,

P

(
A ≥ η

∑
i

gi

)
≤ η.
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Proof. Because pt+1
i > pti for each i,

A =
∑
t≤T

∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1

(
asj −max

(
x∗, psj

))
+
∑
t≤T

∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1

(
max

(
x∗, psj

)
− psj

)
≤
∑
t≤T

∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1

(
asj −max

(
x∗, psj

))
+ 2

∑
j

gj
∣∣∣p0
j − x∗

∣∣∣
=A1 + A2.

We are going to bound each of the two terms separately.
Let d2

η be the constant from Lemma 32. Then, if d (g) ≤ dA1
η = d2

1
8
√
η
,

E

∑
t≤T

∑
i

(
pt+1
i − pti

)∑
j

gij
∑

s=t,t+1

(
asj −max

(
x∗, psj

)) ≤ 1
4
√
η
∑
i

gi.

By Markov’s inequality,

P
(
A1 ≥

1
2η
∑

gi

)
≤

1
4
√
η
∑
i gi

1
2η
∑
gi
≤ 1

2η.

Take δ (x) = |P (x)− x∗|. Note that δ (x∗) = 0. Choose ξ > 0 such that max
(
ξ, 4

(
δ
(√

ξ
)

+
√
ξ
))

<
1
2η. Let d

A2
η < η be sufficiently small so that Lemma 27 holds for ξ. Then,

P

 ∑
i:β0

i≥
√
ξ

gi >
√
ξ
∑

gi

 ≤ ξ,

and, if the event in the brackets does not hold, we have

2
∑
j

gj
∣∣∣P (β0

j

)
− x∗

∣∣∣ ≤ 2
(
δ
(√

ξ
)

+
√
ξ
)∑

i

gi ≤
1
2η
(∑

i

gi

)
.

Take dAη = min
(
dA1
η , dA2

η

)
. Then,

P

(
A ≥ η

∑
i

gi

)
≤ P

(
A1 ≥

1
2η
∑
i

gi

)
+ P

(
A2 ≥

1
2η
∑
i

gi

)
≥ η.

�
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E.6. Average payoffs at the end of dynamics. We show that the average payoffs
when the upper best response dynamics stop are not much higher than x∗.

Lemma 33. For each η > 0, there exists dUη > 0 such that, if d (g) ≤ dUη , then

P

(
Av
(
aU
)
≥ (η + x∗)

∑
i

gi

)
≤ η.

Proof. By definition, x∗ is the unique maximizer of L (x). Fix η > 0 and find ξ > 0
such that

√
ξ ≤ η and if L (x) ≤

√
ξ, then x ≤ x∗ + 1

2η.
Let (at, βt, pt)t be the upper best response dynamics defined in Section E.3. By

Lemmas 19, 29, and 32, if d ≤ dUξ = max
(
dFξ , d

A
ξ

)
, then∑

i

giL
(
pUi
)
≤ ξ

∑
i

gi

with a probability of at least 1− ξ. It follows that ∑
i:L(pU

i )≥
√
ξ
gi ≤

√
ξ, which implies

that ∑i:βU
i ≥x∗+

1
2η
gi ≤

√
ξ. Hence,

∑
giβ

U
i ≤

∑
i:βU

i ≤x∗+
1
2η

gi

(
x∗ + 1

2η
)

+
√
ξ
∑

gi ≤ (x∗ + η)
∑
i

gi.

Finally, notice that

Av
(
aU
)

=
∑
i

gia
U
i =

∑
i

∑
j

gija
U
i =

∑
i

∑
j

gija
U
i =

∑
i

giβ
U
i .

The result follows from the above inequality. �

E.7. Proof of Theorem 4. Lemma 33 shows that the best response dynamics, where
players only revise their actions upwards, stop with a profile aU with average payoffs
close to x∗. An analogous result shows that a lower version of the best response
dynamics, initiated from the same profile a0 and where players only revise their actions
downwards, stop with a profile aL with average payoffs also close to x∗.

Due to payoff complementarities, the lower best response dynamics initiated from
profile aU will stop at equilibrium profile aUL that lies in between aU and aL. The
latter implies that the average payoffs must lie in between the average payoffs Av

(
aU
)

and Av
(
aL
)
. The claim follows.
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E.8. Extension to unweighted average. The argument remains identical except
for the following modification of Lemma 33: For each η > 0 and w < ∞, there exists
dUη > 0 such that, if d (g) ≤ dUη , and w (g) ≤ w then

P
(
Avunweighted

(
Ua0

)
≥ (η + x∗)

)
≤ η.

To see the above claim, recall that aUi ≥ a0
i . Hence

Avunweighted
(
aU
)
− Avunweighted (a)

= 1
N

∑
i

(
aUi − a0

i

)
= 1

mini gi
1
N

∑
i

(
min
j
gj

) (
aUi − a0

i

)
≤ 1

mini gi
1
N

∑
i

gi
(
aUi − a0

i

)
≤ 1

mini gi

∑
gi
N

1∑
gi

∑
i

gi
(
aUi − a0

i

)
≤maxi gi

mini gi

(
Av (Ua)− Av

(
a0
))

= w (g)
(
Av (Ua)− Av

(
a0
))
.

An application of Lemma 33 establishes the claim.
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