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Abstract. A researcher wants to ask a decision-maker about a belief related to a choice the decision-
maker made. When can the researcher provide incentives for the decision-maker to report her belief
truthfully without distorting her choice? We identify necessary conditions and sufficient conditions
for non-distortionary elicitation and fully characterize which questions can be incentivized in this
way in three canonical classes of problems. For these questions, we construct simple variants of the
classic Becker-DeGroot-Marschak mechanism that can be used to elicit beliefs.

1. Introduction

Researchers who conduct experiments in economics frequently ask subjects to make a choice facing
some uncertainty and then wish to elicit subjects’ beliefs related to their choice. Examples include:

(1) A decision-maker chooses an action with a payoff that depends on an unknown state of the
world. The researcher asks what probability she assigns to her action being correct, i.e,
maximizing the ex post payoff.

(2) Instead of asking about probabilities, the researcher asks how much the decision-maker would
be willing to pay for the option to change their action after the state is realized.

(3) The decision-maker provides a guess of some quantity and is to receive a reward according
to how good her guess is. The researcher asks her how likely she believes her guess is within
some fixed amount x of the correct value.

(4) The decision-maker takes a test consisting of a number of true/false questions, and is to be
rewarded for each correct answer. The researcher asks her about the probability that her score
exceeds y%.

(5) The test in the previous example has two parts. The researcher asks the decision-maker how
much she believes her score improved from the first part to the second.

To ensure that the subjects’ reported beliefs are reliable, researchers typically provide incentives
that make truthful reporting optimal.1 However, when the belief to be elicited is tied to an action
choice, doing so could distort the incentives governing that choice. To take a simple example, suppose
the subject must answer a multiple-choice question and then is asked the probability that they gave

Date: January 31, 2025.
1See Healy and Leo (2024) for a discussion of incentivized vs. unincentivized belief elicitation.
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the correct answer. Suppose moreover that the subject is rewarded at the belief elicitation stage with
a payment that is increasing in the probability the subject assigns to the true event (namely, whether
their answer was correct or not). Then a subject who is not confident about the correct answer but is
confident that one of the answers is incorrect may be able to increase their overall expected payment
by choosing the obviously incorrect answer and then reporting a high probability that it is not correct,
thereby obtaining a high expected payoff at the belief elicitation stage.

Designing payments for belief elicitation that do not distort the incentives in the original problem
allows the researcher to honestly tell the subject that she will maximize the payment she can expect
to receive by choosing the action she believes is optimal in the decision problem and then reporting
her belief truthfully.2 These instructions should minimize any attempts by the subject to distort her
behavior, even in cases where profitable distortions are not obvious.3

We introduce a model combining a general decision problem with a belief elicitation stage. The
model allows us to consider a wide variety of belief elicitation questions: a question is described by
a function X(a, θ) that, following an action choice a in the decision problem, asks the subject the
expectation of X(a, θ) according to their subjective belief about the unknown state θ. We say that a
question is incentivizable if there exists a payment scheme at the belief elicitation stage for which (i)
truthfully reporting the expectation of X(a, θ) always maximizes the subject’s expected payment, and
(ii) the incentives in the decision problem are not distorted, meaning that for any belief the subject
may have about θ, the optimal action in the decision problem remains optimal in the combined
problem that includes the belief elicitation stage.

We first identify questions that are incentivizable regardless of the decision problem; we refer to
these questions as being aligned with the utility u(a, θ) in the decision problem. Alignment allows for
all questions of the form X(a, θ) = u(a, θ)+d(θ), as well as all affine transformations of such questions
with parameters that may depend on the action a. Examples include: asking the subject about the
payoff she expects to receive in the decision problem; and asking her willingness to pay to have her
action replaced with an ex post optimal one.4 On the other hand, the question that asks the subject
about the probability that her choice is ex post optimal does not generally take this form (and indeed
is, in many problems, not incentivizable). A researcher interested in eliciting a measure of cognitive

2One alternative approach would be not to inform subjects about the belief elicitation stage until after they have
chosen an action. This approach is unlikely to be effective in experiments with repeated choices and more than one
instance of belief elicitation. In any case, we would view this approach as a form of deception if the experimental design
relies on the subject believing that they can maximize their earnings by treating the decision problem in isolation.

3Danz, Vesterlund, and Wilson (2022) find that instructions along these lines increase truthful reporting in a belief
elicitation problem relative to explicit incentives.

4The latter question directly extends a simpler one used by Hu (2023) to elicit whether subjects are uncertain about
the optimality of their choices.
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Figure 1.1. Summary of main results.

uncertainty (Enke and Graeber, 2023) may therefore do better to ask about the subject’s expected
payoff relative to the optimum rather than the probability that their action is optimal.

For questions that are aligned with the utility, we provide a simple construction of payments
satisfying both of our incentivizability criteria. This construction is based on the classic Becker-
DeGroot-Marschak method. One can first normalize X(a, θ) to lie in [0, 1], and then elicit the value
of y ∈ [0, 1] at which the subject is indifferent between winning the prize with probability y and
winning it with probability X(a, θ).5 A similar construction applies to other questions that we show
are incentivizable for some decision problems.

Whether and which other questions are incentivizable depends on the structure of the decision
problem. A particularly important role is played by what we call the “adjacency graph.” Two actions
are adjacent if there is some belief at which they are both optimal and no other action is. We show
that each adjacency places restrictions on how the questions following the adjacent actions are related
to one another. Problems with more adjacencies therefore tend to involve stronger restrictions on
which questions are incentivizable.

We fully characterize the set of incentivizable questions in three canonical classes of decision prob-
lems that differ in the structure of the adjacency graph: complete adjacency, adjacency trees, and
product adjacency. (For complete and product adjacency, we also make some mild richness assump-
tions regarding linear independence of payoffs.) Figure 1.1 summarizes the results.

5A typical method for eliciting y is a multiple-price list that asks the subject to choose between probabilities y and
X(a, θ) for various values of y, then choose one such choice at random for payment.
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Complete adjacency graphs naturally arise in problems in which the decision-maker chooses an
action to match an unknown state and receives a payoff based on whether or not they succeed, as
in a multiple-choice question where the state corresponds to which answer is correct and the subject
receives a payment for a correct answer. In these problems, only questions that are aligned with the
utility (in the sense described above) are incentivizable.

Adjacency trees naturally arise in some problems with ordered states and actions that are monotone
in beliefs. For example, if states and actions are real numbers and the subject incurs a quadratic loss
based on the distance between her action and the state, then the adjacency graph forms a line.6

Because there are so few adjacencies, this case is, in a sense, the most permissive in terms of which
questions are incentivizable. In particular, alignment with the utility on the full set of actions is no
longer necessary; it suffices for the question to be “piecewise aligned,” meaning, in this case, that for
each pair of adjacent actions it is aligned with the utility (but with the parameters governing the
alignment possibly differing across pairs).

Product adjacencies arise when the decision problem comprises a number of separate tasks with
complete adjacency graphs and the subject’s expected reward is a sum of rewards across these tasks.
For example, the subject may complete a multiple-choice test and receive a payment proportional to
their score. More generally, the researcher may ask the subject about their aggregate choices in an
experiment with a sequence of tasks, one of which is randomly chosen to be rewarded. The adjacency
graph has a simple structure: two actions are adjacent if only if they differ on a single task. In this
case, a question is incentivizable if and only if it is aligned with some weighted sum of the utilities in
the various tasks (but not necessarily aligned with the overall utility in the decision problem). Thus,
for example, a question that asks the subject about the likelihood that her score is above some fixed
cutoff is not incentivizable, while a question that asks about the expected improvement in her score
across two parts of the test is.

Two related features distinguish our approach from previous work on belief elicitation. First, the
researcher asks the subject only to report a single number.7 Second, the quantity of interest to the
researcher—as described by the question X(a, θ)—depends non-trivially on the subject’s choice of
action in the decision problem. In the absence of either of these features, any question X(a, θ) is
incentivizable using standard methods. For example, if the researcher could ask the subject to report
her entire belief, it would be enough to incentivize truthful reports and randomly reward the subject
either for her choice in the decision problem or for her reported belief. From a practical perspective,
however, this approach could be burdensome for subjects if there are more than a few states to report

6A typical example is when the decision problem is itself a belief elicitation problem—such as one of belief updating—
with the states representing objective probabilities known to the researcher.

7We discuss in Section 8.4 how to extend our methods to multiple questions.
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on; if the researcher is only interested in a one-dimensional statistic of the belief, asking about it
directly could reduce noise in the reports.

We are not the first to observe that incentivized belief elicitation can distort other decisions. Cham-
bers and Lambert (2021) and Healy and Leo (2024) discuss the possibility that a subject would pur-
posefully fail a test to increase their payment from belief elicitation about their likelihood of passing.
Möbius et al. (2022) describes how their belief elicitation mechanism is designed with the intention of
preserving incentives in their main task. Blanco et al. (2010) find evidence that, in some problems,
subjects who are paid for both a choice in a game and a reported belief take advantage of hedging
opportunities, distorting either choice (or both). We implicitly assume that subjects are randomly
paid either for the main task or the reported belief, eliminating such hedging opportunities.

The problem we study is motivated in part by Enke and Graeber (2023) and related and follow-up
papers (e.g., Amelio, 2022; Arts, Ong, and Qiu, 2024; Xiang et al., 2021).8 In each of these papers,
subjects’ cognitive uncertainty is elicited using unincentivized questions. Hu (2023) is the first paper
we are aware of that provides strict incentives for subjects to reveal whether they are uncertain about
their decision. His mechanism is essentially a simplified version of the Becker-DeGroot-Marschak
mechanism we employ; in his, subjects make a binary choice of whether to pay a cost to have some
chance that their action can be replaced with the optimal one.

Belief elicitation has been widely studied and used in both theory and experiments (see Schlag,
Tremewan, and Van der Weele (2015), Charness, Gneezy, and Rasocha (2021), Haaland, Roth, and
Wohlfart (2023), and Healy and Leo (2024) for surveys). The closest theoretical work to this proposal
is that of Lambert, Pennock, and Shoham (2008) and Lambert (2019), which ask which properties of
distributions can be elicited. Our model shares the feature that the belief elicitation question does
not ask the decision-maker to report their entire belief. We sidestep their question of elicitability
by restricting attention to questions that always correspond to elicitable properties, and we add the
condition that the elicitation must not distort the decisions in the main decision problem.

In experiments, the binarized scoring rule of Hossain and Okui (2013) has become a popular choice
for eliciting beliefs. Danz, Vesterlund, and Wilson (2022) find that subjects report more accurate
beliefs when they are told that reporting truthfully will maximize the payment they can expect to
receive than when the payments in the binarized scoring rule are described explicitly. In keeping with
this finding, we would expect to see less distortion in behaviour in belief elicitation settings like ours
if subjects are instructed that they have incentives to choose what they believe to be the optimum,
which researchers can do only if the belief elicitation question is incentivizable.

Azrieli, Chambers, and Healy (2018) study incentives in a sequence of tasks and find that paying for
a randomly selected problem is the only incentive-compatible mechanism when allowing for a general

8This work follows a longer history of using questions about confidence in decisions that is not expressed in proba-
bilistic terms, going back at least to Butler and Loomes (2007).
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class of preferences. In their model, the sequence of tasks is exogenously given, whereas in ours the
belief elicitation task depends on the subjects’ choice in the main task; random selection for payment
is therefore not sufficient to ensure incentive compatibility.

2. Model

A decision-maker (DM) chooses an action and then faces a belief elicitation problem posed by a
researcher that may depend on the action she chose.

A decision problem consists of a tuple (Θ, A, u), where Θ is a finite set of states of the world, A

is a finite set of actions, and u : A −→ RΘ is a utility function specifying, for each action, the vector
of payoffs across all states. We write u(a; θ) for the θ-coordinate of the vector u(a). For each belief
p ∈ ∆(Θ), let A(p) = arg maxa∈A

∑
θ p(θ)u(a; θ) denote the set of optimal actions at p. For simplicity,

we assume that (i) there are no redundant actions, i.e., no a and a′ such that u(a) = u(a′), and (ii)
there are no dominated actions, i.e., for each a, there exists some p such that A(p) = {a}.

After choosing an action a, the DM faces a question about her belief described by a function
X : A −→ RΘ, with θ-coordinate X(a; θ). We interpret the question X(a) as asking the DM to report
her subjective expected value Ep X (a; ·) given the action a that she chose in the first stage and her
belief p. The dependence of X on a allows for the possibility that the researcher seeks information
about the DM’s beliefs that are related to the chosen action.

As the following examples illustrate, this formulation allows for considerable flexibility in what the
DM is asked to report.

Example 1. The question “is the chosen action a correct ex post?” corresponds to

X (a; θ) =

1 if a ∈ arg maxb∈A u (b; θ)

0 otherwise.

Then Ep X (a; ·) is the subjective probability of the chosen action being correct ex post.

Example 2. Given any action a0 ∈ A, the question “is action a0 correct ex post (regardless of what
action was chosen)?” corresponds to

X (a; θ) =

1 if a0 ∈ arg maxb∈A u (b; θ)

0 otherwise.

Then Ep X (a; ·) is the subjective probability of action a0 being correct ex post.

Example 3. The question “what is the regret from the chosen action?” corresponds to

X (a; θ) = u (a; θ) − max
b∈A

u (b; θ) .
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Then Ep X (a; ·) is the subjective expected loss from the chosen action a relative to the ex post optimal
action.

The DM announces a report r ∈ R and is given a reward that depends her report, her action a, and
the realized state θ. Her overall payoff—including the payoff from the decision problem in the first
stage—is given by a bounded function V : R×A×Θ −→ [0, 1] (which we normalize to the unit interval
for convenience), the first argument of which is the DM’s report r. We refer to V as an elicitation
method.

For simplicity, we do not include the payoff u(a) explicitly in the elicitation method; adding it
would not change anything as the payoff from the elicitation problem can be adjusted accordingly
so as to give the same overall payoff. In the applications we have in mind, the researcher pays the
DM for the decision problem with some fixed probability α ∈ (0, 1) and for the belief elicitation
problem with the remaining probability 1 − α. The elicitation method V therefore takes the form
αu(a; θ) + (1 − α)V0(r, a, θ) for some V0 and some α ∈ (0, 1), where V0 is the payoff from the belief
elicitation mechanism. As is standard in the recent literature on belief elicitation, we implicitly view
V0 as the probability of winning a fixed prize to avoid any influence of risk preferences on the reported
belief.

Definition 1. A question X is incentivizable if there exists an elicitation method V such that, for
every p ∈ ∆(Θ),

arg max
r,a

Ep V (r, a, θ) ⊆
{

(Ep X (a; θ) , a) : a ∈ arg max
b∈A

Ep u (b; ·)
}

.

Any V satisfying this condition incentivizes X.

Incentivizability combines two requirements of the elicitation method: first, the payoffs at the belief
elicitation stage must not distort her action choices in the decision problem in the sense that any action
a she optimally chooses in the overall problem with payoffs V is also optimal in the original decision
problem with payoffs u; and second, the DM must have strict incentives to report her true subjective
expectation of Ep X(a; ·) given her action choice a. For any question that cannot be incentivized, the
researcher must either give up on truthful reporting of the DM’s belief or on actions that accurately
reflect the subject’s belief in the decision problem. In particular, if the researcher is conducting an
experiment with the DM as a subject, no matter how she designs the incentives at the belief elicitation
stage, she cannot honestly tell the subjects that they will maximize their earnings by considering the
decision problem in isolation and by reporting beliefs truthfully.

Our formulation imposes two substantive restrictions on the belief elicitation problem. First, the
DM is asked to report only a single number rather than, say, a full probability distribution. In practice,
collecting more complicated information about beliefs quickly becomes impractical in experiments. If,
however, the full probability distribution could be elicited, our problem would reduce to a standard
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belief elicitation problem since there would be no need to make the question or incentives dependent
on the action chosen in the decision problem. Second, the elicited belief is based on the expectation
of some question X(a; ·). While this formulation captures many relevant cases, in principle, the
researcher may want to elicit other properties of the distribution for which our approach may not
apply. We discuss in Section 8 what changes if either of these restrictions is relaxed.

3. Sufficient conditions

We begin by identifying simple sufficient conditions under which a question X is incentivizable. In
the following section, we show that these conditions are also necessary in some natural applications.

Definition 2. A question X is aligned with u on B ⊆ A if there exist γ : B −→ R \{0}, κ : B −→ R,
and d ∈ RΘ such that either

X (a) ≡B γ(a) (u (a) + d) + κ(a)1

or
X (a) ≡B γ(a)d + κ(a)1,

where 1 ∈ RΘ is the vector of all ones and ≡B denotes equality for all a ∈ B. We say that X is
non-trivially aligned with u on B in the former case, and trivially so in the latter case. If B = A, we
say simply that X is aligned with u (and similarly with the (non)-trivial qualifier).

Relative to the question X = u that asks the DM about the expected utility from her chosen action,
questions aligned with u allow for three changes. First, a vector d may be added to payoffs. Since d
is independent of a, this change has no effect on the optimal action in the decision problem. Then,
for each a, the question X(a) can be rescaled by a (non-zero) constant γ(a) and translated by another
constant κ(a) uniformly across θ. These changes make each question X(a) essentially equivalent to
the question u(a)+d (in the sense that the expectation of X(a) can be computed from that of u(a)+d,
and vice versa). The case of X (a) ≡B γ(a)d + κ(a)1 can be viewed as a limit of these operations as d
is scaled up and γ(a) scaled down by the same constant, causing the u(a) term to vanish.

Note that for X aligned with u, the parameters γ, κ, and d are not uniquely determined in general.

Proposition 1. If X is aligned with u, then it is incentivizable.

Proofs omitted from the main text may be found in the appendix.
The proposition indicates that alignment with u is sufficient for incentivizability. The proof proceeds

by construction using a standard Becker-DeGroot-Marschak (BDM) mechanism. The idea is to first
renormalize each question using an affine transformation to make it of the form X (a) = u (a) + d or
X(a) = d. Let [L, M ] be an interval containing every value of X(a, θ). After learning the DM’s report,
r, of her expectation of X(a), the researcher draws a number x uniformly from [L, M ]. The DM receives
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a fixed prize with probability (X(a, θ) − L)/(M − L) if r > x, and a probability (x − L)/(M − L)
otherwise. By standard arguments, this mechanism provides strict incentives for the DM to truthfully
report her expectation of X(a). Alignment of X with u ensures that the DM is also incentivized to
choose an action that maximizes her expected payoff in the decision problem.9

For a researcher interested in eliciting a measure of the DM’s confidence in her choice of action, an
immediate implication of the proposition, captured in the following corollary, is that it is possible to
elicit the DM’s expected regret without distorting her decisions.

Corollary 1. For any decision problem, the question about regret in Example 3 is incentivizable, as
is any question that does not depend on the chosen action (such as that in Example 2).

4. Necessary conditions

We now identify simple necessary conditions for questions to be incentivizable. Since such questions
must not distort incentives for the action choice in the decision problem, it is natural to focus on beliefs
where the DM is indifferent between two actions.

Say that two actions a, b ∈ A are adjacent if there is a belief p ∈ ∆(Θ) such that A(p) = {a, b},
that is, at belief p, a and b are both optimal and there is no other optimal action. Adjacency
of actions a and b implies that there is a (|Θ| − 2)-dimensional set of beliefs p ∈ ∆(Θ) such that
a, b ∈ arg maxc∈A Ep u (c; ·).10

For any vector v ∈ RΘ, let

v̄ = v − 1
|Θ|

∑
θ′∈Θ

v(θ′)1.

Thus v̄ is the projection of v onto the hyperplane of vectors whose coordinates sum to 0. Recall that
two vectors u, v ∈ RΘ are collinear if there exists α ̸= 0 such that v = αu.

Let ∆b
a = ū(b) − ū(a) be the payoff difference vector.

Lemma 1 (Adjacency Lemma). Suppose that X is incentivizable. If actions a and b are adjacent,
then there exist ρ ∈ R and σ ∈ R \{0} such that

X̄ (b) = ρ∆b
a + σX̄ (a) .

If X̄(a) or X̄(b) is collinear with ∆b
a, then we can take ρ ̸= 0.

9This mechanism can be used either to determine the combined payment from the decision problem together with
the belief elicitation stage, or can be used with some fixed probability as the reward for the belief elicitation stage
together with a reward of u(a, θ) with the remaining probability.

10A weaker version of adjacency would require only that there is some belief at which both actions are optimal
(possibly along with some other action(s)). While one can prove a result analogous to the Adjacency Lemma below
based on this weaker definition, we have not found the analogous result to be useful.
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The Adjacency Lemma provides a key tool in testing whether a question in incentivizable: it
identifies a restriction on the values of the question on each pair of adjacent actions a and b. An
equivalent way to state this restriction is that the vector X̄(b) must belong to the linear subspace
spanned by the vectors X̄(a) and ∆b

a.
To understand the intuition behind this result, consider two adjacent actions, a and b. Suppose an

elicitation method V incentivizes some X. Notice that, for any fixed r, the expected value Ep[V (r, a, ·)]
is affine in p. Moreover, the set of beliefs at which a given r is optimal following action a consists of the
intersection of the simplex with the hyperplane defined by r = Ep[X(a, ·)]. If this set intersects with
the set of beliefs at which both a and b are optimal, then the value obtained from action b followed by
the optimal report must itself be affine within this intersection. This in turn implies that the optimal
report r′ = Ep[X(b, ·)] following action b must be constant along this intersection since the value for
any fixed report is affine. In other words, for all beliefs such that the DM is indifferent between the
two actions and the expected value of the question for action a is constant, the expected value for
the other action must be constant as well. A standard linear algebra argument shows that vector
X(b) must belong to the linear space spanned by vectors u(b) − u(a), X(a), and 1 (the latter because
we apply the linear condition to the space of beliefs). The result then follows from straightforward
algebra.

Because the projection v̄ maps vectors v into a |Θ−1|-dimensional space, the Adjacency Lemma has
no bite when |Θ| = 2, and limited bite when |Θ| = 3. (In the latter case, if X̄(a) and ∆b

a are linearly
independent, the thesis of the Lemma holds trivially.) If there are only two states, any question
X(a, θ) that is not constant in θ is equivalent to simply asking the DM to report her belief, which can
be easily incentivized by adding a standard scoring rule to the utility u(a, θ). With three states, the
set of beliefs at which two adjacent actions are optimal forms a line segment. Further restricting to a
particular optimal report for one of the actions generically reduces the set to a single point. Matching
the values along the line segment does not, therefore, impose restrictions on the question. Cycles of
adjacencies can, however, imply substantive restrictions; we expand on this point in Section 8.

Example 4 (Second-order beliefs). The following example is a slightly simplified version of a belief-
updating experiment from Enke and Graeber (2023); the same conclusions apply to their original
experiment.

The decision problem involves forecasting a binary event. The action set and state space A = Θ =
{0, 1/n, . . . , 1} consist of (discretized) probabilities that the event occurs, where n ≥ 3. One can think
of θ as the “true” probability given the available information, which is known to the researcher but
about which the DM may be uncertain (for example because she has doubts about how to update her
beliefs in light of the information she observes). This uncertainty is captured by her belief p ∈ ∆(Θ).



NON-DISTORTIONARY BELIEF ELICITATION 11

The DM is rewarded more for forecasts that are closer to the state according to the payoff function
u(a; θ) = −(a − θ)2. The DM optimally chooses an action closest to Ep[θ]. The adjacency graph
therefore forms a line: ai and aj are adjacent if and only if |ai − aj | = 1/n.

The researcher wishes to elicit the DM’s confidence in her report by asking how likely she believes
it is that her action is within x of the true value of θ for some fixed x ∈ [0, 1/2]. This question is
described by

X(a, θ) =

1 if |a − θ| ≤ x

0 otherwise.

To check whether X is incentivizable, we use Theorem 1.
Consider adjacent actions a and b = a + 1/n. For each θ,

u(b, θ) − u(a, θ) = −
(

a + 1
n

= θ

)2
+ (a − θ)2 = − 1

n

(
2a − 2θ + 1

n

)
.

The difference between u(b, θ)−u(a, θ) and ū(b, θ)− ū(a, θ) is the constant (a−1)2 − (a−1/n)2. Thus
we obtain ū(b, θ) − ū(a, θ) = 2a + 2θ/n − 1. In particular, the coordinates of any vector collinear with
∆b

a must feature constant differences in θ. However, there is no σ for which X̄(b) − σX̄(a) satisfies
this property. To see this, note that if x < 1/n, X̄(b) − σX̄(a) is constant across all θ /∈ {a, b}, and
if x ≥ 1/n, then its coordinates for θ = a and θ = b are equal. Therefore, there is no σ such that
X̄(b) − σX̄(a) is collinear with ∆b

a, and by Lemma 1, X is not incentivizable.
This result is not specific to the quadratic payoffs in the decision problem; the same conclusion

applies if the payoff is replaced with any strictly proper scoring rule (one for which reporting an action
close to the expectation of θ is optimal).

Faced with this result, what should the researcher do? One option is to use a difference measure of
decision confidence that is incentivizable. For instance, according to Corollary 1, the expected regret
question of Example 3 is incentivizable in every decision problem.

The Adjacency Lemma has an equivalent formulation using the language of alignment from the
previous section.

Corollary 2. If a question is incentivizable, then it is aligned with u on {a, b} for every adjacent pair
of actions a and b.

Proof. Note first that X is non-trivially aligned with u on a set of actions B if and only if X̄(a) ≡B

γ(a)ū(a) + d for some γ(a) ∈ R and d ∈ RΘ, and is trivially aligned with u on B if and only if
X̄(a) ≡A γ(a)d for some γ(a) ∈ R and d ∈ RΘ. If ρ = 0, then X is trivially aligned with u on {a, b}.
If ρ ̸= 0, then the alignment is nontrivial, with

d = 1
ρ

X̄(b) − ū(b) = σ

ρ
X̄(a) − ū(a),
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γ(a) = ρ/σ, and γ(b) = ρ. □

This corollary highlights a potential gap between the necessary conditions from the Adjacency
Lemma—namely, alignment on all adjacent pairs—and the sufficient condition from Proposition 1—
namely, alignment on the full set of actions. In the rest of the paper, we show how to close this gap
in three canonical classes of decision problems.

Our approach relies on the following two observation. If the decision problem has three actions a,
b, and c such that {a, b} and {b, c} are both adjacent pairs, the restrictions implied by the Adjacency
Lemma for these two pairs may interact with each other, leading to additional information about
which questions are incentivizable. We therefore look to analyze the restrictions across all adjacent
pairs simultaneously.

The adjacency graph is the undirected graph with vertices A and edges consisting of the adjacent
pairs {a, b}. Note that, since there are no redundant or dominated actions, the adjacency graph is
connected for every decision problem. A basic intuition across the next three sections is that the
more edges there are in the adjacency graph, the more powerful are the restrictions imposed by the
Adjacency Lemma.

5. Adjacency trees

We first consider the case in which the adjacency graph is a tree. Trees naturally arise in problems
with ordered actions, as in Example 4. Example 5 below describes a simple decision problem in which
the adjacency graph forms a star. In this case, as the following result shows, alignment with u on the
full set of actions is not necessary for incentivizability.

Theorem 1. Suppose the adjacency graph is a tree. Then X is incentivizable if and only if it is
aligned with u on every pair of adjacent actions.

That alignment with u is necessary for incentivizability is implied by Corollary 2. That it is
sufficient follows from Proposition 2 below, which is a generalization of Proposition 1.

Say that action a is splitting if removing it from the adjacency graph makes the graph disconnected.
If B0, B1 ⊂ A are disjoint sets such that B0 ∪B1 = A\{a} and the adjacency graph contains no edges
between B0 and B1, we say that a splits the adjacency graph into B0 and B1.11

A splitting collection {A0, . . . , Ak} is a collection of subsets Ai ⊆ A such that
⋃

Ai = A and, for
each i and j, either Ai ∩ Aj = ∅ or Ai ∩ Aj = {a} for some splitting action a. If the adjacency graph
is a tree, a splitting collection is formed by the set A = {A0, . . . , Ak} consisting of all adjacent pairs
of actions; that is, Ã ∈ A if and only if Ã = {a, b} for some adjacent actions a and b.

11Note that B0 and B1 need not be connected, and hence that the sets into which a splitting action splits the
adjacency graph are not uniquely determined in general.
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Example 5. Suppose the decision problem involves guessing the correct state, with the option of
opting out and choosing a safe action. The action set is A = Θ ∪ {as}, with payoffs

u(a; θ) =


1 if a = θ,

s if a = as,

0 otherwise,

where s ∈ (0, 1). If s ≥ 1/2, then the adjacency graph is a star with action as in the centre. Letting
{B0, B1} be any partition of Θ, {B0 ∪ {as}, B1 ∪ {as}} forms a splitting collection. Another splitting
collection is given by the set of pairs {θ, as} for all θ ∈ Θ.

We say that X is piecewise aligned with u if it is aligned with u on each element of a splitting
collection.

Proposition 2. If X is piecewise aligned with u, then it is incentivizable.

To understand the main idea of the proof of this result, consider a binary splitting collection with
sets of actions A0 and A1 and splitting action a0. If actions are restricted to either Ai, by the piecewise
alignment assumption, the BDM construction of Proposition 1 can be used to incentivize X. This
construction gives rise to a well-defined elicitation method on the full action set if the two methods
agree on A0 ∩ A1 = {a0}. In the proof, we construct a positive affine transformation of one of the
elicitation methods that ensures agreement on a0.

We show that the new elicitation method incentivizes X on the union of the two sets. Indeed, by
construction, given any belief p at which an action a ∈ Ai is optimal in the decision problem, no other
action in Ai leads to a higher expected payoff from the elicitation method. It remains to show that,
similarly, no action a′ ∈ Aj (for j ̸= i) does better than a at p. To do so, we prove that if p0 and p1

are beliefs such that, for each i, some action in Ai is optimal in the decision problem at belief pi, then
there exists a convex combination of p0 and p1 at which a0 is optimal. Taking one of these beliefs to
be p and the other to be a belief at which a′ is optimal in the decision problem, it follows that there
is a belief at which a0 is optimal in the decision problem but not in the elicitation method, contrary
to the way the method was constructed.

Proof of Theorem 1. The “only if” direction follows immediately from Corollary 2. For the “if” direc-
tion, as noted above, the set of adjacent pairs forms a splitting collection when the adjacency graph
is a tree. As a result, alignment with u on adjacent pairs implies piecewise alignment with u, which
in turn implies incentivizability by Proposition 2. □
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6. Adjacency cycles

When the adjacency graph forms a tree, the incentivizable questions are those that are piecewise
aligned with u; the relationship between X̄(a) and X̄(b) described in the Adjacency Lemma is both
necessary and sufficient for incentivizability. Cycles in the adjacency graph impose additional restric-
tions: not only must the relationship in the Adjacency Lemma hold for adjacent actions, it must also
be consistent all the way around each cycle.

A common setting in which adjacency cycles appear is when the adjacency graph is complete. This
is the case, for instance, in Example 5 when s < 1/2.

The main result of this section shows that for many decision problems with complete adjacency
graphs, a question is incentivizable if and only if it is aligned with u.

Theorem 2. Suppose the adjacency graph is complete and |A| ≥ 4. Suppose in addition that for any
four distinct actions a, b0, b1, b2, the set of vectors {∆bi

a }i=0,1,2 is linearly independent. Then X is
incentivizable if and only if it is aligned with u.

In addition to completeness of the adjacency graph, this theorem relies on two assumptions: the set
of actions must be sufficiently large and the payoffs from the actions must be sufficiently independent.
The assumptions make the Adjacency Lemma particularly powerful. For example, as discussed in
Section 4, the Adjacency Lemma only has any bite if there are at least three states of the world,
which must be the case if the two assumptions of the theorem hold. These assumptions also exclude
decision problems with larger state spaces that can effectively be reduced to problems with three
states, such as those in which the payoff from each action is 0 in every state but the first three.

Example 6. Consider a decision problem with at least four states in which the DM is asked to guess
the state and receives a reward for guessing correctly that may depend on which state is realized.
Thus A = Θ and

u(a, θ) =

rθ if a = θ

0 otherwise,

where rθ > 0 for all θ. The adjacency graph for this problem is complete: given any two states θ and
θ′, the actions θ and θ′ are the only optimal actions at the belief that assigns probability rθ′/(rθ +rθ′)
to state θ and all of the remaining probability to state θ′.

Suppose the researcher seeks to elicit the DM’s belief about whether she correctly guessed the state,
which is described by the question

X(a, θ) =

1 if a = θ

0 otherwise.
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Taking γ(a) = 1/ra and κ(a) = 0 for each a and d = 0, we see that X is aligned with u, and therefore
can be incentivized using the BDM construction of Proposition 1.

Now consider the same question X in a different decision problem where the DM can also receive
a smaller reward for a “close” guess. Let Θ = {1, . . . , n} and

u(a, θ) =


rθ if a = θ

rθ/2 if |a − θ| = 1

0 otherwise,

where minθ rθ > maxθ rθ/2 > 0. The adjacency graph for this problem is again complete. In this
case, however, X is not aligned with u. Since the linear independence condition in Theorem 2 holds,
X is not incentivizable.

To explain the main ideas in the proof of Theorem 2, we first need some additional terminology.
An adjacency cycle is a tuple C = (a0, . . . , an) such that an = a0 and actions ai and ai+1 are adjacent
for each i = 0, . . . , n − 1. We say that n is the length of the cycle C. We abuse notation slightly by
writing a ∈ C to mean that a = ai for some i.

An adjacency cycle is internally independent if, for some a ∈ C, the set of vectors
{

∆b
a : b ∈ C \ {a}

}
is linearly independent. Let VC be the linear space spanned by

{
∆b

a : b ∈ C \ {a}
}

. The cycle C is
internally independent if and only if dimVC = n − 1, where n is the length of the cycle. Notice that
the space VC and the linear independence of

{
∆b

a : b ∈ C \ {a}
}

do not depend on the choice of a,
only on C itself.

For each action a0 in an adjacency cycle, applying the Adjacency Lemma iteratively along adjacent
pairs {a, b} of actions in the cycle gives rise to an expression for some multiple of X̄(a0) as a linear
combination of ∆b

a terms. If this cycle is internally independent, then either X̄(a0) ∈ VC \ {0} or all of
the coefficients in the linear combination must be equal to 0. In the latter case, iteratively applying
the Adjacency Lemma again gives a linear relationship between any X̄(c) (for c in the cycle) and X̄(a0)
together with ∆b

a terms. This relationship can be simplified using the fact that the coefficients in the
previous linear combination are zero to show that X is aligned with u on C, leading to the following
lemma.

Lemma 2. Let C be an internally independent adjacency cycle. If X is incentivizable, then either X

is aligned with u on C, or X̄(a) ∈ VC \ {0} for all a ∈ C.

While Lemma 2 identifies conditions that an incentivizable question must satisfy on a given in-
ternally independent cycle, it says nothing about more complicated adjacency graphs. The following
lemma shows how alignment with u on multiple cycles or other subsets of actions can, under mild
conditions, be combined to obtain alignment with u on their union.
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Lemma 3. Suppose X is aligned with u on sets of actions B and D. If there exist actions a0, a1 ∈
B ∩ D such that X̄(a0) and X̄(a1) are not collinear, then X is aligned with u on B ∪ D.

Alignment with u on B gives rise, for each action in B, to a system of equations that the parameters
relating X and u must satisfy; naturally, the same is true for D. In the proof of this lemma, we show
that if B and D share two actions for which the values of the questions are linearly independent, then
the corresponding systems of equations must share the same solution for B as for D.

The main idea behind Theorem 2 is that, given any cycle C through an action a, Lemma 2 implies
that any incentivizable X is either aligned with u on C or lies in VC \ {0}. The linear independence
condition can be used to eliminate the latter possibility by considering multiple cycles through a;
more precisely, there must be some cycle C on which X is aligned with u, as the intersection of the
sets VC′ across cycles C ′ containing a is {0}. Varying a and applying Lemma 3 leads to alignment
with u on the entire action set.

In Appendix D, we identify a more general class of problems in which alignment with u is both
necessary and sufficient for incentivizability. This more general result applies when there is a rich
enough structure of internally independent cycles in the adjacency graph, which can be the case even
when the graph is not complete.

7. Product problems

In many experiments, subjects perform a sequence of tasks. These tasks may be identical or they
may differ; the subject’s payoff is a sum or weighted average payoff of the payoffs in the various
tasks, as in the common experimental design in which one task is randomly selected for payment (see
Charness, Gneezy, and Halladay (2016) and Azrieli, Chambers, and Healy (2018) and the references
therein). In such cases, the researcher may be interested in eliciting beliefs related to the entire
sequence of actions chosen by the subject. For example, a student may solve a test with multiple
questions—with their payoff being equal to the score—and the researcher may want to ask the subject
what she believes about her overall performance on the test. Alternatively, to gauge the impact of
learning across repetitions of the same task, the researcher may want to elicit subjects’ beliefs about
their change performance between the beginning and the end of the experiment.

To formalize this idea, we define a product problem (Θ, A, u) to be a decision problem in which
Θ = ×iΘi, A = ×iAi, and

u (a, θ) =
∑

i

ui (ai, θi)

for some sets (Θ1, . . . , ΘI) and (A1, . . . , AI), and some functions ui : Ai × Θi −→ R. As noted
above, the additive separability of u captures commonly used incentives in which one choice is ran-
domly selected for payment. We refer to each (Θi, Ai, ui) as a task. We write a−i for a profile
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110 010

000100

111
011

001101

Figure 7.1. Adjacency graph for Example 7 with Ω = {0, 1} and I = 3.

(a1, . . . , ai−1, ai+1, . . . , aI) and aia−i for the profile whose ith coordinate is ai and remaining coordi-
nates are given by a−i.

Example 7. The decision problem is a test consisting of I ≥ 3 multiple choice questions. The state
space and action space are given by Θ = A = ΩI , where Ω is a finite set containing at least two
elements describing the possible answers to any given question. Coordinate i corresponds to the ith
question: θi is the correct answer to question i and ai is the DM’s answer to question i. The payoff
in the decision problem is the score on the test:

u(a, θ) =
I∑

i=1
1{θi = ai}.

The DM has a belief p ∈ ∆(Θ). The optimal choice of action in each task i is the most likely state
according to the marginal distribution of p over Θi.

Note that we make no assumptions about the correlation among states across tasks: the DM can
hold any belief about the joint distribution of (θ1, . . . , θI). In particular, the DM need not view the
states as independent, nor must there be a fixed state across tasks.

Product problems share a structure that distinguishes them from the problems we have analyzed
so far. Two actions a, b ∈ A are adjacent only if they differ in exactly one task, that is, if there is
some i such that ai ̸= bi and a−i = b−i. Conversely, if ai and bi are adjacent in task i, then the
product actions aia−i and bia−i are adjacent for all a−i. The adjacency graph of the product problem
is typically neither complete (even if the adjacency graphs in each task are complete) nor a tree.

Figure 7.1 depicts one example. Note that while the collection of payoff difference vectors asso-
ciated with edges exiting a single node—such as the blue edges ∆100

000, ∆010
000, and ∆001

000—are linearly
independent, no cycle is internally independent because parallel edges correspond to identical payoff
difference vectors. Thus, for instance, the orange edges correspond to ∆100

000 = ∆110
010 = ∆101

001 = ∆111
011.
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We say that question X depends on task i trivially if, for each a−i, the vectors X̄(aia−i) are collinear
for all ai. The following result provides necessary and sufficient conditions for incentivizability in
product problems.

Theorem 3. Let (Θi, Ai, ui)I
i=1 be a product problem with I ≥ 3. Suppose that for each i, either Ai

contains only two actions, or the adjacency graph for problem (Θi, Ai, ui) is complete and the vectors{
∆bi

ai
, ∆ci

ai

}
are linearly independent for all ai, bi, ci ∈ Ai. Suppose in addition that there are at least

three tasks on which X does not depend on trivially. Then X is incentivizable if and only if there exist
v(a), κ (a) ∈ R with v(a) ̸= 0 for each a ∈ A, τi ∈ R for each i, and d ∈ RΘ such that

X (a, θ) = κ(a) + v(a)
(

d(θ) +
∑

i

τiui(ai, θi)
)

(7.1)

for all a and θ.

Theorem 3 requires that the question non-trivially depends on at least three tasks. If instead the
question depends non-trivially on only one problem, it is straightforward to adapt the analysis from
Section 6 to apply here. In the intermediate case in which the question depends non-trivially on
exactly two tasks, we do not know whether the conclusion of Theorem 3 holds.

Along the same lines as Theorem 2, we assume that each task has a complete adjacency graph.
However, relative to Theorem 2, the other requirements for each task are significantly weaker: there
are no restrictions on the number of actions, and we require linear independence only of pairs of payoff
difference vectors instead of triples.

The characterization of incentivizable questions in (7.1) is more permissive than that in Theorem 2.
If τi is constant across i, the expression in (7.1) implies that X is aligned with u. However, in contrast
to the case of a single problem with complete adjacency, there are many questions not aligned with u

that are also incentivizable (namely, those for which τi varies across i). The additional freedom in the
product problem results from a smaller number of cycles and a larger number of linear dependencies
in the payoffs.

The following example illustrates the added flexibility afforded by (7.1).

Example 8 (Example 7 continued). It is straightforward to verify that in the product problem of
Example 7, if |Ω| > 2, the adjacency graph for each problem i is complete and all pairs

{
∆bi

ai
, ∆ci

ai

}
are linearly independent. Therefore, Theorem 3 applies to any question that depends non-trivially on
at least three tasks.

Suppose the test consists of two parts: the first part comprises questions 1 through I1, while the
second part comprises questions I1 + 1 through I. Consider the question that asks the DM about the
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expected improvement in her average score from the first part of the test to the second:

X(a, θ) =
I∑

i=1
ζi1(ai = θi) where ζi =

− 1
I1

if i ≤ I1

1
I−I1

if i > I1

This question is of the form given in (7.1), and is therefore incentivizable by Theorem 3. At first
glance, this result may be surprising as X seems to create opposing incentives in the two parts of
the test. Nevertheless, X can be incentivized using a simple modification of the BDM elicitation
mechanism from Proposition 1 that involves adding the payoff from the decision problem:

V (r, a, θ) =
ˆ r

0
X(a, θ)dx +

ˆ 1

r

xdx − 1
2 +

∑
i

ui(ai, θi)

=
∑

i

(1 + rζi)ui(ai, θi) − r2

2 .

The two integral terms provide incentives for truthful reporting of r. On their own, since ζi is negative
for some i, these terms distort the incentives in the original decision problem and change the optimal
choice of a. Adding the final sum restores the correct incentives since 1 + rζi is positive for each i.

The next example illustrates the restrictiveness of (7.1).

Example 9 (Example 7 continued). Let x ∈ {1, . . . , I}. The researcher would like to elicit the
probability the DM assigns to receiving a score of at least x,12 which corresponds to the question

X(a, θ) =

1 if
∑I

i=1 1{θi = ai} ≥ x

0 otherwise.

We claim that X is not incentivizable. Since there is no problem on which X depends trivially,
Theorem 3 applies. Thus it suffices to show that X is not of the form specified in (7.1). Suppose for
contradiction that it is. Notice that there exist at least two distinct scores on the test that are either
both below x or both at least x. It follows that, given any a and i, there exist θ and θ′ such that
ai = θi ̸= θ′

i, θj = θ′
j for all j ̸= i, and X(a, θ) = X(a, θ′). From (7.1), since v(a) ̸= 0, it follows that

d(θ) + τi = d(θ′). Applying the same argument to the action a′ defined by

a′
j =

θ′
i if j = i

aj otherwise,

we obtain d(θ′) + τi = d(θ). Therefore, τi = 0 for all i. Since X(a, θ) = X(a, θ′), it now follows
that d(θ) = d(θ′). Letting a′′ be any action that agrees with θ on exactly x coordinates, including
coordinate i, we have X(a′′, θ) = 1 ̸= 0 = X(a′′, θ′), implying that d(θ) ̸= d(θ′), a contradiction.

12This question is similar to that of Möbius et al. (2022), who elicit the subject’s belief that their score on an
incentivized IQ test is above the median among the participants.
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7.1. Sketch of proof. The proof of Theorem 3 can be found in Appendix E. Here, we describe the
key ideas.

The proof that (7.1) is sufficient for incentivizability is relatively straightforward: the argument
directly extends the construction in Example 8.

For the remainder of this section, we assume that question X is incentivizable. By the Adjacency
Lemma (Lemma 1), for any pair of adjacent actions a and b, there are coefficients x(a, b) ̸= 0 and
y(a, b) such that X̄(a) = x(a, b)X̄(b) + y(a, b)∆b

a. For the purpose of this discussion, we assume that
the coefficients x(a, b) and y(a, b) are uniquely defined.

The key step in the proof is to show that each cycle a0, . . . , an = a0 of adjacent actions is exact,
that is, that

x(a0, a1)x(a1, a2) · · · x(an−1, an) = 1.

We first explain the connection between exactness of all cycles and (7.1), and then explain why all
cycles are exact.

Fix an arbitrary action a0. The exactness of all cycles implies that we can define

v(a) = x(a0, a1) · · · x(an−1, an)

for any path a0, . . . , an = a of adjacent actions, and the definition does not depend on the chosen
path.13 In particular, for any two adjacent actions, v(a) = x(a, b)v(b). Letting X̄∗(a) = 1

v(a) X̄(a) and
y∗(a, b) = 1

v(a) y(a, b), the Adjacency Lemma implies that, for any two adjacent actions a and b,

X̄∗(a) = X̄∗(b) + y∗(a, b)∆b
a.(7.2)

To illustrate how (7.2) implies (7.1), consider Example 7. Let a and b be adjacent actions, and recall
that adjacency implies there must be some task i such that a−i = b−i. Notice that ∆b

a = ∆bia−i
a = ∆bi

ai
,

where the last vector refers to the payoff difference ūi(bi) − ūi(ai) in task i. We will argue that the
coefficient y∗(a, b) depends only on ai and bi, i.e., that y∗(a, b) = y∗(aia

′
−i, bia

′
−i) for all a′

−i. Indeed,
for any two problems i, j, an application of (7.2) to two paths a, bia−i, bibja−ij and a, bja−j , bibja−ij

yields

y∗(a, bia−i)∆bia−i
a + y∗(bia−i, bibja−ij)∆bibja−ij

bia−i

= y∗(a, bja−j)∆bja−j
a + y∗(bja−j , bibja−ij)∆bibja−ij

bja−j
.

Since ∆bia−i
a = ∆bibja−ij

bja−j
= ∆bi

ai
and ∆bja−j

a = ∆bibja−ij

bia−i
= ∆bj

aj , this last equation simplifies to

(y∗(a, bia−i) − y∗(bja−j , bibja−ij)) ∆bi
ai

+ (y∗(bia−i, bibja−ij) − y∗(a, bja−j)) ∆bj
aj

= 0.

13The term “exact” is borrowed from differential geometry, where an exact vector field is a gradient of a scalar
function.
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a a−ibi

a−ici

a a−ibi

a−ijbibja−jbj

Figure 7.2. Two basic types of cycles in product problems.

Both coefficients must be equal to 0 since ∆bi
ai

and ∆bj
aj are linearly independent; in particular,

y∗(a, bia−i) = y∗(bja−j , bibja−ij).

Applying this equation repeatedly to change a−i to any a′
−i one component at a time shows that

y∗(a, bia−i) depends only on ai and bi.
Now consider Example 7 with Ω = {0, 1}. Let yi = y∗(0ia−i, 1ia−i) for any a−i. (By the previous

observation, yi is independent of the choice of a−i.) Taking b = 0 in (7.2), we obtain

X̄∗(a) = X̄∗(0) +
∑

i s.t. ai=1
yi∆1i

0i

= X̄∗(0) −
∑

i

yiūi(0i) +
∑

i

yiūi(ai).

Taking d(θ) = X̄∗(0) −
∑

i yiūi(0i), we obtain an expression of the form in (7.1).
This argument is not specific to Example 7: it extends directly to all product problems with binary

actions in every task. Extending beyond binary actions requires more care and conditions on linear
independence of payoffs within tasks. We leave the details to the formal proof.

We now return to the question of why all cycles are exact. The first step is to notice that it is
sufficient to establish the exactness of two types of cycles, depicted in Figure 7.2. Cycles of the first
type consist of three actions that differ only in choices within the same task. Those of the second type
consist of four actions that differ in choices in two tasks. Under the assumptions of Theorem 3, one
can show that all cycles can, in a sense, be decomposed into cycles of these two types whose exactness
implies exactness of the original cycle.

In Example 7, only cycles of the second type exist. Consider the four-action cycle corresponding
to the front face in Figure 7.1. A repeated application of the Adjacency Lemma (Lemma 1) along the
cycle leads to

X̄(000) = x(000, 100)x(100, 110)x(110, 010)x(010, 000)X̄(000) + s1∆11
01

+ s2∆12
02
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for some s1, s2 ∈ R. If X̄(000) is not in the subspace spanned by vectors ∆11
01

and ∆12
02

, then the
product of the x coefficients on the right-hand side must be equal to 1, meaning that the cycle is
exact. Otherwise, by analyzing a number of cases, one can show that the cycles corresponding to the
other five faces in Figure 7.1 are all exact. These five cycles can be combined in such a way that all
edges not belonging to the front face “cancel out,” thereby implying exactness of the original cycle.

8. Discussion

8.1. Three states. We have assumed throughout that there are at least four states. Our necessary
conditions for incentivizability rely on this assumption insofar as it ensures that, for any two adjacent
actions a and b, intersections of the set of beliefs at which the DM is indifferent between a and b with
the level sets of X(a, ·) or X(b, ·) have dimension at least one.

If there are only two states, the problem becomes trivial as the DM’s belief about the state can be
elicited independent of the action, which is sufficient for the researcher to determine the expectation
of any question X. With three states, eliciting the entire belief may still be a practical option as it
requires asking for only two probabilities.

If the researcher wants to ask for only one number in a problem with three states, although our
necessary conditions no longer apply, looking at adjacencies can nonetheless be useful for understand-
ing incentivizability. Suppose the overall payoff is a weighted sum of the payoff from the decision
problem and that from a scoring rule applied at the belief elicitation stage. Suppose moreover that
the scoring rule depends only on the reported belief and the realized value of X(a, θ), and not on θ

directly.14 At any belief at which the DM is indifferent between two actions, the value of truthful
reporting at the belief elicitation stage must be equal following these two actions. Depending on the
structure of the decision problem, following these constant values along cycles of adjacent actions can
imply restrictions on X; see Figure 8.1.

8.2. Independent questions. Our necessary conditions make use of independence assumptions on
the payoffs in the decision problem. Similar results can be obtained if one replaces these assumptions
with assumptions about independence of X̄ across actions. For example, along the lines of Lemma 2,
if X is incentivizable and the set of questions X̄(a) is linearly independent for actions a in some cycle
C of adjacencies, then one can show that X must be aligned with u on C. Lemma 3 can then be used
to obtain necessary conditions on the full set of actions.

8.3. Non-affine questions. We have restricted attention to eliciting beliefs about the expectation
of some function X(a). Lambert (2019) studies elicitation of “properties” of beliefs, where a property

14This is a natural restriction that we do not impose in our model; doing so would have no effect on our results.
When there are three states, we do not know whether this restriction has any bite; we expect that the convexity of the
value function would place restrictions on incentivizable questions even if the value can depend on θ directly.
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A B

C

A B

C

Figure 8.1. Problems with three states. Each triangle depicts the simplex of beliefs.
The black line segments illustrate the partition of the simplex according to which
action is optimal. Blue line segments represent sets of beliefs on which X(a∗) is
constant for the optimal action a∗. In the left triangle, because the blue lines form a
triangle, adjacency considerations do not rule out incentivizability of X. In the right
triangle, X is not incentivizable if the payment for elicitation depends only on the
value of X and the reported belief.

corresponds to a partition of the simplex. He characterizes which properties are incentivizable, i.e.,
for which ones there exists a scoring rule incentivizing truthful reporting when the DM is asked only
about the property associated with her belief. A question X(a) in our framework corresponds to a
property that partitions the simplex into parallel hyperplanes (unless the question is trivial, in which
case there is a single property for the entire simplex). This formulation captures many properties
of interest and ensures incentivizability in the absence of an additional decision problem, or if the
question is independent of the action choice. There are, however, properties—such as the median
of some X—which may be of interest that are incentivizable in Lambert’s context but to which our
results do not apply. Nonetheless, we expect our general approach of focusing on adjacencies between
actions to be useful for such non-affine questions.

8.4. Multi-dimensional question. In our model, we assume that the researcher can only ask a single
question. Here, we show how our methods can be extended to multiple questions. For simplicity, we
focus on the case of two questions; the logic extends directly to more than two questions.

We say that questions X, Y : A −→ RΘ are jointly incentivizable if there exists an elicitation method
V : R2 × A × Θ −→ [0, 1] such that, for every p ∈ ∆(Θ),

arg max
a,r,s

Ep V (r, s, a, θ) ⊆
{

(Ep X (a; θ) , Ep Y (a; θ) , a) : a ∈ arg max
b∈A

Ep u (b; ·)
}

.

If X and Y are both aligned with u, it is straightforward to extend Proposition 1 to show that they
are jointly incentivizable.

For necessary conditions, our key result—Lemma 1—extends as follows.
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Lemma 4. Suppose that X and Y are jointly incentivizable. If actions a and b are adjacent, then
there are ρX , ρY and σy

x for x, y = X, Y , not all equal to 0, such that

X̄ (b) = ρX (ū(b) − ū(a)) + σX
X X̄ (a) + σY

X Ȳ (a)

and Ȳ (b) = ρY (ū(b) − ū(a)) + σX
Y X̄ (a) + σY

Y Ȳ (a) .

If X̄(a) or X̄(b) is collinear with ū(b) − ū(a), then we can take ρ ̸= 0.

The proof, which we omit, follows the same reasoning as that of Lemma 1. We leave to future
research the details of how to use this lemma to identify precise conditions for joint incentivizability.

8.5. Robust scoring rules. We have assumed throughout that the researcher knows the utility func-
tion in the decision problem. This assumption is reasonable in many lab experiments, but questionable
in other settings—such as field experiments—in which a researcher may want to elicit beliefs. Suppose
instead that the researcher has in mind a set of possible utility functions, and requires that questions
be incentivizable for every utility function in that set. For questions that (as in our model) are in-
dependent of the utility function, this requirement is typically very demanding. For instance, under
the conditions of Theorem 2, X must be aligned with every u. Notice, however, that some questions
are naturally formulated in a way that depends on the utility function; the expected ex post regret
of Example 3 is one such question. Allowing X to depend on u accommodates these questions. Our
results can then be applied separately for each utility function in the set considered by the researcher
to determine whether a question is incentivizable.

Appendix A. Proofs for Section 3

Lemma 5. For any d ∈ RΘ, X (a) = u (a) + d and X(a) = d are incentivizable.

Proof. Let L, M ∈ R be such that, for all a and θ, L < u(a; θ) + d(θ) < M and L < d(θ) < M . If
X (a) = u (a) + d, let

V (r, a, θ) =
rˆ

L

X (a; θ) dx +
M̂

r

xdx − M2

2 = (u (a; θ) + d (θ)) (r − L) − 1
2r2,

where d(θ) is the θ-coordinate of d. For this V , simple calculations show that the optimal choice of
r given a is Ep X (a; θ). Since the optimal r is greater than L, the optimal choice of action a is the
same as in the decision problem with utility u. A similar argument applies if X(a) = d, in which case
we let V (r, a, θ) = u (a; θ) + d (θ) (r − L) − 1

2 r2. □

Proof of Proposition 1. Suppose V incentivizes a question X. Let Y (a) = γ(a)X (a) + κ(a)1 for some
γ, κ : A −→ R. Letting W (r, a, θ) = V

(
1

γ(a) (r − κ(a)) , a, θ
)

, it is straightforward to verify that W

incentivizes Y. The result now follows from Lemma 5. □
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Appendix B. Proofs for Section 4

Proof of Lemma 1. Let V be an elicitation method that incentivizes X. Consider two beliefs p0 and p1

such that (i) actions a and b are both optimal in the decision problem, i.e., a, b ∈ arg maxa′ Epk
[u(a′, ·)]

for k = 0, 1), and (ii) the question X(a) attains the same value at p0 and p1, i.e., Ep0 [X(a, ·)] =
Ep1 [X(a, ·)].Letting r = Ep0 [X(a, ·)], it follows that (a, r) is optimal given V at all pα = αp1+(1 − α) p0

for α ∈ [0, 1]. The optimal expected payoff Epα
[V (r, a, ·)] is therefore linear in α. Since b is also an

optimal action at each pα, the optimal expected payoff maxs Epα
[V (s, b, ·)] must be linear in α as

well. Therefore, there exists some r′ such that, for each α, r′ ∈ arg maxs Epα
[V (s, b, ·)]. In particular,

Epk
[X(b, ·)] = r′ for each k = 0, 1.

Fixing p0, notice that the preceding argument applies to all p1 ∈ RΘ satisfying the following
orthogonality conditions:

(1) p1 − p0 ⊥ 1, ensuring that p1 is a well-defined belief;
(2) p1 − p0 ⊥ u(a) − u(b), ensuring that the DM is indifferent between a and b at p1; and
(3) p1 − p0 ⊥ X(a), ensuring that X(a) attains the same value at p0 as at p1.

For any such p1, the preceding argument implies that p1 − p0 ⊥ X(b).
By a standard linear algebra argument, it follows that

X(b) ∈ span (1, u(a) − u(b), X(a)) .

Noting that, for any vector v, v̄ differs from v by a scalar multiple of 1, and that v ⊥ 1, we obtain

X̄(b) = ρ (ū(a) − ū(b)) + σX̄(a)

for some ρ, σ ∈ R.
If X̄(b) is not collinear with ū(b) − ū(a), then we must have σ ̸= 0, as needed. Otherwise, switching

the roles of a and b in the preceding argument yields that X̄(a) is also collinear with ū(b) − ū(a), and
therefore one can take ρ and σ to be nonzero. □

Appendix C. Proofs for Section 5

Lemma 6. Suppose action a splits the adjacency graph into B0 and B1. Then, for any pair of beliefs
p0 and p1 such that, for each i, some action bi ∈ Bi is optimal at pi in the decision problem, there is
a convex combination p = αp1 + (1 − α) p0 such that a is optimal at p.

Proof. Suppose not. Then all actions that are optimal at convex combinations of p0 and p1 must be
either from B0 or B1. Hence, for some such convex combination p′, the set of optimal actions contains
at least one element from each of B0 and B1. Then in any neighbourhood of p′, there must be a belief
at which there is exactly one member of each Bi that is optimal, contradicting the fact that no action
in B0 is adjacent to any action in B1. □
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Proof of Proposition 2. We first derive explicit formulas for an elicitation method that incentivizes a
question X aligned with u. When X is non-trivially aligned with u, using the BDM construction from
the proof of Proposition 1 gives

V BDM (r, a, θ; γ, κ, d) = (u (a; θ) + d (θ))
(

1
γ(a) (r − κ(a)) − L

)
− 1

2

(
1

γ(a) (r − κ(a))
)2

(C.1)

= 1
γ(a)2

[
(X (a; θ) − κ(a)) (r − κ(a) − γ(a)L) − 1

2 (r − κ(a))2
]

= 1
γ(a)2

(
X (a; θ) − 1

2r − 1
2κ(a)

)
(r − κ(a)) − 1

γ(a) (X(a; θ) − κ(a))L.

Similarly, if X is trivially aligned with u, adding u(a; θ) to either of the last two lines gives V BDM .
When X is non-trivially aligned with u, the expected payoff of a DM who chooses action a and

then chooses r optimally is equal to

max
r

[
Ep [u (a; ·) + d (·)]

(
1

γ(a) (r − κ(a)) − L

)
− 1

2

(
1

γ(a) (r − κ(a))
)2]

(C.2)

= max
x

[
Ep [u (a; ·) + d (·)] (x − L) − 1

2x2
]

=1
2 (Ep [u (a; ·) + d (·)])2 − L Ep [u (a; ·) + d (·)] .

Similarly, the expected payoff is equal to Ep[u(a; ·)] + (Ep[d(·)])2
/2 − L Ep[d(·)] if X is trivially aligned

with u.
To keep the notation simple, we present the argument only for the case in which the splitting

collection contains two elements, A0 and A1, with splitting action a0. Extending the argument to the
general case is straightforward.

We construct an elicitation method on each Ai, then show that they agree on a0 and therefore give
rise to well-defined elicitation method on the full action set, A.

First suppose X is non-trivially aligned with u on each Ai. For each i = 0, 1, let (γi, κi, di) be such
that X(a) ≡Ai γi(a)(u(a) + d) + κ(a)1. Define the elicitation methods

(C.3) Vi (r, a, θ; wi, ωi) =
(

γi(a0)
γi(a)

)2(
X (a; θ) − 1

2r − 1
2κi(a)

)
(r − κi(a))

+ wi (θ) − ωi − γi(a0)2

γi(a) (X(a; θ) − κi(a))L,

where wi ∈ RΘ and ωi ∈ R. Note that this expression differs from the expression for V BDM in (C.1)
only by multiplication by a positive constant and addition of a function that depends only on the
state. As neither of these changes affects the optimal choices of a and r, it follows from the argument
in the proof of Proposition 1 that Vi incentivizes X on Ai (i.e., in the decision problem with actions
restricted to Ai).
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Notice that

V1
(
r, a0, θ; w1, ω1

)
− V0 (r, a0, θ; w0, ω0)

=
(

X (a0; θ) − 1
2r − 1

2κ1(a0)
)

(r − κ1(a0)) −
(

X (a0; θ) − 1
2r − 1

2κ0(a0)
)

(r − κ0(a0))

+ (w1 (θ) − w0 (θ)) − (ω1 − ω0) − γ1(a0)(X(a0; θ) − κ1(a0))L + γ0(a0)(X(a0; θ) − κ0(a0))L

= X (a0; θ) (κ0(a0) − κ1(a0) + γ0(a0) − γ1(a0)) + 1
2

(
(κ1(a0))2 − (κ0(a0))2

)
+ (w1 (θ) − w0 (θ)) − (ω1 − ω0) + (γ1(a0)κ1(a0) − γ0(a0)κ0(a0))L.

Given any w0 and ω0, let

w1(θ) = w0(θ) − X (a0, θ) (κ0(a0) − κ1(a0) + γ0(a0) − γ1(a0))

for each θ, and

ω1 = 1
2
(
κ1(a0)2 − κ0(a0)2)+ ω0 + (γ1(a0)κ1(a0) − γ0(a0)κ0(a0))L.

Then V1
(
r, a0, θ; w1, ω1

)
= V0 (r, a0, θ; w0, ω0) for all r and θ.15

Let

V (r, a, θ) = Vi (r, a, θ) for each a ∈ Ai.

Because V0 and V1 agree for action a0, V is well defined.
In case X is trivially aligned with u on some Ai, we add γi(a0)2u(a; θ) to the expression for

Vi(r, a, θ; wi, ωi) in (C.3) and adjust the definition of w1(θ) accordingly to include any such additional
u(a0; θ) terms.

To verify that V incentivizes X, it suffices to show that at any belief p at which no action in Ai

is optimal in the decision problem, arg maxa maxr Ep[V (r, a, ·)] ⊆ Aj , where j ̸= i. Without loss of
generality, take i = 1 and j = 0, and let p0 denote such a belief.

Note first that, by (C.2), the expected value from choosing an action a ∈ Ai followed by an optimal
choice of r is equal to

(C.4) max
r

Ep[Vi(r, a, ·)] = γi(a0)2 1
2 (Ep[u (a, ·)] + Ep[d (·)])2

+ Ep[wi(·)] − ωi − Lγi(a0)2 Ep [u (a; ·) + d (·)] .

It follows that the expected value from an action b ∈ Ai is at least as large as that from an action
a ∈ Ai if and only if

1
2 (Ep[u(b; ·)] + Ep[d(·)])2 − L Ep[u(b; ·)] ≥ 1

2 (Ep[u(a; ·)] + Ep[d(·)])2 − L Ep[u(a; ·)],

15In the general case with splitting collection {A1, . . . , Ak}, one can recursively define each wi+1 and ωi+1 given wi

and ωi in an analogous fashion.
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which holds if and only if Ep[u(b; ·)] ≥ Ep[u(a; ·)] since the function (x + y)2/2 − Lx is increasing in x

for x + y > L and L satisfies Ep[u(a′; ·)] + Ep[d(·)] > L for all actions a′.
Suppose for contradiction that there is some b ∈ A1\ {a0} such that b ∈ arg maxa maxr Ep0 V (r, a, ·).

It follows that

max
r

Ep0 V1(r, b, ·) = max
r

Ep0 V (r, b, ·) ≥ max
r

Ep0 V (r, a0, ·) = max
r

Ep0 V1(r, a0, ·).

By the observation in the preceding paragraph,

Ep0 u (b, ·) ≥ Ep0 u (a0, ·) .

Let p1 be a belief at which b is strictly optimal, i.e., {b} = arg maxa Ep1 [u (a, ·)]. By Lemma 6,
action a0 must be optimal at some convex combination p = αp1 + (1 − α) p0. At the same time, the
above inequalities imply that

Ep[u (a0, ·)] = α Ep1 [u (a0, ·)] + (1 − α) Ep0 [u (a0, ·)]

< α Ep1 [u (b, ·)] + (1 − α) Ep0 [u (b, ·)]

= Ep[u (b, ·)],

contradicting the optimality of a0 at p. □

Appendix D. Proofs for Section 6 and extension of Theorem 2

Proof of Lemma 2. Without loss of generality, let a0 ∈ C be such that either X̄(a0) = 0 or X̄(a0) /∈ VC .
(If no such a0 exists, the lemma holds trivially.)

By Lemma 1, for each i = 1, . . . , n, we have X̄ (ai) = ρi∆ai
ai−1

+ σiX̄ (ai−1) for some σi ̸= 0 and
some ρi. Iterating these equations gives

X̄ (a0) = X̄ (an) =
n∑

i=1
Γiρi∆ai

ai−1
+ Γ0X̄ (a0) ,

where Γi = σn · · · σi+1 and Γn = 1. Because ∆a1
a0

+ · · · + ∆an
an−1

= 0, we get

n−1∑
i=1

(Γiρi − ρn) ∆ai
ai−1

+ (Γ0 − 1) X̄ (a0) = 0.

Since either X̄(a0) = 0 or X̄(a0) /∈ VC , it follows that
n−1∑
i=1

(Γiρi − ρn) ∆ai
ai−1

= 0.

Internal independence implies that Γiρi = ρn for each i = 1, . . . , n − 1.
If ρn = 0, then ρi = 0 for each i since Γi ̸= 0. In this case, all X̄(ai) are collinear, which implies

that X is trivially aligned with u on C.
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For the case of ρn ̸= 0, first note that, by the same iteration as above, for each k,

X̄(ak) =
k−1∑
i=1

ρi
Γi

Γk
∆ai

ai−1
+ Γ0

Γk
X̄(a0)

= ρn

Γk

k−1∑
i=1

∆ai
ai−1

+ Γ0

Γk
X̄(a0)

= ρn

Γk
(ū(ak) − ū(a0)) + Γ0

Γk
X̄(a0).

Letting γ(ak) = ρk = ρn/Γk ̸= 0 and d = −ū (a0) + ρ−1
n Γ0X̄ (a0), we have X̄(ak) = γ(ak) (ū(ak) + d))

for all k, and thus X is (non-trivially) aligned with u on C. □

Proof of Lemma 3. Alignment with u on B implies that there exist γB
0 , γB

1 ∈ R and dB ∈ RΘ such
that

γB
0 X̄(a0) − ū(a0) = γB

1 X̄(a1) − ū(a1) = dB .

Similarly, for D,

γD
0 X̄(a0) − ū(a0) = γD

1 X̄(a1) − ū(a1) = dD.

Rearranging these equations gives

γB
0 X̄(a0) − γB

1 X̄(a1) = ū(a0) − ū(a1)

and γD
0 X̄(a0) − γD

1 X̄(a1) = ū(a0) − ū(a1).

Subtracting one equation from the other leads to(
γB

0 − γD
0
)

X̄(a0) −
(
γB

1 − γD
1
)

X̄(a1) = 0.

Since X̄(a0) and X̄(a1) are linearly independent, it must be that γB
k = γD

k for each k = 0, 1. This in
turn implies that dB = dD = d.

All that remains is to show that for any other action a ∈ B ∪ D, the corresponding parameters
γB

a and γD
a are equal. Since X̄(a) cannot be collinear with both X̄(a0) and X̄(a1), we can repeat the

argument replacing one of a0 or a1 with a to obtain γB
a = γD

a . □

D.1. General necessary conditions. A set of actions B ⊆ A is cycle-rich if it contains at least
four elements and, for any proper subset B′ ⊂ B with at least three elements, there exists a ∈ B \ B′

such that ⋂
{VC : C is internally independent, a ∈ C, and |C ∩ B′| ≥ 2} = {0}.

The intersection above goes over all internally independent cycles that contain a and at least two
elements of B′.
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θ0

θ1

θ2

θ3
s

as

Figure D.1. Adjacency graph for Example 10.

Example 10. Consider a variant of Example 6 in which there is an additional safe action. Thus
A = Θ ∪ {as} with

u(a, θ) =


rθ if a = θ

s if a = as

0 otherwise.

Suppose in addition that Θ = {θ0, θ1, θ2, θ3}, with rθ = 1/2 for θ = θ0, θ1 and rθ = 1 for θ = θ2, θ3.
Let s = 3/10. Then the adjacency graph—which is depicted in Figure D.1—is incomplete since actions
θ0 and θ1 are not adjacent, but A is cycle-rich.

Theorem 4. Suppose B ⊆ A is cycle-rich. If X is incentivizable, then it is aligned with u on B.

Proof. We begin with the following observation.

Lemma 7. If X is non-trivially aligned with u on B, then for any a, b ∈ B, if X̄(a) and X̄(b) are
collinear, they are also collinear with ∆b

a.

Proof. Let a, b ∈ B be such that X̄(a) and X̄(b) are collinear and let γ(·) ̸= 0 and d be such that
X̄(a) = γ(a) (ū(a) + d) and X̄(b) = γ(b) (ū(b) + d). By the collinearity assumption, there exists α ̸= 0
such that

ū(a) + d = α (ū(b) + d) .

Because ū(a) ̸= ū(b), it must be that α ̸= 1. It follows that d = 1
1−α (αū(b) − ū(a)) and

1
γ(a) X̄(a) = ū(a) + 1

1 − α
(αū(b) − ū(a)) = α

1 − α
(ū(b) − ū(a)) ,

as needed. □

Cycle-richness implies that there is some a ∈ B and a collection of internally independent cycles C̃

with a ∈ C̃ ⊆ B for which the intersection of the spaces VC̃ is {0}. Thus either X̄(a) = 0 or X̄(a) /∈ VC

for some such cycle C. By Lemma 2, X is aligned with u on C.
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Let B′ ⊆ B be a subset of B of maximal cardinality on which X is aligned with u. By the above
argument, B′ has at least three elements. Suppose for contradiction that B′ ̸= B. By the same
argument as in the preceding paragraph, cycle-richness implies that there exists a ∈ B \ B′ and a
cycle C containing a such that |C ∩ B′| ≥ 2 and either X̄(a) = 0 or X̄(a) /∈ VC . By Lemma 2, X is
aligned with u on C.

If there exists a pair of distinct actions a0, a1 ∈ C ∩ B′ such that X̄(a0) and X̄(a1) are not collinear,
Lemma 3 implies that X is aligned with u on C ∪ B′, contradicting the maximality of B′.

From now on, suppose that a0, a1 ∈ C ∩ B′ are distinct actions such that X̄(a0) and X̄(a1) are
collinear.

If X̄(a0) and X̄(a1) are not collinear with ∆a1
a0

, then Lemma 7 implies that the alignment with u on
C and that on B′ must both be trivial, which further implies that, for all b ∈ C ∪ B′, X̄(b) is collinear
with X̄(a0). Thus, X is trivially aligned with u on C ∪ B′, contradicting the maximality of B′.

If X̄(a0) and X̄(a1) are collinear with ∆a1
a0

, then, by Lemma 1, X̄(a) ∈ span(∆a0
a , ∆a1

a0
) = VC . The

choice of cycle C implies that X̄(a) = 0. Another application of Lemma 1 shows that X̄(a0) is collinear
with ∆a0

a . But the latter contradicts collinearity with ∆a1
a0

due to the independence assumptions. The
contradiction finishes the proof of the Theorem. □

Proof of Theorem 2. It suffices to show that the set of all actions is cycle-rich; the result then follows
from Theorem 4.

Take any proper subset B ⊂ A with at least three actions b0, b1, b2 ∈ B and let a ∈ A\B. Consider
cycles Ci = B \ {bi} ∪ {a}. Then, VCi

= span{∆bj
a : j ̸= i}. The independence assumption implies

that
⋂

i VCi = {0}. □

It is straightforward to extend Theorem 4 to problems in which there is a splitting collection
{A0, . . . , Ak} such that, for each l, either Al is cycle-rich or it contains exactly two elements. In that
case, only questions piecewise aligned with u are incentivizable.

Appendix E. Proof of Theorem 3

This Appendix is divided into the following subsections. Section E.1 shows that each incentivizable
question in the product problem can be decomposed into linearly independent vectors that correspond
to different tasks. We use this decomposition together with Lemma 1 to derive restrictions on questions
for adjacent actions. Subsections E.2 to E.5 show that all adjacency cycles are exact. Section E.3
develops useful tools, and Sections E.4 and E.5 deal with different classes of cycles. Section E.6
concludes the proof.

E.1. Decomposition. Assume throughout that X is incentivizable.
For each i and each ti ∈ Θi, let ei (ti) ∈ RΘ be the vector such that, for each θ ∈ Θ, ei (θ|ti) =

1 {θi = ti}. Let Ei = span {ei (ti) : ti ∈ Θi} be the linear subspace spanned by such vectors. Notice
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that we can interpret

∆bi
ai

= ūi(ai) − ūi(bi) =
∑

ti

(ūi(ti|ai) − ūi(ti|bi)) ei(ti)

for each i, ai, and bi as a vector in the subspace Ei. Let E0 be a complementary space to the sum of
E1 through EI . Note that the subspaces Ei are linearly independent.

For each a, X̄(a) admits a unique decomposition

X̄(a) =
I∑

i=0
wi(a)(E.1)

with wi(a) ∈ Ei for all i. Note that the vectors w0(a), w1(a), . . . , wI(a) are linearly independent.
Take any a, b, and i, such that a−i = b−i. By Lemma 1, there are x(a, b) ̸= 0 and y(a, b) such that

X̄(a) = x(a, b)X̄(b) − y(a, b)∆a
b . Using the above decomposition, we have

0 =
[
wi(a) − x(a, b)wi(b) − y(a, b)∆ai

bi

]
+
∑
j ̸=i

[wj(a) − x(a, b)wj(b)] + [w0(a) − x(a, b)w0(b)] .

The proof of Lemma 1 shows that x(a, b) is uniquely defined if and only if X̄(a) ̸= 0 and X̄(a) is not
collinear with ∆ai

bi
. When this is not the case, we say that the transition (a, b) is free. The values of

x(a, b) for free transitions are carefully chosen below. Our choice always satisfies x(a, b)x(b, a) = 1
(which always holds for non-free transitions). Let x(a, a) = 1.

Because all vectors in square brackets form a linearly independent system, all these vectors must
be equal to 0:

wi(a) − x(a, b)wi(b) = y(a, b)∆ai

bi
,(E.2)

wj(a) − x(a, b)wj(b) = 0 for each j ̸= i,(E.3)

w0(a) − x(a, b)w0(b) = 0.(E.4)

Lemma 8. For each a, there exist γi(a) ̸= 0 and vectors w∗
i (ai) for each i = 1, . . . , I and γ0(a) ̸= 0

and a vector w∗
0 such that

wi(a) = γi(a)w∗
i (ai) for each i, and w0(a) = γ0(a)w∗

0.

Proof. For the first claim, fix an action a∗. For each ai, let w∗
i (ai) = wi(a∗

−iai). For each a, fix an
arbitrary a path of adjacent actions a0 = a∗

−iai, . . . , an = a such that for each l < n, al
i = ai. A

repeated application of (E.3) shows that

wi(a) = x(an, an−1) · · · x(a1, a0)w∗
i (ai).

Let γi(a) = x(an, an−1) · · · x(a1, a0).
For the second claim, fix w∗

0 = w0(a∗) and repeatedly apply (E.4). □
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This result says that, for a fixed ai, the vectors wi(a−iai) for a−i are either all collinear or all equal
to 0.

Lemma 9. For each i, one of the following is true:

(a) w∗
i (ai) = 0 for each ai,

(b) there exists a0
i ∈ Ai such that w∗

i (a0
i ) = 0 and w∗

i (ai) ̸= 0 for each ai ̸= a0
i ,

(c) w∗
i (ai) ̸= 0 for each ai.

If question X does not depend trivially on problem i, then there is an action ai such that w∗
i (ai) ̸= 0.

Proof. Suppose that there are three different actions ai, bi, and ci such that w∗(ai) = w∗(bi) = 0 and
w∗(ci) ̸= 0. Equation (E.2) together with Lemma 8 implies that wi(ci) is simultaneously collinear
with ∆ai

ci
and ∆bi

ci
. But the latter is impossible given the independence assumption.

For the last claim, suppose that w∗(ai) = 0 for each ai. Equation (E.2) implies that y(a, b) = 0
for each a and b such that a−i = b−i. But then, for each a−i, the vectors X̄(a−iai) and X̄(a−ibi) =
x(a−ibi, a−iai)X̄(a−iai) are collinear. Hence, X depends on problem i trivially. □

Because X depends non-trivially on at least three problems, Lemma 9 implies that at least three
problems satisfy (b) or (c).

E.2. Exact cycles. Say that an adjacency cycle a0, . . . , an = a0 is exact if

x(a0, a1)x(a1, a2) · · · x(an−1, an) = 1.

The goal of this subsection as well as subsections E.3 to E.5 is to prove the following result.

Lemma 10. The values x(a, b) for free transitions (a, b) can be chosen so that (i) x(a, b)x(b, a) = 1
for all adjacent a and b, and (ii) every adjacency cycle is exact.

We begin with the following observation.

Lemma 11. Suppose that w∗
0 ̸= 0. Then, all adjacency cycles are exact.

Proof. The result follows from a repeated application of equality (E.4). □

From now on, we assume that w∗
0 = 0.

E.3. Tools. The two results in this section develop tools that we use in the subsequent analysis.
The first tool allows us to replace the question of whether a cycle is exact with an analogous

question about related cycles. For each path c = (a0, . . . , anc) and each transition (a, b) between two
adjacent actions, define

mb
a(c) = #

{
l < nc : al = a, al+1 = b

}
− #

{
l < nc : al = b, al+1 = a

}
.
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Lemma 12. Suppose that, for some adjacency cycle c, there exists a collection D of exact adjacency
cycles such that for each adjacent pair a, b, mb

a(c) =
∑

d∈D mb
a(d). Then cycle c is exact.

Proof. Let ≺ be an arbitrary strict order on the set of actions A. Then,

∏
l<nc

x(ac,l, ac,l+1) =
∏
a≺b

(x(a, b))mb
a(c) =

∏
a≺b

(x(a, b))
∑

d∈D
mb

a(d)

=
∏
d∈D

∏
a≺b

(x(a, b))mb
a(d) =

∏
d∈D

∏
l<nd

x(ad,l, ad,l+1) = 1,

where the last equality comes from the fact that cycles in D are exact. □

The second result shows that it is enough to consider a particular category of “small” cycles.

Lemma 13. Each adjacency cycle is exact if and only if the following cycles are exact:

(1) (a, b, a) for any two adjacent actions a and b,
(2) (a, b, c, a) for any three actions a, b, and c such that a−i = b−i = c−i,
(3) (a, a−ibi, a−ijbibj , a−jbj , a) for any action a, any i ̸= j, and any bi and bj.

Proof. Take any “large” cycle of adjacent actions a = a0, . . . , an = a and let il be such that, for each
l < n, al

−il
= al+1

−il
. For future reference, notice that if the action in some problem i is ever changed,

then it must be changed at least twice: if il = i for some l, then there is some l′ ̸= l such that il′ = i.
We use the “small” cycles to re-order and reduce the “large” cycle without changing the value of the
product of associated the x terms:

• if il > il+1 for l < n − 1 we use the “small” cycle of type (3) to switch the order of the two
problems, i.e., replace the cycle fragment . . . , al, al+1, al+2, . . . , where al+1 = al

−il
al+2

il
, with

. . . , al, al
−il+1

al+2
il+1

, al+2, . . . ;
• if il = il+1, including in−1 = i0, we use either type (1) or type (2) to reduce the “large” cycle,

i.e, replace the cycle fragment . . . , al, al+1, al+2, . . . with . . . , al, al+2, . . . in the case of a type
(2) cycle or with . . . , al, . . . in the case of a type (1) cycle.

Consider a process in which one of the above operations is applied until it cannot be applied
anymore. Because the operations either reduce the size of the cycle or they re-order problems in an
increasing direction, the process never reverts and it will eventually stop. If the process stops at a
single-element cycle a, then, because x(a, a) = 1, the original cycle must be exact.

Otherwise, the process stops with a non-trivial cycle a = a0, . . . , am = a for some 2 ≤ m ≤ n.
Then it must be that il < il + 1 for each l < m. But this contradicts the earlier observation that, in
an adjacency cycle, if i appears at least once, it must appear at least twice. □
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E.4. Cycles without free transitions. Here, we consider the exactness of small cycles without free
transitions. We refer to i from the definition of type (2) cycles as the relevant problem for this cycle;
similarly, we refer to i and j as the relevant problems for type (3) cycles. We say that a type (2)
or type (3) cycle

(
a0, . . . , an = a0) is grounded if there exists some k such that k is not a relevant

problem and w∗
k(a0

k) ̸= 0.

Lemma 14. Any grounded type (2) or type (3) cycle is exact.

Proof. Suppose that w∗
k(a0

k) ̸= 0 for some irrelevant problem k. Then wk(ai) ̸= 0 for each action ai in
the cycle. A repeated application of (E.3) shows that for each l ≤ n,

wk(al) = wk(a)x(a0, a1) · · · x(al−1, al).

The result follows from the fact that an = a0. □

Lemma 15. Suppose that for some a and i ̸= j and any bi and bj, (a, a−ibi, a−ijbibj , a−jbj , a) is a
type (3) “small” cycle such that either (i) w∗

i (ai) ̸= 0 and w∗
i (ai) is not collinear with ∆bi

ai
, or (ii)

w∗
j (aj) ̸= 0 and w∗

j (aj) is not collinear with ∆bj
aj . Then the cycle is exact.

Proof. Using E.2 and E.3, we get

x(a−ibi, a−ijbibj)
(
x(a, a−ibi)wi(a) + x(a, a−ibi)∆bi

ai

)
= x(a−ibi, a−ijbibj)wi(a−ibi)

= wi(a−ijbibj)

= x(a−jbj , a−ijbibj)wi(a−jbj) + y(a−jbj , a−ijbibj)∆bi
ai

= x(a−jbj , a−ijbibj)x(a, a−jbj)wi(a) + y(a−jbj , a−ijbibj)∆bi
ai

.

Suppose without loss of generality that w∗
i (ai) ̸= 0 and w∗

i (ai) is not collinear with ∆bi
ai

, which implies
that wi(a) ̸= 0 and wi(a) is not collinear with ∆bi

ai
. The first and the last line of the above sequence

of equalities yield

x(a−ibi, a−ijbibj)x(a, a−ibi) = x(a−jbj , a−ijbibj)x(a, a−jbj).

Hence, the cycle is exact. □

Lemma 16. Suppose that a type (2) or type (3) “small” cycle is such that w∗
i (ai) ̸= 0 for each action

a in the cycle and each relevant problem i. Then it is exact.

Proof. If the cycle is grounded, the result follows from Lemma 14. Accordingly, suppose henceforth
that the cycle is not grounded. Then, because of Lemma 9, and due to the assumption that at
least three different problems are nontrivial, there exist non-relevant k and action bk ̸= ak such that
w∗

k(bk) ̸= 0.
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a a−ibi

a−ijbibja−jbj

a−kbk

a−ikbibk

a−ijkbibjbka−jkbjbk

a a−ibi

a−ici

a−kbk

a−ikbibk

a−ikcibk

Figure E.1. Small cycles of type (3) and type (2)

Suppose that the original cycle (a, a−ibi, a−ijbibj , a−jbj , a) has type (3). The cycle corresponds to
the orange face on the left-side of Figure E.1. Consider the type (3) cycles that are associated with
all five remaining faces of the cube:

• a, a−ibi, a−ikbibk, a−kbk, a;
• a−ibi, a−ijbibj , a−ijkbibjbk, a−ikbibk, a−ibi;
• a−jbj , a−jkbjbk, a−ijkbibjbk, a−ijbibj , a−jbj ;
• a, a−kbk, a−jkbjbk, a−jbj , a;
• a−kbk, a−ikbibk, a−ijkbibjbk, a−jkbjbk, a−kbk.

The first cycle corresponds to the bottom face, the second to the right face, the third to the top face,
the fourth to the left face, and the fifth to the back face. All five cycles are grounded, and hence exact
by Lemma 14. Moreover, the conditions of Lemma 12 are satisfied. Therefore, the original cycle is
exact as well.

An analogous argument applies to type (2) cycles (see the right panel of Figure E.1). □

Lemma 17. If a type (2) or (3) cycle has no free transitions, then it is exact.

Proof. By Lemmas 14 and 16, it is enough assume that the cycle is not grounded and w∗
i (ai) = 0 for

some relevant i and action a in the cycle. It follows that w∗
k(ai) ̸= 0 if and only if k = j, where j is

the other relevant problem of the cycle.
In such a case, if the cycle were of type (2), all transitions to action a would be free.
Suppose the cycle is of type (3). Let b be the action in the cycle such that a−j = b−j . Then

X̄(a) = γj(a)w∗
j (aj)

and X̄(b) = γj(b)w∗
j (bj) = x(a, b)γj(a)w∗

j (aj) + y(a, b)∆bj
aj

.
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Because the transition (a, b) is not free, it must be that w∗
j (aj) ̸= 0 and w∗

j (aj) is not collinear with
∆bj

aj . Lemma 15 therefore implies that the cycle is exact.
□

E.5. Cycles with free transitions. Next, we consider cycles with free transitions.
Notice first that, if a transition between adjacent actions a and b such that a−i = b−i is free, then

it must be that w∗
j (aj) = 0 for each j ̸= i. Indeed, if, for some α ̸= 0,

X̄(a) = αX̄(b) = x(a, b)X̄(b) + y(a, b)∆bi
ai

,

then X̄(b), and hence X̄(a), must be collinear with ∆bi
ai

. Because of the linear independence of ∆bi
ai

and wj(a) for each j ̸= i, it must be that wj(a) = 0, and hence w∗
j (aj) = 0. We refer to this property

as the test for freeness of the transition (which provides necessary conditions). It follows that, if j ̸= i

is non-trivial, then aj = a0
j .

In what follows, we consider two cases:

I: There exists a single non-trivial i such that w∗
i (ai) ̸= 0 for all ai. Assume without loss of

generality that i = I. In this case, all free transitions must be between adjacent actions a and
b such that a−I = b−I . Moreover, it must be that w∗

I (aI) and w∗
I (bI) are collinear with ∆bI

aI
.

Assume without loss of generality that problem 1 is non-trivial and fix action b1 ̸= a1 so
that w∗(b1) ̸= 0. Let

x(a, b) = x(a, a−1b1)x(a−1b1, a−1Ib1bI)x(a−1Ib1bI , b).

The above definition implies that the cycle (a, a−1b1, a−1Ib1bI , b, a) is exact. This cycle cor-
responds to the red face(s) in Figure E.5. The orange edge corresponds to the free transition.
Notice that each red face cycle contains only one free transition. This is because of the test:
all other transitions of the cycle either keep fixed the action in problem I or the action b1,
and those actions are associated with non-zero w∗

· (·) vectors.
There are three types of cycles that contain free transitions, which are depicted as orange

faces in Figure E.5.
The top left panel corresponds to the cycle (a, a−ibi, a−iIbibI , a−IbI , a) when problem i is

non-trivial. In this case, bi ̸= a0
i , and, by Lemma 9, w∗

i (bi) ̸= 0. The test implies that none
of the other transitions in the orange cycle are free: either action bi or action aI is fixed.
Analogously, an application of the test shows that none of the other cycles (the uncolored
faces) is free: one of the actions aI , bi, or b1 is fixed. Proceeding as in the proof of Lemma
16, we see that this cycle is exact.

The top right panel corresponds to a situation when problem i is trivial. In this case, the
transition (a−ibi, a−iIbibI) is free and x (a−ibi, a−iIbibI) can be chosen to make the cycle on
the bottom face exact. None of the other transitions are free. Because the red face and the
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a−ibi a−iIbibI

a−IbIa

a−1ib1bi

a−1iIb1bibI

a−1Ib1bIa−1b1

a−ibi a−iIbibI

a−IbIa

a−1ib1bi

a−1iIb1bibI

a−1Ib1bIa−1b1

a a−IcI

a−IbI

a−1b1

a−1Ib1cI

a−1Ib1bI

Figure E.2. Cycles with free transitions in case I.

uncolored cycles are exact, the above argument implies that the orange face cycle is exact as
well.

The bottom panel corresponds to the orange cycle (a, a−IbI , a−IcI , a). The other transi-
tions of the orange cycle are not free (otherwise, w∗(aI) would be collinear with ∆cI

aI
, which

would violate linear independence of the latter vector with ∆bI
aI

). All other transitions fix one
of the actions: aI , bI , cI , or b1. Hence, due to the test, none of the remaining transitions are
free. The claim follows from the same reasoning as in Lemma 16.

II: For all non-trivial i, there exists a unique a0
i such that w∗

i (a0
i ) = 0. Let a0 be the product

problem action that consists of actions a0
i . Assume without loss of generality that problem

i = 1 is non-trivial. Fix action a∗
1 ̸= a0

1.
In this case, a transition is free if and only if it takes the form (a0

−iai, a0) for some i. Indeed,
the above observation implies that if transition (a, b) is free, then a−i = a0

−i. Furthermore,
if neither a = a0 nor b = a0, then both w∗

i (ai) and w∗
i (bi) must be collinear with ∆bi

ai
. But,

together with the linear independence assumption, this implies that w∗
i (ai) is not collinear

with ∆a0
i

ai , which contradicts the fact that x(a, a0)γi(a)w∗
i (ai) + y(a, a0)∆a0

i
ai = 0.
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For each b1 ̸= a∗
1, each i ̸= 1, and each bi, let

x(a0
−1a∗

1, a0) = 1,

x(a0
−1b1, a0) = x(a0

−1b1, a0
−1a∗

1),

and x(a0
−ibi, a0) = x(a0

−ibi, a0
−1ia

∗
1bi)x(a0

−1ia
∗
1bi, a0

−1a∗
1).

By the above definition, the cycles (a0, a0
−1b1, a0

−1a∗
1, a0) and (a0, a0

−ibi, a0
−i1a∗

1bi, a0
−1a∗

1, a0)
are exact. These cycles correspond to the red faces in Figure E.5.

There are three types of cycles that contain free transitions in this case other than the
cycles listed above.

First, consider a cycle (a0, a0
−ibi, a0

−ijbibj , a0
−jbj , a0) for i ̸= 1. This cycle is depicted in

orange on the left panel of Figure E.5. The two cycles depicted in red are exact due to the
choice of the x coefficients. Finally, all of the other cycles are exact because they do not
contain free transitions.

a0
−ijbibj a0

−ibi

a0a0
−jbj

a0
−1ija∗

1bibj

a−1ia
∗
1bi

a0
−1a∗

1a0
−1ja∗

1bj

a0
−ibi a0

−ici

a0

a0
−1ia

∗
1bi

a0
−1ia

∗
1ci

a0
−1a∗

1

a0
−1b1 a0

−1c1

a0

a0
−1a∗

1

Figure E.3. Cycles with free transitions in case II.

Second, consider a cycle (a0, a0
−ibi, a0

−ici, a0) for i ̸= 1. This cycle corresponds to front wall
depicted in orange on the right panel of Figure E.5. The two cycles depicted in red are exact
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due to the choice of the x coefficients. All of the other cycles (corresponding to the back and
bottom walls) are exact because they do not contain free transitions.

Third, consider a cycle (a0, a0
−1b1, a0

−1c1, a0). This cycle corresponds to the front wall
depicted in orange on the bottom panel of Figure E.5. The two cycles depicted in red (cor-
responding to the left and right walls) are exact due to the choice of the x coefficients. The
remaining cycle (corresponding to the bottom wall) is exact because it does not contain any
free transitions.

Proceeding as in the proof of Lemma 16, we see that each of the considered cycles is exact.

Together with Lemma 17, this concludes the proof of Lemma 10.

E.6. Conclusion of the proof of Theorem 3. Recall that wi(a) = γi(a)w∗
i (ai). The next result

delivers additional information about the function γi(·).

Lemma 18. There exist γ : A −→ R, γ∗
i : Ai −→ R, and γ∗

0 ∈ R such that, for each a, γi(a) =
γ(a)γ∗

i (ai) for each i = 1, . . . , I, and γ0(a) = γ(a)γ∗
0 . In addition, x(a, b) = γ(a)

γ(b) for any two adjacent
actions a and b.

Proof. Fix an action a∗. For each a, find a path of adjacent actions a∗ = a0, . . . , am = a. Define

γ(a) = x(am, am−1) · · · x(a1, a0).

Lemma 10 implies that γ(a) is well defined in that its definition does not depend on the choice of path
from a∗ to a. Moreover, for any two adjacent actions a and b, if a∗ = a0, . . . , am = a is an adjacency
path from a∗ to a, then a∗ = a0, . . . , am, b is an adjacency path from a∗ to b, and

γ(b) = x(b, a)x(am, am−1) · · · x(a1, a0) = x(b, a)γ(a).

Let γ∗
i (ai) = γi(a∗

−iai)/γ(a∗
−iai). The claim for i > 0 follows from the fact that, for each a, if

w∗
i (ai) ̸= 0, then

wi(a) = γi(a)
γi(a∗

−iai)
wi(a∗

−iai) = γ(a)
γ(a∗

−iai)
wi(a∗

−iai).

A similar argument establishes the claim for i = 0 (see also the proof of Lemma 8). □

Lemma 19. There exist y∗
i ∈ R and di ∈ Ei such that

γ∗
i (ai)w∗

i (ai) = y∗
i ūi(ai) + di for any ai.
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Proof. By (E.2), for any actions a and b such that a−i = b−i,

γ∗
i (ai)w∗

i (ai) − γ∗
i (bi)w∗

i (bi) = 1
γ(a)wi(a) − 1

γ(b)wi(b)(E.5)

= 1
γ(a) (wi(a) − x(a, b)wi(b))

= 1
γ(a)y(a, b)∆ai

bi
.

Because the left-hand side and ∆ai

bi
do not depend on a−i, neither does y(a, b)/γ(a). Let y∗(ai, bi) =

y(a, b)/γ(a).
If problem i has only two actions, it is easy to see that y∗

i (ai, bi) = y∗
i (bi, ai) =: y∗

i . The claim
follows.

If problem i has at least three actions, take a, b, and c such that a−i = b−i = c−i and ai, bi, and
ci are distinct. Applying the above equation to pairs (a, b), (b, c), and (c, a) yields

y∗
i (ai, ci)∆ai

bi
+ y∗

i (ai, ci)∆bi
ci

= y∗
i (ai, ci)∆ai

ci

= γ∗
i (ai)w∗

i (ai) − γ∗
i (ci)w∗

i (ci)

= γ∗
i (ai)w∗

i (ai) − γ∗
i (bi)w∗

i (bi) + γ∗
i (bi)w∗

i (bi) − γ∗
i (ci)w∗

i (ci)

= y∗
i (ai, bi)∆ai

bi
+ y∗

i (bi, ci)∆bi
ci

.

The independence assumption implies that y∗
i (ai, bi) = y∗

i (bi, ci). Because the claim holds for arbitrary
and distinct actions, there must be y∗

i such that for all ai and bi, we have y∗
i (ai, bi) = y∗

i .
Finally, fix a∗

i and take di = γ∗
i (ai)w∗

i (ai) − y∗
i ūi(a∗

i ). The claim follows from equation (E.5). □

Substituting the observations from the two lemmas back into (E.1), we obtain

X̄(a) =
n∑

i=0
wi(a)

= γ(a)
(

n∑
i=1

γ∗
i (ai)w∗

i (ai) + γ0w∗
0

)

= γ(a)
(

n∑
i=1

y∗
i ūi(ai) +

[
n∑

i=1
di + γ0w∗

0

])
.

Let d be the vector in the square brackets. The result follows.

E.7. Converse. We have shown that (7.1) is necessary for incentivizability. All that remains is to
show that it is sufficient.

Notice that if τi > 0 for all i, the product problem is equivalent (in terms of optimal choices) to a
problem with payoffs

u (a, θ) =
∑

i

τiui (ai, θi) .
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In this latter problem, any X satisfying (7.1) is aligned with u, and is therefore incentivizable. This
in turn implies that X is incentivizable in the original problem.

If τi ≤ 0 for some i, note that, by Proposition 1, to show that X of the form described in (7.1) is
incentivizable, it suffices to show that

X(a, θ) = d(θ) +
∑

i

τiui(ai, θi)

is, where we may assume |τi| < 1 for all i. Letting

V (r, a, θ) =
ˆ r

0
X(a, θ)dx +

ˆ 1

r

xdx − 1
2 +

∑
i

ui(ai, θi)

= rd(θ) +
∑

i

(1 + rτi)ui(ai, θi) − r2

2 ,

the optimal choice of a is the same as in the original problem since 1 + rτi > 0 for all i and r, and the
optimal choice of r is Ep[X(a, θ)], as needed.
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