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Abstract. We characterize perfect public equilibrium payoffs in discounted sto-
chastic games with a continuous state space, in the case where the length of the
period shrinks. The probability (conditional on the action profile and the current
state) that the state changes in any given direction is fixed with respect to the
period length, but the magnitude of the change is proportional to the period length.

1. Introduction

We consider discounted stochastic games with imperfect public monitoring and a
continuous state space, where the magnitude of state transitions are proportional
to the period length. Players’ actions and the current state influence state transi-
tions, and the stage-game payoffs and monitoring technology vary with the state.
We characterize perfect public equilibrium payoffs for short period lengths, holding
the player’s rate of time discounting. In the limit, the discounting between periods
shrinks to zero, but the rate at which the state changes remains fixed. In particular,
the set of equilibrium payoffs typically depends on the initial state, because the state
changes only gradually.

The paper makes two main contributions. First, we present a meaningful definition
of the feasible and individually rational payoff sets in this setting, for each initial state.
To do this, we define the “pseudo-instantaneous payoff” of an action in a given state,
given a function mapping tomorrow’s state to a continuation value, as the sum of the
current stage-game payoff and the expected rate of change in the continuation value
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that the action generates. (That is, an action that yields a high payoff today may
have a lower pseudo-instantaneous payoff than an action that yields a low payoff today
but is more likely to lead to a state with a high continuation value.) We say that a
collection F = {F (s)}s of available continuation payoffs in each state s is self-feasible
if each payoff in each s can be achieved as the psuedo-instantaneous payoff from some
current action and a continuation payoff function that maps each new state s′ to a
value in F (s′). The collection is self-individually rational if for each s and each player,
every payoff in F (s) exceeds the minmax pseudo-instantaneous payoff (again using
continuation payoffs that take values in F ). We define V δ as the largest self-feasible
and self-individually rational collection, given per-period discount factor δ, and show
that for any initial state s, the set of perfect public equilbirium payoffs starting from
s must lie in V δ.

The second contribution of the paper is to strengthen the definition of a self-
feasible and self-individually rational collection in a parametrized way, and to show
that the maximal collection satisfying any such strengthened notion is contained in
the equilibrium set for high enough δ (that is, for short enough period lengths.) That
result requires that Fudenberg, Levine, and Maskin’s (1994) “FLM” conditions on
public monitoring hold uniformly across states. We also show that for any fixed δ,
the maximal collection under a strengthened notion converges (as we “weaken” the
strengthening) to the maximal collection under the original definition, for generic
games. In that sense, the upper and lower bounds on the equilibrium set approach
each other.

Stochastic games relax the strong restriction in repeated games that the conditions
under which players interact in one period are independent of outcomes in previous
periods. In many important economic examples of such settings, players can adjust
their actions frequently, while the state changes only gradually. For instance, com-
peting oligopolists may set prices daily, while market demand depends on slow shifts
in the macroeconomy. Similarly, firms can adjust advertising expenditures quickly,
but brand awareness changes slowly. Another example is natural resource depletion:
the owners of fishing boats can decide every day whether or not to go out, and each
such decision has only a very small effect on the current future stock of fish.
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Relatively little previous work on stochastic games has focused on this case. In-
stead, much of the literature has examined an alternative limiting case, with a finite
state space: fix the period length (and transition rates), and let players become very
patient. In that case, the discounted time to transition between states shrinks to
zero. Dutta (1995) derives a perfect-monitoring folk theorem for that environment;
Fudenberg and Yamamoto (2011), and Hörner et al. (2011) extend that result to
imperfect monitoring. All three results require, in contrast to the setting here, that
the set of PPE payoffs be independent of the initial state as the discount factor δ
approaches 1. To guarantee that independence, those authors use the condition that
no single player can prevent the Markov process governing the state from being ir-
reducible. We do not assume irreducibility, because, as we mention above, in our
model the set of equilibrium payoffs typically depends on the initial state regardless.
Without irreducibility, we can allow, for example, individual firms to go bankrupt
and permanently exit the game.

The paper most closely related to this one is Pęski and Wiseman (forthcoming).
There, the state space is finite (or countably infinite), and the probability of state
transition is proportional to the period length. That is, there transitions of fixed
magnitude occur with probabilities proportional to the period length, while here
transitions whose magnitude is proportional to the period length occur with fixed
probabilities. In both cases the rate of time preference is fixed. For the limiting
case as period length shrinks, Pęski and Wiseman (forthcoming) obtain a somewhat
sharper characterization of equilibrium payoffs than we provide here. We discuss the
difference in Section 4.2.

The rest of the paper is organized as follows: we describe the model in Section 2. In
Section 3 we define pseudo-instantaneous payoffs, self-feasibility and self-individual
rationality, and the strengthened versions of those concepts, and we present a simple
example of how to compute the maximal self-feasible and self-individually rational
payoff collection. We present our two main theorems in Section 4, and Section 5 is
the conclusion.
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2. Model

2.1. Stochastic games with a continuous state space. There are N expected-
utility maximizing players playing an infinite-horizon stochastic game. The time
between periods is given by ∆ > 0, and all players discount the future at rate r > 0,
so that the per-period discount rate is e−r4 ≡ δ. We will consider the case that the
time between periods shrinks to zero, so that the length of a period is proportional
to 1− δ. The set of stage-game action profiles is A = A1 × A2 × · · · × AN , where Ai
is the set of actions for player i. After each period, players observe a public signal of
actions, y, drawn from a finite set Y.

There is aK-dimensional set S of states of the world; S is a closed, bounded, convex
subset of RK . (The value of K is described below.) At the end of each period, the
state changes randomly. There is a finite set Z of K-dimensional vectors representing
possible state changes (both direction and magnitude). The function Φ : S → RK

(also described below) maps each state s to a vector that specifies, for each action
profile, the resulting probabilities of each public signal and state change, as well as
the vector of payoffs for each action profile-public signal pair.

At the start of each period, the state s is publicly observed. Then each player i
chooses an action ai ∈ Ai, and then all players observe the public signal y. In state s,
the public signal is distributed according to ρY (a, s), where a is the profile of actions
of all players.

Player i’s payoff in state s when action a is played and signal y occurs is ui (a, y, s);
let gi(a, s) be player i’s expected payoff when action profile a is played in state s:

gi(a, s) =
∑
y∈Y

[ρY (a, s) (y)]ui (a, y, s) .

Denote by g(a, s) the vector of expected payoffs for each player. We assume that
the payoffs are uniformly bounded by M ≡ maxa,s ‖g(a, s)‖ <∞ (where ‖·‖ denotes
the Euclidean norm). It will be convenient to work directly with the expected payoff
function g(a, s) rather than with ui (a, y, s).

When action profile a is played in state s, the probability that state change z ∈ Z
is drawn is ρZ (a, s) [z], and next period’s state is then s + (1 − δ)z. That is, the



EQUILIBRIUM PAYOFFS IN STOCHASTIC GAMES WITH GRADUAL STATE CHANGES 5

magnitude of the state transition is proportional to the length of the period. Let
zmax = maxz∈Z ‖z‖ <∞.

Let ρ(a, s) denote the joint distribution over public signal-state change pairs. Let
mi denote the number of actions available to player i (mi ≡ #Ai), mY the number
of public signals in Y, and mZ the number of state changes in Z. Then Φ(s) =
(ρ(·, s), g(·, s)). That is, for each state, Φ specifies an element of (∆(Y × Z))#A ×(
RN

)#A
, so K is equal to (mY ·mZ − 1 +N) ·#A.

To summarize, a game consists of a set of N players; a collection (S,A, Y, Z) of
states, action profiles, public signals, and state changes; the mapping Φ from states
to the parameters (including transition probabilities) of the stage game; an initial
state s0 ∈ S; and δ.

All these definitions extend in a natural way to mixed actions. This structure is
common knowledge. We assume that a public randomization device is available to
the players.

The set of public histories in period t is equal to Ht ≡ Y t−1 × Zt−1 × St, with
element ht = (s1, y1, z1, . . . , yt−1, zt−1, st), where st denotes the state at the begin-
ning of period t, and yt and zt denote the public signal and state change, respec-
tively, realized at the end of period t. Player i’s private history in period t is
hit = (s1, y1, z1, ai,1, . . . , yt−1, ai,t−1, zt−1, st), where ai,t is player i’s action in period
t; H i

t ≡ (Y ×Z ×Ai)t−1× St is the set of such private histories. Define H ≡ ⋃t≥1Ht

and H i ≡ ⋃t≥1H
i
t . For any history ht, let s(ht) ≡ st denote the current state.

A strategy for player i is a mapping αi : H i →4Ai (s (hit)), and a public strategy
for player i is a mapping σi : H →4Ai (s (ht)). Let Σi and ΣP

i , respectively, denote
the set of strategies and the set of public strategies for player i; let Σ and ΣP denote
the sets of strategy profiles and of public strategy profiles, respectively. Given per-
period discount factor δ < 1, a profile of strategies α ∈ Σ, and an initial state s ∈ S,
the vector of expected payoffs in the dynamic game is given by

vδ (α, s) = (1− δ)E
∞∑
t=1

δt−1g (at, st) ,

where the expectation is taken with respect to the distribution over actions and states
induced by the strategy α and initial state s. For each public strategy σ ∈ ΣP and
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public history h ∈ H, the continuation payoffs vδ (σ, h) are calculated in the usual
way.

Given δ < 1, define the (convex hull of the) set of feasible payoffs in initial state s,
V̂ δ(s), as

V̂ δ(s) ≡ co
{
vδ (σ, s) : σ ∈ ΣP

}
.

Note that the set of feasible payoffs V̂ δ(s) varies with the state even in the limit as δ
approaches 1 (that is, as the time between actions shrinks to 0): the payoffs to the
stage game vary with the state, and both the discount rate and the rate at which the
state changes are fixed per unit of time as δ grows. The set V̂ δ(s) is not, in general,
equal to the set of feasible payoffs for the stage game in state s.

A public perfect equilibrium in a game with per-period discount factor δ and initial
state s is a strategy profile σ such that for each public history h with s1 = s, each
player i, and each strategy σ′i of players i, vδi (σ, h) ≥ vδi (σ′i, σ−i, h). Let Eδ (s) be
the set of payoffs obtained in public perfect equilibria of the game, given δ and initial
state s. In most of this paper, “equilibrium” means public perfect equilibrium.

2.2. Identifiability. The definitions of individual full rank and pairwise full rank,
conditions relating to the identifiability of players’ actions from public information,
are the same as in FLM, except that the public information here includes both the
public signal y and the state change z (as in Hörner et al. (2011)). Recall that mi is
the number of actions available to player i, mY is the number of public signals, and
mZ is the number of stage changes. For each state s, player i, and (mixed) action
profile α, let Πi (α, s) be the mi × (mZ ×mY ) matrix whose rows correspond to the
probability distribution over (public signal, state change) pairs induced by each of
player i’s actions, given s and α−i: Πi (α, s) ≡ ρ ((·, α−i) , s) . Similarly, for each state
s and action profile α, let Πij (α, s) be the (mi + mj)×(mZ ×mY ) matrix whose first
mi rows are Πi (α, s) and whose last mj rows are Πj (α, s).

Action profile α has individual full rank in state s if Πi (α, s) has rank mi for
each player i. Action profile α has pairwise full rank for players i and j in state s
if Πij (α, s) has rank mi + mj – 1. If an action profile α has individual full rank,
then any player i’s actions are distinguishable probabilistically (given that the other
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players are playing α−i). If α has pairwise full rank for i and j, then deviations from
α by player i are distinguishable from player j’s deviations.

Hörner et al.’s (2011) identifiability requirements are based on those full-rank con-
ditions. In order to ensure that the rank conditions hold uniformly over all states, we
require some more notation (introduced in Pęski and Wiseman (forthcoming)).

LetMkl be the set of k × l matrices, and letMl be the set of square l-matrices.
Given j ≤ k, l and matrices A ∈Mkl and B ∈Mj, we write B ⊆ A if matrix B can
be obtained from A by crossing out k − j rows and l − j columns. Let

dj (A) = max
{B∈Mj :B⊆A}

|detB| .

Thus, dj (A) > 0 if and only if the rank of matrix A is not smaller than j. Individual
full rank for action α in state s is equivalent to the condition dmi (Πi (α, s)) > 0 for
each player i, and pairwise full rank for players i and j is equivalent to the condition
dmi+mj−1 (Πij (α, s)) > 0.

Given scalar d > 0, say that action α has individual d-rank in state s if dmi (Πi (α, s)) ≥
d for each player i. Similarly, say that α has pairwise d-rank for players i and j in
state s if dmi+mj−1 (Πij (α, s)) ≥ d.

With those definitions, we can state the identifiability condition on the monitoring
structure:

Definition 1. Identifiability Condition: There exists d > 0 such that for each state
s,

(1) every pure action profile has individual d-rank in state s,
(2) for each pair of players i and j, there exists a profile α(s) that has pairwise

d-rank for i and j in state s.

Our identifiability condition is an extension of Hörner et al.’s (2011) Assumptions
F1 and F2 to an infinite state space.

2.3. Examples. In the first example, we consider a repeated Cournot oligopoly where
a firm’s costs depend on its capital stock.
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Example 1. There are N firms, and each firm can produce either high output qHor
low output qL. A firm also chooses its level of capital investment, xHor xL. The
per-period profits of firm i are equal to

qiP (q1 + ...+ qN)− ci (qi, ki)− xi,

where ki ∈ [0, k̄i] is firm i’s publicly observed capital stock. Its evolution depends
on the investment xi and on the current stock. In particular, capital may increase
by a lot, increase a little, stay the same, decrease a little, or decrease a lot: Z =
{−2∆,−∆, 0,∆, 2∆}. The probability that next period’s capital stock is ki+(1−δ)z
is equal to ρiZ (xi, ki) [z] ≥ 0 for z ∈ Z, where ρiZ

(
xH , ki

)
first-order stochastically

dominates ρiZ
(
xL, ki

)
for all i and all ki. Firms’ capital stocks evolve independently

of each other: ρZ (x, s) [z1, . . . , zN ] = ∏
i ρ

i
Z (xi, ki) [zi].

The second example is a reciprocal effort game with two players. At each extreme
state, one player is able to do a favor for the other, generating 7 units of utility
at a cost of 1 unit of utility to himself. The payoffs at intermediate states are the
weighted averages of those at the extremes. Total payoffs are maximized when both
players do favors. Because of the simple structure of monitoring, transition rates, and
stage-game payoffs in this example, we can reduce the state space to one dimension.

Example 2. There are two players, and each player has two actions available in
the stage game, 1 (corresponding to exerting effort) and 0 (no effort). Monitoring
is perfect. The state space is the unit interval, and the space of possible transitions
is Z = {−1, 0, 1}. Transition probabilities are independent of actions: ρ(a, s)[1]
= ρ(a, s)[−1] = 1

3 for all a and all s ∈ (0, 1). At the extreme states, ρ(a, 1)[1] =
ρ(a, 0)[−1] = 0 and ρ(a, 1)[−1] = ρ(a, 0)[−1] = 1

3 . Stage-game payoffs are linear in
the state s and are given by

0 1
0 0, 0 0, 0
1 −1, 7 −1, 7
State s = 0

,

0 1
0 0, 0 7,−1
1 0, 0 7,−1
State s = 1

, and, in general,

0 1
0 0, 0 7s,−s
1 s− 1, 7(1− s) 8s− 1, 7− 8s

State s

.
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We will return to Example 2 in Section 3.3.

Finally, in a standard repeated game, play never leaves the initial state.

Example 3. We say that a stochastic game is a (standard) repeated game if for each
state s ∈ S and each action profile a ∈ A, ρZ(a, s)(0) = 1.

3. Characterizing Payoffs

As a preliminary, we define pseudo-instantaneous payoffs, a piece of notation that
is useful in capturing the effects that an action profile has on both today’s payoff and
expected continuation payoffs (through influencing transition rates).1 In particular,
using pseudo-instantaneous payoffs will be convenient because both the magnitude of
a state transition and the weight on today’s payoff in overall utility are proportional
to 1− δ.

3.1. Pseudo-instantaneous payoffs. Let u : S → RN specify a vector of continua-
tion payoffs, as a function of next period’s state. For each such u, state s, and action
profile a, we define a vector of payoffs

ψδ (a, s, u) ≡ g (a, s) + δ
∑
z∈Z

ρZ (a, s) [z]u(s+ (1− δ)z)− u(s)
1− δ . (3.1)

We refer to ψδ(a, s, u) as the pseudo-instantaneous payoff from playing action profile
a in state s, given continuation payoff function u. To motivate this construction, let
state s be given, and choose any mapping u from S \ {s} to RN . Let v denote the
expected payoff in state s from playing the same profile a in each period until the state
changes, followed by continuation payoffs specified by u. Complete the definition of
u by setting u(s) = v. Then v is exactly equal to ψδ(a, s, u):

v = (1− δ) g (a, s) + δ

(∑
z 6=0
ρZ (a, s) [z]u(s+ (1− δ)z)

)
+ δρZ (a, s) [0]v

⇒
v = g (a, s) + δ

∑
z∈Z

ρZ (a, s) [z]u(s+(1−δ)z)−u(s)
1−δ = ψδ (a, s, u) .

1These pseudo-instantaneous payoffs are similar in spirit to those in Pęski and Wiseman (forth-
coming), which have the same name but a somewhat different definition.



10 MARCIN PĘSKI, THOMAS WISEMAN

More generally, we can represent the expected payoff from playing profile a for
one period, given continuation payoffs u, as a convex combination of the pseudo-
instantaneous payoff and u(s)

(1− δ) g (a, s) + δ

(∑
z∈Z

ρZ (a, s) [z]u(s+ (1− δ)z)
)

= (1− δ)ψδ (a, s, u) + δu(s).

Observe that for δ close to 1, the pseudo-instantaneous payoff is roughly the stage-
game payoff plus the expected derivative of continuation payoffs. Since the magnitude
of the state change is proportional to (1 − δ), the expected change in continuation
payoffs is proportional to (1− δ)times that derivative. The weight on the stage-game
payoff also is (1−δ), so the pseudo-instantaneous payoff allows us to combine to payoff
effects of the same order. We use pseudo-instantaneous payoffs in characterizing
equilibrium payoffs.

3.2. Feasible and individually rational payoffs. Define a collection of payoff sets
F as a correspondence mapping each state s ∈ S into [−M,M ]N . (Recall that M
is the maximal length of any stage-game payoff vector.) For each state s and payoff
vector v ∈ F (s), let UF,s,v denote the set of functions u from S to [−M,M ]N such
that i) u(s) = v, and ii) u(s′) ∈ F (s′) for all s′. Say that collection F is self-δ-feasible
for δ < 1 if for each s,

F (s) ⊆ co
{
v : v = ψδ (a, s, u) for some a ∈ A(s), u ∈ UF,s,v

}
.

Self-δ-feasibility means that each payoff in F (s) can be generated as the expected
payoff from some action profile in the state-s stage game followed by continuation
payoffs that belong to collection F . The definition has a fixed point flavor.

For each player i and δ < 1, define the δ-minmax payoff relative to F for player i
in state s as

eδi (s;F ) ≡ inf
v∈F (s)

{
inf

α−i∈×j 6=i∆Aj ,u∈UF,s,v

{
max
ai∈Ai

ψδi ((ai, α−i) , s, u)
}}

.

Say that the collection F is self-δ-individually rational if for each state s, player i,
and v ∈ F (s), vi ≥ eδi (s;F ).

The (straightforward) proof of the following claim is in Appendix A:



EQUILIBRIUM PAYOFFS IN STOCHASTIC GAMES WITH GRADUAL STATE CHANGES 11

Remark 1. The collection of feasible payoffs V̂ δ ≡
{
V̂ δ(s)

}
s
is self-δ-feasible, and

the collection of equilibrium payoffs Eδ is both self-δ-feasible and self-δ-individually
rational.

Note that self-δ-feasibility and self-δ-individually rationality together imply an ex
post notion of individual rationality: each payoff above the minmax payoffs can be
generated using continuation payoffs that are themselves above the minmax levels.

Next, we define stronger versions of these concepts to be used in constructing
equilibria. Let B(v, ε) denote the closed ball centered at v with radius ε ≥ 0. Given
a set V , let B̄ (V, ε) ≡ ⋃

v∈V
B(v, ε) denote the closed ε-neighborhood of V . For any

constant C > 0, let UC
F,s denote the set of functions u from S to [−M,M ]N such that

for all s′ (including state s), i) u(s′) ∈ F (s′), and ii) ‖u(s)− u(s′)‖ ≤ 1
C
‖s− s′‖.

Extending the definition for C = 0, define U0
F,s as the set of functions u from S to

[−M,M ]N such that u(s′) ∈ F (s′) for all s′ (including state s).
For δ < 1, C ≥ 0, ε ≥ 0, and d ≥ 0, say that collection F is self-δ, C, ε, d-feasible if

for each s,

B̄ (F (s) , (1− δ)ε) ⊆ co
{
v : v = (1− δ)ψδ (α, s, u) + δu(s) for some a ∈ Ad(s), u ∈ UC

F,s

}
,

where Ad(s) denotes the set of action profiles that have pairwise d-rank for all players
i and j in state s.

Similarly, define the δ, C, d-minmax payoff relative to F for player i in state s,
eδ,C,di (s;F ), as follows. Let Ai(s, d) ⊆ ×j 6=i∆Aj denote the set of (independently
mixed) strategy profiles α−i for players j 6= i such that for any ai ∈ Ai, the profile
(ai, α−i) has individual d-rank in state s for each player j 6= i. Then define

eδ,C,di (s;F ) ≡ inf
α−i∈Ai(s,d),u∈UCF,s

{
max
ai∈Ai

(1− δ)ψδi ((ai, α−i) , s, u) + δui(s)
}
.

Say that collection F is self-δ, C, ε, d-individually rational if for each state s, player
i, and v ∈ F (s), vi ≥ eδ,C,di (s;F ) + (1− δ)ε. For brevity, we will say that a collection
is self-δ, C, ε, d-FIR if it is self-δ, C, ε, d-feasible and self-δ, C, ε, d-individually rational.
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In words, a collection is self-δ, C, ε, d-FIR if for each state s, every payoff close
(within (1 − δ)ε) to F (s) can be attained as the weighted average of a pseudo-
instantaneous payoff (from an action α and a continuation payoff function u with
values in F ) and u(s), where α must have pairwise d-rank for all pairs of players and
u must not vary too much with the state (no more than 1

C
times the distance be-

tween the states). In Section 4 and Appendix C.2, we highlight the roles that strictly
positive values of C, ε, and d play in the proof of Theorem 1. In Section 4.2, we dis-
cuss how much we lose (in terms of describing equilibrium payoffs) when we require
self-δ, C, ε, d-FIR payoffs for small C, ε, and d, relative to the set of self-δ, 0, 0, 0-FIR
payoffs.

The following lemma shows that for any non-negative C, ε, and d, there is a largest
self-δ, C, ε, d-FIR collection. It also shows that the largest self-δ, 0, 0, 0-FIR collection
is exactly the largest self-δ-FIR collection. (Proofs are in the appendix.)

Lemma 1. (1) For each δ < 1, ε ≥ 0, C ≥ 0, and d ≥ 0, there exists the largest
collection V δ

C,ε,d such that V δ
C,ε,d (s) ⊆ [−M,M ]N for each s ∈ S and V δ

C,ε,d is
self-δ, C, ε, d-FIR.

(2) Each V δ
C,ε,d (s) is compact and convex.

(3) V δ
0,0,0 is equivalent to the largest collection V δ such that V δ (s) ⊆ [−M,M ]N

for each s ∈ S and V δ is self-δ-FIR.

We will refer to elements of V δ
C,ε,d (s) and V δ(s) as self-δ, C, ε, d-FIR payoffs and

self-δ-FIR payoffs, respectively, in state s.
We know from Remark 1 that Eδ (s) ⊆ V δ

0,0,0 (s) for each state s. That result implies
that each V δ

0,0,0 (s) is nonempty, because the arguments of Mertens and Parthasarathy
(1987, 1991) and Solan (1998) ensure that a PPE exists.

3.3. Example. In this section, we return to Example 2 and demonstrate how to
calculate the collections of feasible payoffs V̂ 1

2 and self-δ-FIR payoffs V δ. To simplify
the calculations, consider the case where the period length is 1

2 (1 − δ = δ = 1
2) and

the initial state s0 ∈ {0, 1
2 , 1} - those three states are thus the only ones that are

reachable.
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First, we compute the set of feasible payoffs for each initial state, V̂ 1
2 (s). Those

sets are spanned by the payoffs from Markov strategies (that is, those where a player’s
action depends only on the current state). There are 64 pure Markov strategies (2
actions per player in each of the three reachable states), but since player 2’s action is
irrelevant in state 0, and player 1’s is irrelevant in state 1, there are effectively only 16
combinations. From those, it can be shown that the extreme payoffs are generated by
the following four profiles: a11 ≡ a1(s) = a2(s) = 1 ∀s, a00 ≡ a1(s) = a2(s) = 0 ∀s,
a10 ≡ a1(s) = 1, a2(s) = 0 ∀s, and a01 ≡ a1(s) = 0, a2(s) = 1 ∀s. (Recall that total
payoffs are maximized when both players exert effort.) The sets of feasible payoffs
from each intitial state are thus

V̂
1
2 (0) = co

{
(0, 6), (0, 0), (−7

8 , 6
1
8), (7

8 ,
−1
8 )
}
,

V̂
1
2 (1

2) = co
{

(3, 3), (0, 0), (−1
2 ,

7
2), (7

2 ,
−1
2 )
}
,

V̂
1
2 (1) = co

{
(6, 0), (0, 0), (−1

8 ,
7
8), (61

8 ,
−7
8 )
}
.

For instance, the payoffs v 1
2 (a11, s) are found by solving the following three equa-

tions:

v
1
2 (a11, 0) = 1

2g((1, 1), 0) + 1
2

[
1
3v

1
2 (a11, 1

2) + 2
3v

1
2 (a11, 0)

]
v

1
2 (a11, 1

2) = 1
2g((1, 1), 1

2) + 1
2

[
1
3v

1
2 (a11, 1

2) + 1
3v

1
2 (a11, 0) + 1

3v
1
2 (a11, 1)

]
v

1
2 (a11, 1) = 1

2g((1, 1), 1) + 1
2

[
1
3v

1
2 (a11, 1

2) + 2
3v

1
2 (a11, 1)

]
.

Next, we can derive the the self-δ-FIR payoffs, V 1
2 (s). Note that a player can

guarantee himself a payoff of 0 by never exerting effort, so V 1
2 (s) cannot be greater

than the positive quadrant of the feasible set V̂ 1
2 (s). We can show that V 1

2 (s) is in
fact equal to that upper bound:

V
1
2 (s = 0) = co

{
(0, 6), (0, 0), (6

7 , 0)
}
,

V
1
2 (s = 1

2) = co
{

(3, 3), (0, 0), (−1
2 ,

7
2), (7

2 ,
−1
2 )
}
,

V
1
2 (s = 1) = co

{
(6, 0), (0, 0), (0, 6

7), (61
8 ,
−7
8 )
}
.

Consider, for example, the payoffs (0, 6) in state 0. (6, 0) equals the pseudo-
instantaneous payoff in state 0 from stage-game action (1, 1) and the continuation
payoff function u(0) = (0, 6) and u(1

2) = (3, 3). (Since state 1 is not reachable from
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state 0, the value u(1) is irrelevant.)

ψ
1
2 ((1, 1), 0, u) = (−1, 7) + 1

2

[
1
3

((3, 3)− (0, 6))
1
2

]
= (0, 6).

Thus, (6, 0) is 1
2 -feasible with respect to V 1

2 . To see that it is 1
2 -individually rational,

note that e
1
2
i

(
s;V 1

2
)

= 0 for each player in each state: a player can guarantee himself
at least 0 in the stage game, and (0, 0) is available in V 1

2 (s′) for each reachable state
s
′ . Similar constructions yield the other payoffs in V 1

2 (0) and all the payoffs in V 1
2 (1

2)
and V 1

2 (1).

4. Equilibrium Payoffs for Large δ

In this section, we show that when the Identifiability Condition holds, then for any
C, ε, d > 0, any self-δ, C, ε, d-FIR payoff at state s can be attained in a perfect public
equilibrium from initial state s for sufficiently high δ: V δ

C,ε,d is contained in Eδ. The
proof of that result is based on techniques in the proof of FLM’s folk theorem for
repeated games with imperfect public monitoring.

FLM’s folk theorem r4equires that the set of feasible and individually rational pay-
offs have nonempty interior. The role of that condition is to guarantee that after
any history, it is possible to provide incentives by constructing continuation payoffs
that lie in any direction from the target payoffs. Here, that full dimensionality is
implied by the definition of V δ

C,ε,d: self-C, δ, ε, d-feasibility means that for any pay-
off v ∈ V δ

C,ε,d (s), payoffs near v can be generated by some action profile and some
continuation payoffs in V δ

C,ε,d.

Theorem 1. Suppose that the Identifiability Condition holds. Then for each C > 0,
ε > 0, and d > 0, there exists δ∗ < 1 such that V δ

C,ε,d (s0) ⊆ Eδ (s0) for any initial
state s0 and any δ ≥ δ∗.

4.1. Proof of Theorem 1. FLM’s proof shows that any smooth set of payoffs W
strictly in the interior of the feasible and individually rational set can be attained in
equilibrium. A key step is to show that any payoff on the boundary of W can be
achieved as the weighted average of a stage-game payoff in the current period that
lies outside W (thus the requirement that W is strictly in the interior of the feasible
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set) and expected continuation payoffs that lie in W. Here, we want to do something
similar, with pseudo-instantaneous payoffs taking the place of the stage-game payoffs.
For ε > 0, the self-C, δ, ε, d-feasibility of V δ

C,ε,d ensures that for each state s, there is a
pseudo-instantaneous payoff outside V δ

C,ε,d (s) in each direction.
Another key step in FLM’s proof is to construct continuation payoffs that make

players indifferent among all their actions (and thus willing to play the equilibrium
action). Here, when C > 0 and d > 0, we can ensure that those continuations payoffs
are close enough to each other that they can be made to lie within V δ

C,ε,d

(
s
′
)
for each

possible “tomorrow’s” state s′ . The intuition, roughly, is that the more detectable
deviations are (higher d), the less variation in continuation payoffs is needed to deter
deviations. And the less continuation payoffs vary with the state (higher C), the less
tempted a player is to deviate in a way that increases the probability of transitioning
to a state where continuation payoffs are high. (See Corollary 1 and Lemma 4.)

Given a state s, let V ⊆ RN be a set of payoffs, and let W =
{
W
(
s
′
)}

s′
, where

eachW
(
s
′
)
⊆ RN , be a collection of payoff sets. Extending FLM and Abreu, Pearce,

and Stacchetti (1986, 1990), we say that V is decomposable with respect to δ and
W in state s if for each v ∈ V , there exist a mixed action profile α and a function
w : Y ×Z → [−M,M ]N satisfying w(y, z) ∈ W (s+(1−δ)z) such that for each player
i and each action ai ∈ Ai,

vi =(1− δ)gi (α, s) + δ
∑

(y,z)∈Y×Z
ρ(a, s)[y, z]wi (y, z) (4.1)

≥(1− δ)gi ((ai, α−i), s) + δ
∑

(y,z)∈Y×Z
ρ((ai, α−i), s)[y, z]wi (y, z) .

Expression 4.1 says that i) playing profile α in state s, followed by continuation payoffs
w(y, z) that depend on the realized public signal and state change, yields expected
payoff v, and that ii) given those continuation payoffs, playing α is optimal for all
players.

The proof of Theorem 1 relies on the following lemma. Recall that B̄ (V, ε) is the
closed ε-neighborhood of the set V .

Lemma 2. Suppose that the Identifiability Condition holds. Then for each C > 0, ε >
0, and d > 0, there exists δ∗ < 1 such that for each state s, each δ ≥ δ∗, and each v∗ ∈
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V δ
C,2ε,d (s), the set B (v∗, ε) is decomposable with respect to

{
B̄
(
V δ
C,2ε,d

(
s
′
)
, ε
)}

s′∈S
and

δ in state s.

A key feature of Lemma 2 is that for any ε, there is a single δ∗ that works in every
state. That uniformity allows us to cover the infinite state space. Using Lemma 2,
we can complete the proof of Theorem 1.

Proof of Theorem 1. Lemma 2 shows that the collection of payoff sets
{
B̄
(
V δ
C,2ε,d (s) , ε

)}
s∈S

is “self-decomposable” for high enough δ, in the sense that each B̄
(
V δ
C,2ε,d (s) , ε

)
is

decomposable with respect to δ and the collection
{
B̄
(
V δ
C,2ε,d

(
s
′
)
, ε
)}

s′∈S
. Lemma

1 shows that each V δ
C,2ε,d (s) is compact and convex, so each B̄

(
V δ
C,2ε,d (s) , ε

)
is as

well. An argument analogous to the second paragraph of FLM’s proof of Lemma 4.2
establishes the result. �

4.2. Approximating Eδ (s). Theorem 1 establishes that for any C, ε, d > 0, every
payoff in V δ

C,ε,d (s0) can be achieved in PPE if δ is large. Combining that result with
Remark 1, we see that for large δ,

V δ
C,ε,d (s0) ⊆ Eδ (s0) ⊆ V δ

0,0,0 (s0) .

(Recall that s0 is the initial state.) That is, we have both an upper bound and a
lower bound on the equilibrium set. Next, we show that as C, ε, and d shrink to zero,
V δ
C,ε,d (s0) converges to V δ

0,0,0 (s0) for generic games. We define generic as follows:
Given the sets of players, actions, state changes, and public signals, the period

length, and the initial state, a game G can be identified as Φ = (ρ, g), a pair of
functions specifying, for each state and action profile, firstly the distribution over
state changes and public signals, and secondly the stage-game payoffs. Let G be the
space of games. We measure the distance between two games G,G′ ⊆ G using the
supremum norm:

D(G,G′) = sup
a,s,y,z,i

max
(∣∣∣ρ (a, s) [y, z]− ρ′(a, s)[y, z]

∣∣∣ , ∣∣∣gi(a, s)− g′i(a, s)∣∣∣) .
Let G0 ⊆ G be the class of games that satisfy the following uniform version of the

interiority condition: there exists ε > 0 such that for each state s, B (v, ε) ⊆ V δ
0,0,0 (s)

for some v ∈ RN . We say that a claim holds for generic games G ∈ G0 if there exists
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a subset G ′ ⊆ G0 such that i) the claim holds for each game G ∈ G ′, and ii) G0\G ′ is of
the first category with respect to G0.2 (Observe that failure of the uniform interiority
condition is not generic in G: any game G such that the transition rate is zero for all
actions in all states, and such that the stage game in each state has a feasible and
individually rational payoff set with full dimension, satisfies the condition, as does an
open set around G.)

The following theorem describes the limiting behavior of V δ
C,ε,d (s0).

Theorem 2. If the Identifiability Condition holds, then for generic G ∈ G0,

lim inf
C,ε,d→0

clV δ
C,ε,d(s0) = V δ

0,0,0(s0).

Note that Theorems 1 and 2 together do not quite fully characterize equilibrium
payoffs in the limit as the period length shrinks to zero. The gap arises because
Theorem 1 shows that for any fixed C, ε, d > 0, the equilibrium set contains V δ

C,ε,d (s0)
for δ close enough to 1, while Theorem 2 shows that for a fixed δ, V δ

C,ε,d (s0) converges
(generically) to V δ

0,0,0 (s0) as C, ε, and d shrink to zero. This difference leaves open the
possibility that for any fixed C, ε, d > 0, V δ

C,ε,d (s0) may be a strict subset of V δ
0,0,0 (s0)

for large δ.
Pęski and Wiseman (forthcoming) give a (generically) complete characterization of

limit equilibrium payoffs for the case where transition probabilities (across a count-
able state space) are proportional to the period length. The technical difficulty of
extending that result - roughly, to show that V δ

C,ε,d converges to a limit V 1
C,ε,d as δ

grows, and that V 1
C,ε,d converges to V 1

0,0,0 as C, ε, and d shrink - is that here the set
of states accessible from any given initial state varies with δ. Thus, even if the payoff
sets in every other state converge (as δ grows or C, ε, and d shrink), there is no
guarantee that the self-δ, C, ε, d-FIR payoff set at state s will converge. That problem
persists even if V δ

C,ε,d(s) is upper hemicontinuous in the state s.
What sort of restriction on the parameters of the dynamic game will allow a com-

plete characterization of Eδ for high δ is an open question.

2A subset X of a topological space Y is of the first category, or meager, if it is the union of
countably many nowhere dense subsets of Y .
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5. Summary and Discussion

This paper characterizes PPE payoffs of stochastic games with a continuous state
space and imperfect public monitoring in the limit when there is little time between
periods, when the magnitude of state transitions is proportional to the period length.
We provide upper and lower bounds for the equilibrium payoff set, and describe how
the gap between those bounds shrinks.

In deriving our results, we define pseudo-instantaneous payoffs. We hope that that
tool, which captures the effect of current actions on both today’s payoff and future
continuation values, will be useful to applied modelers in industrial organization and
macroeconomics.

The bounds on the equilibrium set that we obtain (V δ and V δ
C,ε,d) are defined

implicitly as the maximal fixed points of particular correspondences, rather than
explicitly constructed. For that reason, we do not have a clear understanding of the
link between the parameters of the dynamic game (stage-game payoffs and transition
rates) and the properties of the equilibrium set. Exploring that issue is a topic for
future research.

Appendix A. Proof of Remark 1

Proof. Pick any nonzero vector λ ∈ RN . For each state s, let vλ(s) ∈ argmaxv∈V̂ δ(s)λ·
v, and let σλ(s) ∈ ΣP be a strategy that yields payoff vλ(s) from initial state s.
Strategy σλ(s) induces mappings w : Y×S → [−M,M ]N that specify the continuation
payoff w(y, s′) ∈ V̂ δ(s′) if public signal y is observed in period 1 and the state in period
2 is s′ . Strategy σλ(s) also specifies the (mixed) action profile αλ to be played in the
first period. Then

λ · vλ(s) = λ · (1− δ) g
(
αλ, s

)
+λ · δ ∑

y∈Y,z∈Z
ρ
(
αλ, s

)
[y, z]w(y, s+ (1− δ)z)

≤ λ · (1− δ) g
(
αλ, s

)
+ λ · δ ∑

z∈Z
ρZ
(
αλ, s

)
[z]vλ(s+ (1− δ)z),
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where the inequality is implied by the definition of vλ(·). It follows that

λ · vλ(s) ≤ λ · g
(
αλ, s

)
+λ · δ

1−δ
∑
z∈Z

ρZ
(
αλ, s

)
[z]
[
vλ(s+ (1− δ)z)− vλ(s+ (1− δ)z)

]
= λ · ψδ

(
αλ, s, vλ

)
,

Thus, λ · vλ(s) ≤ max
a∈A(s)

λ · ψδ
(
a, s, vλ

)
for all λ, and so we conclude that

V̂ δ(s) ⊆ co
{
ψδ (a, s, u) : a ∈ A(s) and ∃v ∈ V̂ δ(s) s.t. u ∈ UV̂ δ,s,v

}
;

that is, V̂ δ is self-δ-feasible.
An analogous argument establishes that Eδ is self-δ-feasible. To see that Eδ is

self-δ-individually rational, note that because a PPE strategy must specify, after any
deviation, continuation payoffs that are themselves PPE payoffs, player i would have
a profitable deviation from a strategy that did not give him a payoff of at least
eδi
(
s;Eδ

)
starting from state s. �

Appendix B. Proof of Lemma 1

Proof. The first claim follows from the fact that if F and G are any two self-δ, C, ε, d-
FIR collections, then their union F ∪ G is also self-δ, C, ε, d-FIR. Since, further, the
convex hull of F , coF ≡ {coF (s)}s, and the closure of F , clF ≡ {clF (s)}s, are
self-δ, C, ε, d-FIR collections, the second claim holds.

For the third claim, the existence of V δ follows from the argument establishing the
first claim. To see that V δ ⊆ V δ

0,0,0, note that for any s and any v ∈ V δ(s), there
exist an action profile α and a function u ∈ UV δ,s,v such that v = ψδ (α, s, u). By the
definition of UV δ,s,v, u(s) = v . Thus, v = (1 − δ)ψδ (α, s, u) + δu(s). Since, further,
UV δ,s,v ⊆ U0

V δ,s, we conclude that v is δ, 0, 0, 0-feasible with respect to V δ. To see
that v is δ, 0, 0, 0-individually rational with respect to V δ, note that (again because
UV δ,s,v ⊆ U0

V δ,s) for each player i and state s, the δ, 0, 0-minmax payoff relative to V δ,
eδ,0,0i

(
s;V δ

)
, is at most (1 − δ)eδi

(
s;V δ

)
+ δ min

u∈V δ(s)
ui(s). Because u(s) = v ∈ V δ(s)

and ψδi (α, s, u) = vi ≥ eδi
(
s;V δ

)
, we conclude that

vi = (1− δ)ψδi (α, s, u) + δui(s) ≥ (1− δ)eδi
(
s;V δ

)
+ δ min

u∈V δ(s)
ui(s) ≥ eδ,0,0i

(
s;V δ

)
.



20 MARCIN PĘSKI, THOMAS WISEMAN

Next we show that V δ
0,0,0 ⊆ V δ. Choose any state s and any unit vector λ. Let F δ(s)

denote the set of payoffs that are δ-feasible with respect to V δ
0,0,0 in state s. We will

demonstrate that V δ
0,0,0 ⊆ F δ. Let vλ ∈ argmaxv∈F δ(s)λ·v and vλ0 ∈ argmaxv∈V δ0,0,0(s)λ·v

denote the extreme points of F δ and V δ
0,0,0, respectively, in direction λ. Note that

because vλ0 ∈ V δ
0,0,0(s), there exist an action profile α and a function u ∈ U0

V δ0,0,0,s

such that vλ0 = (1 − δ)ψδ (α, s, u) + δu(s). Define û(s′) by û(s) ≡ ψδ (α, s, u) and
û(s′) ≡ u(s′) for s′ 6= s. Then û ∈ UV δ0,0,0,s,ψδ(α,s,u), and so ψδ (α, s, û) ∈ F δ(s). A few
steps of algebra yield vλ0 = (1− δρZ (α, s) [0])ψδ (α, s, û) + δρZ (α, s) [0]u(s). Then

λ · vλ0 = (1− δρZ (α, s) [0])λ · ψδ (α, s, û) + δρZ (α, s) [0]λ · u(s)
≤ (1− δρZ (α, s) [0])λ · vλ + δρZ (α, s) [0]λ · vλ0 ;

the inequality holds because ψδ (α, s, û) ∈ F δ(s) and u(s) ∈ V δ
0,0,0(s). It follows that

λ · vλ0 ≤ λ · vλ, so V δ
0,0,0 ⊆ F δ. Finally, a similar argument shows that eδi

(
s;V δ

)
≤

eδ,0,0i

(
s;V δ

)
for each player i and state s, so for any v ∈ V δ

0,0,0(s), v is δ-individually
rational with respect to V δ

0,0,0(s) in state s. �

Appendix C. Proof of Lemma 2

C.1. Identifiability and enforceability. To prove Lemma 2, we need a few pre-
liminary results. The first result (Lemma 3 in Pęski and Wiseman (forthcoming))
provides a bound on the size of solutions to a system of linear equations. For any
vector x ∈ Rn, let ‖x‖∞ ≡ maxi |xi| denote the sup norm. (Recall that ‖x‖ denotes
the Euclidean norm, and notice that ‖x‖∞ ≤ ‖x‖ ≤ n ‖x‖∞.) For each matrix A

with generic element aij, let ‖A‖∞ = maxij |aij|.

Lemma 3 (Pęski and Wiseman’s (forthcoming) Lemma 3). Let positive integers
j ≤ n, matrix A ∈Mjn, and vector b ∈ Rj be given. If either

Case 1. dj (A) > 0, or
Case 2. dj−1 (A) > 0 and there exists a nonzero vector a ∈ Rj such that a′b = 0

and a′A = 0,

then there exists w ∈ Rn such that Aw = b and

‖w‖∞ ≤
1

dk (A) ‖A‖
n
∞ ‖b‖∞ ,



EQUILIBRIUM PAYOFFS IN STOCHASTIC GAMES WITH GRADUAL STATE CHANGES 21

where k = j in Case 1 and k = j − 1 in Case 2.

Let U be the set of unit vectors in RN : U ≡
{
λ ∈ RN | ‖λ‖ = 1

}
. For each unit

vector λ ∈ U , let N (λ) = {i : λi 6= 0} and b (λ) = mini∈N(λ) |λi|. Say that vector
λ ∈ RN is regular if #N (λ) ≥ 2. Let m ≡ mZ × mY denote the number of (state
change, public signal) pairs. The following result follows directly from Case 1 of
Lemma 3.

Corollary 1. For each d > 0, player i, state s, profile α∗ such that dmi (Πi (α∗, s)) ≥
d, and vector x ∈ Rmi such that ‖x‖∞ ≤ M , there exists w ∈ Rm such that
Πi (α∗, s)w = x and ‖w‖∞ ≤ d−1M .

The next result requires only slightly more work.

Lemma 4. For each d > 0, state s, profile α∗ such that dmi+mj−1 (Πij (α∗, s)) ≥ d

for all players i and j, each regular unit vector λ ∈ U , and each collection of vectors
{xi}Ni=1 ∈ ×iR

mi such that ‖xi‖∞ ≤M and α∗i ·xi = 0 for all i, there exists a mapping
w : Y × Z → RN such that for each player i,

Πi (α∗, s)wi = xi,

and, for each (y, z), λ · w (y, z) = 0, and ‖w (y, z)‖∞ ≤ d−1N 1
b(λ)M.

Proof. Pick any i, j ∈ N (λ) such that i 6= j. By definition of the matrices Π,
α∗i · Πi (α∗, s) = α∗j · Πj (α∗, s). Case 2 of Lemma 3 then implies that there exists
wi,j ∈ Rm such that

Πij (α∗, s)wi,j =
 1

#N(λ)−1xi

−λj
λi
xj


and ‖wi,j‖∞ ≤ 1

b(λ)d
−1M . Using Case 1 of Lemma 3, for each player i /∈ N (λ), there

exists wi ∈ Rm such that for all actions ai,

Πi (α∗, s)wi = xi
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and ‖wi‖∞ ≤ d−1M . Fix i ∈ N (λ) and define w (y, z) as

wi (y, z) =
∑
j 6=i

wij (y, z) ,

wj (y, z) = −λi
λj
wij (y, z) , for each j ∈ N (λ) \ {i}

wj (y, z) = wi (y, z) for each j /∈ N (λ) .

The result follows. �

C.2. Proof of Lemma 2. Lemma 2 follows easily from the following lemma.

Lemma 5. Suppose that the Identifiability Condition holds, and let C > 0, ε > 0,
and d > 0 be given. Then for each each unit vector λ∗ ∈ U , there exists δλ∗ < 1 and
ηλ∗ > 0 such that for each δ ≥ δλ∗, each state s, each payoff vector v∗ ∈ V δ

C,2ε,d (s),
and each unit vector λ ∈ U ∩ B(λ∗, ηλ∗), there exist payoff vector v ∈ RN , profile
α, and a continuation payoff function w : Y × Z → [−M,M ]N satisfying w(y, z) ∈
B̄
(
V δ
C,2ε,d (s+ (1− δ)z) , ε

)
such that

(1) (4.1) holds for each player i, and
(2) λ · v ≥ λ · v∗ + ε.

Proof. We consider three cases separately:

Case 1: Regular λ∗ ∈ U . We first observe that the definition of collection V δ
C,2ε,d (s)

implies that for each state s and v∗ ∈ V δ
C,2ε,d (s), we can find continuation payoffs

u∗ ∈ ×s′V δ
C,2ε,d (s′) satisfying ‖u∗(s)− u∗(s′)‖ ≤ 1

C
‖s− s′‖, and profile α∗ satisfying

dmi+mj−1 (Πij (α∗, s)) ≥ d for all i, j, such that

(1− δ)g (α∗, s) + δ
∑
z

ρZ (α∗, s) [z]u∗(s+ (1− δ)z) = v∗ + 2(1− δ)ελ∗.

Let v ≡ v∗ + ελ∗. Now let

xi(ai) ≡

1
δ

 (1− δ)gi (α∗, s) + δ
∑
z ρZ (α∗, s) [z]u∗i (s+ (1− δ)z)

− [(1− δ)gi
(
(ai, α∗−i), s

)
+ δ

∑
z ρZ

(
(ai, α∗−i), s

)
[z]u∗i (s+ (1− δ)z)]

 .
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Note that ‖xi‖ ≤ 1−δ
δ

2(M + 1
C
zmax) (because ‖u∗(s)− u∗(s′)‖ ≤ 2 1

C
‖s− s′‖), and

α∗i · xi = 0.3 Let ∆ ≡ 2(M + 1
C
zmax) N

b(λ∗) . By Lemma 4, then, there exists a mapping
ŵ : Y × Z → RN such that λ∗ · ŵ(y, z) = 0 for each (y, z), ‖ŵ (y, z)‖∞ ≤ 1−δ

δ
∆
d
, and

for each player i,
Πi (α∗, s) ŵi = xi.

4

Define ε̂ ≡ 1
δ
ε {1− 2(1− δ)}, and let

w (y, z) = u∗(s+ (1− δ)z) + ε̂λ∗ + ŵ (y, z) .

Then simple computations show that for any player i and any action ai ∈ Ai,

(1− δ)gi
(
(ai, α∗−i), s

)
+ δ

∑
(y,z)∈Y×Z ρ((ai, α∗−i), s)[y, z]wi (y, z)

= (1− δ)gi
(
(ai, α∗−i), s

)
+ δ

∑
z ρZ

(
(ai, α∗−i), s

)
[z]u∗i (s+ (1− δ)z)] + δε̂λ∗i

+

 (1− δ)gi (α∗, s) + δ
∑
z ρZ (α∗, s) [z]u∗i (s+ (1− δ)z)

− [(1− δ)gi
(
(ai, α∗−i), s

)
+ δ

∑
z ρZ

(
(ai, α∗−i), s

)
[z]u∗i (s+ (1− δ)z)]


= (1− δ)gi (α∗, s) + δ

∑
z ρZ (α∗, s) [z]u∗i (s+ (1− δ)z) + δε̂λ∗i

= v∗i + 2(1− δ)ελ∗i + ε {1− 2(1− δ)}λ∗i
= v∗i + ελ∗i

= vi.

That is, (4.1) holds with equality for all players and all actions. It remains to show
that w(y, z) ∈ B̄

(
V δ
C,2ε,d (s+ (1− δ)z) , ε

)
for each (y, z). Observe that

ε− ε̂ = ε
[
1− 1

δ
{1− 2(1− δ)}

]
= ε

1− δ
δ

,

so the distance from u∗(s+ (1− δ)z) + ε̂λ∗ to u∗(s+ (1− δ)z) + ελ∗ (on the boundary
of B (u∗(s+ (1− δ)z), ε)) is 1−δ

δ
ε. As a consequence, the distance from u∗(s + (1 −

δ)z) + ε̂λ∗ to the boundary of B (u∗(s+ (1− δ)z), ε) along the hyperplane λ∗ · u =
λ∗ · u∗(s + (1 − δ)z) is

√
1−δ
δ
ε. Since λ∗ · ŵ(y, z) = 0 and ‖ŵ (y)‖∞ ≤ 1−δ

δ
∆
d
, if δ is

close to 1, then 1−δ
δ

∆
d
<
√

1−δ
δ
ε, and w (y, z) (≡ u∗(s+ (1− δ)z) + ε̂λ∗ + ŵ (y, z)) lies

in B (u∗(s+ (1− δ)z), ε)⊆ B̄
(
V δ
C,2ε,d (s+ (1− δ)z) , ε

)
. Because b(λ) is continuous,

3This is the step where we require that C > 0.
4This is the step where we require that d > 0.
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there is a δλ∗ < 1 that works for all unit vectors λ close enough (within some ηλ∗ > 0)
to λ∗.

Case 2: λ∗i = −1 for some i, and λ∗j = 0 for all j 6= i. The definition of collection
V δ
C,2ε,d (s) implies that for each state s and v∗ ∈ V δ

C,2ε,d (s), we can find continuation
payoffs u ∈ ×s′V δ

C,2ε,d (s′) satisfying ‖u(s)− u(s′)‖ ≤ 1
C
‖s− s′‖, and profile α−i, such

that for each ai, dmi (Πi ((ai, α−i), s)) > d for all j 6= i and

(1− δ)gi ((ai, α−i), s) + δ
∑
z

ρZ ((ai, α−i), s) [z]ui(s+ (1− δ)z) ≤ v∗i − 2(1− δ)ε.

Let ai be an action that maximizes

(1− δ)gi ((ai, α−i), s) + δ
∑
z

ρZ ((ai, α−i), s) [z]ui(s+ (1− δ)z),

let α ≡ (ai, α−i), and let

v ≡ (1− δ)g (α, s) + δ
∑
z

ρZ (α, s) [z]u(s+ (1− δ)z).

Define the vector v as vi ≡ v∗i − ε, and vj ≡ vj for all j 6= i. Now, for each j 6= i,
let

xj(aj) ≡

1
δ

 vj

− [(1− δ)gj
(
(aj, α−j), s

)
+ δ

∑
z ρZ

(
(aj, α−j), s

)
[z]uj(s+ (1− δ)z)]

 .
Note that ‖xj‖ ≤ 1−δ

δ
2(M + 1

C
zmax) (because ‖u(s)− u(s′)‖ ≤ 1

C
‖s− s′‖), and

α∗j · xj = 0. Recall that ∆ ≡ 2(M + 1
C
zmax)N 1

b(λ∗) . By Corollary 1, then, there
exists a mapping ŵ : Y × Z → RN such that for each (y, z), ‖ŵ (y, dz)‖∞ ≤ 1−δ

δ
∆
d
,

ŵi (y, z) = 0, and for each player j 6= i,

Πj (α, s) ŵj = xj.

Then let

wj (y, z) = uj(s+ (1− δ)z) + ŵ (y, z)

for j 6= i. It is straightforward to see that for any player j 6= i and any action aj ∈ Aj,

(1− δ)gj
(
(aj, α−j), s

)
+ δ

∑
(y,z)∈Y×Z

ρ((aj, α−j), s)[y, z]wj (y, z) = vj = vj.
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That is, (4.1) holds with equality for all actions for all players j 6= i. For player i,
define ε̂ ≡ 1

δ
{ε− (v∗i − vi)}, and let

wi (y, z) = ui(s+ (1− δ)z)− ε̂.

Then ai is a best response for player i, and

(1− δ)gi (α, s) + δ
∑

(y,z)∈Y×Z ρ(α, s)[y, z]wj (y, z)
= (1− δ)gi (α, s) + δ

∑
z ρZ (α, s) [z]ui(s+ (1− δ)z)− δε̂

= vi − {ε− (v∗i − vi)}
= v∗i − ε
= vi.

Thus, (4.1) holds for all players. It remains to show that w(y, z) ∈ B̄
(
V δ
C,2ε,d (s+ (1− δ)z) , ε

)
for each (y, z). Observe that

ε− ε̂ = ε− 1
δ
{ε− (v∗i − vi)}

≥ ε1
δ

[δ − 1] + 1
δ
2(1− δ)ε

= ε1−δ
δ

(recall that vi ≤ v∗i − 2(1 − δ)ε), so the distance from ui(s + (1 − δ)z) − ε̂ to ui(s +
(1− δ)z)− ε (on the boundary of B (ui(s+ (1− δ)z), ε)) is at least 1−δ

δ
ε. The rest of

the proof is the same as in the previous case.

Case 3: λi = 1 for some i, and λj = 0 for all j 6= i. The proof of this case is
analogous to that of Case 2. �

Now we can complete the proof of Lemma 2.

Proof of Lemma 2. Lemma 5 associates a δλ∗ < 1 and ηλ∗ > 0 with each unit vector
λ∗ ∈ U . Because the set of unit vectors U is compact, there is a finite collection Û
of λ∗’s such that U = ∪ÛB(λ∗, ηλ∗). Setting δ∗ ≡ maxÛ δλ∗ , we conclude that for
each δ ≥ δ∗, each state s, each payoff vector v∗ ∈ V δ

C,2ε,d (s), and each unit vector
λ∗ ∈ U , there exist payoff vector v ∈ RN , profile α, and a continuation payoff function
w : Y × Z → [−M,M ]N satisfying w(y, z) ∈ B̄

(
V δ
C,2ε,d (s+ (1− δ)z) , ε

)
such that

(4.1) holds for each player i, and λ · v ≥ λ · v∗ + ε.
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Thus, when δ is high enough, then for each state s and each payoff vector v∗ ∈
V δ
C,2ε,d (s), B(v∗, ε) is contained in the convex hull of the set of payoffs decomposable

with respect to
{
B̄
(
V δ
C,2ε,d

(
s
′
)
, ε
)}

s′∈S
and δ in state s. The availability of a public

randomization device implies that that set is convex, and so equal to its convex
hull. �

Appendix D. Proof of Theorem 2

First, it is useful to define

V δ
C,0+,d (s) ≡

⋃
ε>0

V δ
C,ε,d (s)

for each state s, C ≥ 0, d ≥ 0, and δ < 1. Then Theorem 2 follows from Lemma 6:

Lemma 6. For each ε0 ≥ 0, C0 ≥ 0, and d0 ≥ 0,

(1) for each game G, limC→0V
δ
C,ε0,d0(s0) = V δ

0,ε0,d0(s0);
(2) for each game G, if the Identifiability Condition holds, then

lim infd→0 V
δ
C0,0+,d0(s0) = V δ

C0,0+,0(s0); and
(3) for generic G, clV δ

C0,0+,d0(s0) = V δ
C0,0,d0(s0).

Proof of part 1. Let zmin = minz∈Z {‖z‖ : z ∈ Z, z 6= 0} denote the magnitude of the
smallest possible nonzero state change. Given δ, then, if the state changes from one
period to the next, the new state must be at least (1 − δ)zmin from the old one.
Also, recall that the distance between any two feasible payoffs is no greater than 2M .
Therefore, for C ≤ (1−δ)zmin

2M , the restriction that ‖u(s)− u(s′)‖ ≤ 1
C
‖s− s′‖ is always

satisfied, and so UC
F,s = U0

F,s. Thus, V δ
C,ε0,d0(s0) = V δ

0,ε0,d0(s0) for all C ≤ (1−δ)zmin
2M . �

To prove part 2, here is a preliminary result (Lemma 4 in Pęski and Wiseman
(forthcoming)) that provides a lower bound on the local “variability” of non-zero
polynomials. Let m ≡ #A denote the number of action profiles. For each positive
integer n, let Fn,m be the space of polynomial functions f : Rm → R with m variables
and of order not higher than n. We consider restrictions of such polynomials to the
simplex ∆m of probability distributions α over action profiles. For each c ∈ (0, 1), let
F∗n,m(c) ⊆ Fn,m be the subspace of polynomials f such that supα∈∆m

|f (α)| ∈ [c, 1].
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Lemma 7 (Pęski and Wiseman’s (forthcoming) Lemma 4). For each n, c > 0, and
η > 0, there exists a constant c̄ > 0 such that for each polynomial f ∈ F∗n,m(c) and
each profile α ∈ ∆m, there exists a profile α′ ∈ ∆m such that ‖α− α′‖ ≤ η and
|f (α′)| ≥ c̄.

Part 2 of Lemma 6 follows from the following lemma:

Lemma 8. If the Identifiability Condition holds, then for each η > 0, there exists
dη > 0 such that for each state s, each action profile α, and each player i,

(1) there exists an action profile α′−i for players other than i such that
∥∥∥α−i − α′−i∥∥∥ ≤

η
M

and for each action ai ∈ Ai(s) and each player j 6= i, dmj
(
Πj

(
ai, α

′
−i

))
≥

dη.
(2) there exists an action profile α′ such that ‖α− α′‖ ≤ η

M
and dmi+mj−1 (Πij (α′)) ≥

dη.

Proof. The existence of a d′η > 0 satisfying the two conditions follows from the fact
that the determinant of any of the relevant matrices is a non-zero polynomial in the
mixed strategies of the players, Lemma 7, and the proofs of Lemmas 6.2 and 6.3 from
FLM. �

Part 3 of Lemma 6 follows from the following lemma:

Lemma 9. For any integer k > 0, the set

Gk0 ≡
{
G ∈ G0 :

∥∥∥V δ
C0,0,d0(s0;G) \ V δ

C0,0+,d0(s0;G)
∥∥∥ ≥ 1

k

}
is nowhere dense in G0.

The proof of Lemma 9, in turn, relies on Lemma 10, which shows that self-δ, C, ε, d-
FIR payoffs for a game G ∈ G0 are self-δ, C, 0, d-FIR for some nearby game.

Lemma 10. For any game G ∈ G0 and any open neighborhood U ⊆ G0 of G, there
exists G′ ∈ U and ε > 0 such that for each state s, V δ

C0,0,d0 (s;G) ⊆ V δ
C0,ε,d0

(
s;G′

)
.

Proof. By the definition of G0, we can find a function v : S → RN mapping states
into payoff vectors and a scalar ε′ > 0 such that for each state s, B(v (s) , ε′) ⊆
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intV δ
C0,0,d0 (s;G) . For eachη ≥ 1, define the game Gη;v=(ρη;v

Z , gη;v), where

gη;v (a, s) = ηg (a, s)− (η − 1) v (s)

ρη;v
Z (a, s) [z] = ηρZ (a, s) [z].

Notice that G1;v = G. We choose the parametrization so that as η increases, pseudo-
instantaneous payoffs ψδ (a, s, u;Gη;v) expand radially from v (s) relative to payoffs
ψδ (a, s, u;G): for each action profile a, each state s, and all continuation payoffs
u : S → RN ,

ψδ (a, s, u;Gη;v)− v(s) = η
(
ψδ (a, s, u;G)− v(s)

)
. (D.1)

To see that Expression D.1 holds, note that

ψδ (a, s, u;Gη;v)− v(s)
= gη;d (a, s) + δ

∑
z∈Z ρ

η;v
Z (a, s) [z]u(s+(1−δ)z)−u(s)

1−δ − v (s)
= ηg (a, s)− (η − 1) v (s) + δ

∑
z∈Z ηρZ (a, s) [z]u(s+(1−δ)z)−u(s)

1−δ − v (s)
= η

(
g (a, s) + δ

∑
z∈Z ρZ (a, s) [z]u(s+(1−δ)z)−u(s)

1−δ − v (s)
)

= ηψδ (a, s, u;G)− v(s).

To complete the proof, we claim that for any η ≥ 1, there exists ε > 0 such that
for each state s, V δ

C0,0,d0 (s;G) ⊆ V δ
C0,ε,d0 (s;Gη,ν). Let ε = (η − 1) ε′ . We show that

collection V δ
C0,0,d0 (.;G) is self-δ, C0, ε, d0-individually rational in game Gη;ν . Using
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Expression D.1, we get

eδ,C0,d0
i

(
s;V δ

C0,0,d0 ;Gη;v
)

= inf
α−i∈Ai(s,d0),u∈UC0

V δ
C0,0,d0

,s

{
max
ai∈Ai

(1− δ)ψδi ((ai, α−i) , s, u;Gη;v) + δui(s)
}

= (1− δ)vi(s)
+ inf
α−i∈Ai(s,d0),u∈UC0

V δ
C0,0,d0

,s

{
max
ai∈Ai

(1− δ)
[
ψδi ((ai, α−i) , s, u;Gη;v)− vi(s)

]
+ δui(s)

}

= (1− δ)vi(s)
+ inf
α−i∈Ai(s,d0),u∈UC0

V δ
C0,0,d0

,s

{
max
ai∈Ai

(1− δ)η
[
ψδi ((ai, α−i) , s, u;G)− vi(s)

]
+ δui(s)

}

= inf
α−i∈Ai(s,d0),u∈UC0

V δ
C0,0,d0

,s

 η
[
max
ai∈Ai

(1− δ)ψδi ((ai, α−i) , s, u;G) + δui(s)
]

+(1− η) [(1− δ)vi(s) + δui(s)]


(D.2)

Let

(α∗−i, u∗) ∈ arg inf
α−i∈Ai(s,d0),u∈UC0

V δ
C0,0,d0

,s

{
max
ai∈Ai

(1− δ)ψδi ((ai, α−i) , s, u;G) + δui(s)
}
.

Then the last line of D.2 is no greater than

η
[
max
ai∈Ai

(1− δ)ψδi
((
ai, α

∗
−i

)
, s, u∗;G

)
+ δu∗i (s)

]
+ (1− η) [(1− δ)vi(s) + δu∗i (s)]

= ηeδ,C0,d0
i

(
s;V δ

C0,0,d0 ;G
)

+ (1− η) [(1− δ)vi(s) + δu∗i (s)]
= eδ,C0,d0

i

(
s;V δ

C0,0,d0 ;G
)
− (η − 1)

[
(1− δ)vi(s) + δu∗i (s)− e

δ,C0,d0
i

(
s;V δ

C0,0,d0 ;G
)]
.

Because eδ,C0,d0
i

(
s;V δ

C0,0,d0 ;G
)
≤ vi(s)− ε

′ and eδ,C0,d0
i

(
s;V δ

C0,0,d0 ;G
)
≤ u∗i (s), we get

that

eδ,C0,d0
i

(
s;V δ

C0,0,d0 ;Gη;v
)
≤ eδ,C0,d0

i

(
s;V δ

C0,0,d0 ;G
)
− (η − 1)(1− δ)ε′

= eδ,C0,d0
i

(
s;V δ

C0,0,d0 ;G
)
− (1− δ)ε.

Thus, V δ
C0,0,d0 is self-δ, C0, ε, d0-individually rational in game Gη;ν .

Next, we show that V δ
C0,0,d0 (.;G) is self-δ, C0, ε, d0-feasible in game Gη;ν . Take any

v0 ∈ V δ
C0,0,d0(s) and v′ ∈ B(v0, (1− δ)ε). For each unit vector λ,

λ · v′ ≤ (1− δ)ε+ λ · v0 ≤ (η − 1) (1− δ)ε′ + λ · ψδ
(
aλ, s, uλ;G

)
,
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where (
aλ, uλ

)
∈ arg max

a∈A(s),u∈UC0
V δ
C0,0,d0

,s

λ · ψδ (a, s, u;G) .

Because V δ
C0,0,d0 (.;G) is self-δ, C0, 0, d0-feasible in gameG, andB

(
v (s) , ε′

)
⊆ V δ

C0,0,d0 (s),
it must be that ε′ ≤ λ ·

(
ψδ
(
aλ, s, uλ;G

)
− v (s)

)
and

λ · v′ ≤ (η − 1) (1− δ)ε′ + λ ·
[
(1− δ)ψδ

(
aλ, s, uλ;G

)
+ δuλ(s)

]
≤ (η − 1) (1− δ)λ ·

[
ψδ
(
aλ, s, uλ;G

)
− v (s)

]
+ (1− δ)λ ·

[
ψδ
(
aλ, s, uλ;G

)
− v(s)

]
+ λ ·

[
(1− δ)v(s) + δuλ(s)

]
=η(1− δ)λ ·

[
ψδ
(
aλ, s, uλ;G

)
− v (s)

]
+ λ ·

[
(1− δ)v(s) + δuλ(s)

]
=(1− δ)λ ·

[
ψδ
(
aλ, s, uλ;Gη;ν

)
− v (s)

]
+ λ ·

[
(1− δ)v(s) + δuλ(s)

]
=λ ·

[
(1− δ)ψδ

(
aλ, s, uλ;Gη;ν

)
+ δuλ(s)

]
,

where the second equality comes from Expression D.1. The above implies that

v′ ∈ co
{

(1− δ)ψδ (a, s, u;Gη;ν) + δu(s) : a ∈ A(s) and u ∈ UC0
V δ
C0,0,d0

,s

}
,

so V δ
C0,0,d0 (.;G) is self-δ, C0, ε, d0-feasible in game Gη;ν . �

Now we can prove Lemma 9:

Proof of Lemma 9. Pick any k and any open neighborhood U ⊆ G0. We want to show
that U ∩ Gk0 is not dense in U . Suppose, to the contrary, that U ∩ Gk0 is dense in U ,
and choose G1 ⊆ U ∩ Gk0 and η > 0 such that B(G1, η) ⊆ U . By the definition of Gk0,∥∥∥V δ

C0,0,d0(s0;G1)
∥∥∥ ≥ 1

k
.

Next, by Lemma 10, there is aG′1 ∈ B(G1,
η
2) such that V δ

C0,0,d0(s0;G1) ⊆ V δ
C0,ε1,d0(s0;G′1)

for some ε1 > 0. Because ψδ (·, ·, ·;G) is continuous in G, there exist η1 ∈
(
0, η4

)
and

ε
′
1 ∈ (0, ε1) such that V δ

C0,ε1,d0(s0;G′1) ⊆ V δ
C0,ε

′
1,d0

(s0;G) for all G ∈ B(G′1, η1). Because
U∩Gk0 is dense in U , there is a G′′1 ∈ Gk0 within η1 of G

′
1 (and therefore within η

2 + η
4 < η

of G1). Since
∥∥∥∥V δ

C0,ε
′
1,d0

(s0;G′′1)
∥∥∥∥ ≥ ∥∥∥V δ

C0,0,d0(s0;G1)
∥∥∥ ≥ 1

k
, the definition of Gk0 implies

that
∥∥∥V δ

C0,0,d0(s0;G′′1)
∥∥∥ ≥ 2

k
.

By a similar argument, there exists a G′′2 ∈ Gk0 within η
8 + η

16 of G′′1 (and therefore
within η

2 + η
4 + η

8 + η
16 < η ofG1) such that

∥∥∥V δ
C0,0,d0(s0;G′′2)

∥∥∥ ≥ ∥∥∥V δ
C0,0,d0(s0;G′′1)

∥∥∥+ 1
k
≥ 3

k
.
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By repeating the argument, for any integer n > 0 we can find a G′′n with the property
that

∥∥∥V δ
C0,0,d0(s0;G′′n)

∥∥∥ ≥ 1+n
k
. But this is a contradiction: because stage-game payoffs

are bounded in magnitude by M ,
∥∥∥V δ

C0,0,d0(s0;G)
∥∥∥ cannot exceed (2M)N . �
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