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Abstract. This paper presents a rational theory of categorization and similarity-based

reasoning. I study a model of sequential learning in which the decision maker infers unknown

properties of an object from information about other objects. The decision maker may use

the following heuristics: divide objects into categories with similar properties and predict

that a member of a category has a property if some other member of this category has this

property. The environment is symmetric: the decision maker has no reason to believe that

the objects and properties are a priori di¤erent. In symmetric environments, categorization

is an optimal solution to an inductive inference problem. Any optimal solution looks as if

the decision maker categorizes. Various experimental observations about similarity-based

reasoning coincide with the optimal behavior in my model.

1. Introduction

In a class of discrete prediction problems, the decision maker (henceforth called the DM)
is supposed to predict whether an object o 2 O has a property p 2 P: Quite often, the
prediction is based on some notion of similarity: the DM predicts that o has property p if a
similar object o0 has this property. Table 1 presents an example of such reasoning. The DM
uses information about chickens and tigers to predict that a falcon, which is more similar to
chicken than to a tiger, does not mix oxygen with carbon dioxide while breathing. Arguably,
the knowledge that a chicken is similar to a falcon is not inborn to the DM, but arises as
a result of learning that both correspond to objects with wings, feathers and beaks and
share other properties. From this perspective, similarity-based reasoning is an application of
the Principle of Similarity: a presumption that similarity of some properties of two objects
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Premise: Chicken does not mix oxygen with carbon dioxide while breathing
Tiger mixes oxygen with carbon dioxide while breathing

Conclusion: Falcon does not mix oxygen with carbon dioxide while breathing
Table 1. Example of similarity-based reasoning.

indicated the similarity of other properties. This principle, in various forms, is recognized
as one of the most salient features of human reasoning and the foundation of any inductive
argument (for example, Mill (1874), Hume (1777)). The principle underlies automatized
induction in so-called collaborative �ltering problems.
Categorization is one of the models proposed to capture properties of similarity-based

reasoning (for various other models, see Tversky (1977), Gilboa and Schmeidler (1995) or
Osherson, Wilkie, Smith, Lopez, and Sha�r (1990)). There are two de�ning characteristics
of categorization. First, the DM divides objects and properties into a �nite number of
groups called categories and considers two objects to be similar if they are assigned to the
same category. Thus, similarity has a particularly simple binary form. Second, prediction
is category-based: all members of each category are presumed to share properties, and an
observation that a member of a category has a certain property is generalized to the other
members. In the above example, the DM�s reasoning can be interpreted as predicting a
falcon�s properties given that it falls into the category "birds."
In the paper, I argue that both similarity-based reasoning and endogenous categorization

have a rational explanation as optimal behavior in a model of sequential learning. There are
in�nite sets of objects O and properties P: Each period t; the DM is asked whether object
ot 2 O has property pt 2 P: After making a prediction, the DM learns the correct answer
� (ot; pt) 2 f0; 1g, where function � : O � P ! f0; 1g is called the state of the world. While
making a prediction, the DM uses the information that she acquired in the previous periods.
The key assumption is the symmetry of the distribution ! from which state of the world

� is drawn. The assumption says that the prior is invariant with respect to relabelling of
objects and properties. This means that a priori all objects and properties are considered
by the DM to be perfectly symmetric and exchangeable. In particular, the assumption
eliminates any exogenous categorization before the DM observes any data.
The symmetry assumption has a sound interpretation from the subjective point of view,

where ! is treated as the beliefs of the Bayesian DM. The symmetry is a re�ection of
her ignorance about objects and properties before the experiment. Given the lack of prior
information, she has no reason to treat any two objects di¤erently. This interpretation of
symmetry is also known as the Laplacian Principle of Insu¢ cient Reason, or Keynesian
Principle of Indi¤erence (Keynes (1921), Jaynes (1988), Savage (1972) chapter 3.7 and 4.5,
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Kreps (1988) chapter 11, Gilboa, Postlewaite, and Schmeidler (2004)). Alternatively, there
are many situations in which the symmetry assumption makes sense from the objective
point of view. In particular, suppose that names of objects and properties are assigned to
the objects randomly, without any attention to the state of the world. No relabelling should
a¤ect the observed frequency of outcomes. From the perspective of the DM, this looks as if
the distribution of the states of the world were invariant with respect to any relabelling. I
present examples of such situations.
Section 4 constructs a learning algorithm that has the features of the psychological model

of categorization described above: the DM assigns objects into a few large categories and
makes category-based predictions. The assignments into categories minimizes the inner-
category entropy and maximizes the informational content of the categories. I compare
two types of DMs. The Bayesian type knows the distribution ! and uses Bayes formula to
make her predictions. The non-Bayesian type does not know ! and uses the categorization
algorithm. In Section 4.4, I show that the non-Bayesian type makes asymptotically the same
predictions as the Bayesian one, no matter what the symmetric distribution !. In other
words, the categorization algorithm achieves the quality of Bayesian prediction uniformly
across all symmetric distributions. This leads to the �rst argument of this paper:

Argument 1. Categorization is an optimal tool of prediction in symmetric
environments.

There is an important statistical reason why the size of the categories increases with the
number of incoming observations. Having fewer and larger categories helps with the prob-
lem of over�tting. Recall that the statistical literature warns against using high-dimensional
models to "explain" limited observations, the reason being that we risk losing all the predic-
tive power as a price for �tting the past data precisely. The use of fewer and larger categories
alleviates this problem: classi�cation of an object into the correct category is easier, given
that there are many objects to compare it with; also, predictions in noisy categories are more
precise, if based on a larger number of observations.
The categorization algorithm is not the only optimal solution to the prediction problem.

In Section 4.5, I discuss a model in which the DM uses predictions to make decisions and
to obtain payo¤s. This allows the prediction problem to be cast as an exercise in payo¤
maximization under uncertainty. I demonstrate that all optimal solutions asymptotically
lead to the same behavior. Hence,

Argument 2. Any optimal behavior in symmetric environments is in the
long-run behaviorally indistinguishable from categorization.

The above two arguments are concerned with the long-run optimality of categorization.
In particular, it is optimal in the long-run to apply the Principle of Similarity and to predict
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that objects with similar properties observed in the past are going to have similar properties
in the future. Can one make any statements about the short-run behavior? The question is
clearly relevant, as the various properties of similarity-based reasoning listed in the psycho-
logical literature (Rips (1975), Osherson, Wilkie, Smith, Lopez, and Sha�r (1990)) come from
experiments in which subjects have access to only very limited data samples. To address this
question, I consider a Bayesian DM whose beliefs are symmetric. In Section 5, I describe
the qualitative implications of prior symmetry and Bayesian rationality for predictions. The
result is that

Argument 3. The qualitative properties of Bayesian updating in symmetric
environments coincide with experimental observations about similarity-based
reasoning.

It needs to be emphasized that the symmetry assumption is motivated by the Principle of
Insu¢ cient Reason, not by any similarity considerations. This makes the coincidence between
theoretical analysis and empirical observations somehow unexpected. In my opinion, the
coincidence between theory and empirics is indirect evidence that the Principle of Insu¢ cient
Reason is strongly embedded in human reasoning.
There are three insights from the results of this paper. First, the fact that humans cat-

egorize is itself not evidence for bounded rationality. It is often a temptation to denounce
heuristics as irrational and attribute using them to a mishandling of available information.
On the contrary, categorization arises as an optimal statistical procedure. Second, cate-
gorization, if done optimally, does not lead to a persistent bias. The fully rational DM
dynamically and endogenously adapts her categories to observations. There might be only a
temporary bias, which is a consequence of insu¢ cient data. Finally, it seems plausible that,
through evolution, Nature equipped us with an optimal tool for making predictions in the
face of uncertainty. The above results imply that if the natural environments are symmetric,
then any such a tool should look like categorization.

2. Related literature

The literature on heuristics is divided between two strands. The �rst strand is concerned
with the biases resulting from the use of heuristics. The most in�uential paper in this
literature is Tversky and Kahneman (1974). Tversky (1977) presents a model of similarity-
based reasoning. More speci�cally, biases of categorization have been studied in recent
papers Mullainathan (2002), Lam (2000), Jackson and Fryer Jr (2005). Azrieli and Lehrer
(2007) developed an axiomatic characterization of categorization. Jehiel (2005) (see also
Jehiel and Samet (2007)) analyzes the consequences of categorization in a strategic context
using a notion of analogy-basedexpectation equilibrium. The second strand argues that
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heuristics are e¢ cient ("fast and frugal") tools for processing information. For an example,
see Gigerenzer and Todd (1999). The current paper belongs to the second strand of the
literature.
The psychological literature mentions two major functions of categorization Smith (1995).

First, as in this paper, categorization is a tool of inductive inference. Second, categorization
serves as a device to code experience without being too demanding on our memory. It is
probably the second role of the categorization that is more connected to bounded rationality.
I. Gilboa and D. Schmeidler�s theory of case-based reasoning is an axiomatic approach

to questions that are similar to the ones I ask here (Gilboa and Schmeidler (1995), Gilboa
and Schmeidler (2000), Gilboa and Schmeidler (2001), Gilboa and Schmeidler (2002), Billot,
Gilboa, Samet, and Schmeidler (2005)). These papers identify axioms under which the DM�s
behavior looks as if her prediction were guided by similarity between objects. The most
important of these is the combination axiom, which says that if two di¤erent databases lead
to the same prediction; their union should also lead to the same prediction. The combination
axiom is controversial as many prediction rules (including the Bayes formula) do not satisfy it
(see Gilboa and Schmeidler (1995) for a discussion). In particular, neither the categorization
algorithm nor the Bayesian prediction of my model satis�es the combination axiom.1 My
paper contributes to the literature that the combination axiom is not necessary for similarity-
based reasoning.
Collaborative �ltering is a problem of predicting multiple properties of multiple objects

from partial information about these and other objects and these and other properties
Segaran (2007). One of the major applications of collaborative �ltering methods are recom-
mender systems. There are multiple customers (objects) with tastes over multiple products
(properties). Each customer knows his tastes over certain set of products. The recommender
system invites the customers to rate products they know and uses the ratings to predict the
unknown tastes over the remaining products. For example, Net�ix.com uses movie ratings of
watched movies to make prediction about movies that has not been watched (Amazon.com
and iTunes predict tastes over, respectively, books and music). All recommender system
rely more or less directly on the Principle of Similarity. For example, in the earliest recom-
mender systems, two customers were declared similar, if they were observed to have similar
tastes over the same products and the system predicted that similar customers will have
similar tastes over unobserved products: If one of the customer reveals that she likes the
new product, the other customer will be predicted to like the new product as well. One of
the major problems with this method is that in order to verify whether two customers are

1Gilboa, Lieberman, and Schmeidler (2005) argue that, as reasonable as it seems, the combination axiom

should not hold when the DM "uses both inductive and deductive reasoning" at the same time.
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similar, their tastes over the same set of products must be observed. In reality, the data
available for the recommender system is often very sparse and it is rare for two randomly
chosen customers to know their tastes over the same set of movies. For example, in the
publicly available Net�ix database, there are 100 million ratings of 480,000 customers over
nearly 18,000 movies, and, an average customer rated slightly more than 1% of all available
movies. In order to address this and related issues, other similarity-based algorithms were
developed . For example, factor methods estimate model:

� = F1F
0
2 + E; (2.1)

where � is the n1�n2 matrix of tastes of n1 customer over n2 products, F1 is a n1�k1 matrix
of k1 factor loadings for each customer, F2 is a n2 � k2 matrix of product factor loadings,
ki << ni, and E is a matrix of i.i.d. noise terms (Canny (2002), Marlin and Zemel (2004)).
Model (2.1) divides customer and products into categories of customers and products with
the same factor loadings. The ratings of customers over products in the same (or similar
categories) are equal up to i.i.d. noise terms. To the best of our knowledge, ours is the �rst
paper that shows the asymptotic optimality of similarity-based prediction algorithms.2

3. Prior symmetry and principle of similarity

Let X = X1�X2 be a set of instances (inputs, independent variables, decision problems),
where each instance (x1; x2) is a pair of two features x1 and x2. Assume that sets of features
X i are in�nitely countable. Let f0; 1g be a set of outcomes (outputs, dependent variables,
solutions). A state of the world is an assignment of an outcome to every instance, � : X !
f0; 1g : Let � = f0; 1gX be the space of states of the world; � is a compact space in product
topology, and it is a measurable space with Borel �-�eld. A state of the world � is chosen
from distribution ! 2 ��: Consider the following examples.

Example 1 (Objects and Properties). Let X1 = O be a space of objects and X2 = P be
a space of properties. Interpret instance (o; p) 2 O � P as a query "Does object o have
property p?" with an answer � (o; p) 2 f0; 1g : Say that objects o and o0 share property p if
� (o; p) = � (o0; p) :

Example 2 (Students and Grades). An undergraduate advisor helps students to predict
grades. Each problem (instance, in my terminology) is described as a pair of two features

2The Net�ix algorithms described above are example of so-called active �ltering, where the predictions

are based on solicited customers�preferences. In passive �ltering, the algorithm observes customer�s choices

and used these to make predictions. Kumar, Raghavan, Rajagopalan, and Tomkins (1998), Kleinberg and

Sandler (2003), Kleinberg and Sandler (2004) are examples of papers that analyze the convergence properties

of the passive �ltering models. (I am grateful to the referee for pointing that literature to me.)
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x = (x1; x2) = (student; course). An outcome � (x1; x2) is equal to 1 if and only if student
x1 receives a good grade in course x2 and � (x1; x2) = 0 if student x1 receives a bad grade.

Example 3 (Recommendation algorithms). Net�ix.com helps costumers learn about their
movie tastes using a recommender system: a customer rates movies, and Net�ix uses the
ratings of the customer and of other customers to predict a rating for the movies that the
customer has yet not watched. (For a brief introduction into recommender systems, see
Section 2.) Let X1 = C be a space of customers and X2 = M be a space of movies. Each
instance (c;m) 2 X can be interpreted as a query "Is customer c interested in movie m?"

3.1. Symmetric distributions. A permutation of instances � is a bijection of X onto
itself. Denote the set of permutation of instances as �: A permutation �i of dimension i

is a bijection of X i onto itself. Denote the set of all permutations of dimension i as �Fi : A
permutation of features is a mapping � = �1 � �2 , where �i 2 �Fi for both i and�

�1 � �2
� �
x1; x2

�
=
�
�1
�
x1
�
; �2

�
x2
��
:

Thus, the permutation of features is a product of permutations of each dimension separately.
Denote the set of all permutations of features with �F : Note that �F � �, but �F 6= �:
not all permutations of instances are also permutations of features. (For example, suppose
that x 6= x0; permutation �x;x0 2 �; which exchanges instance x with x0 and keeps all other
instances constant, is not a permutation of features, �x;x0 =2 �F .)
For any permutation of instances � and any state of the world �, de�ne �� 2 � as a state

of the world, such that (��) (x) = � (� (x)) for each instance x:

De�nition 1. Distribution ! 2 �� is symmetric (with respect to renaming features), if for
any permutation of features � 2 �F ; for any measurable subset E � �;

! (� 2 E) = ! (�� 2 E) :

The symmetry condition generalizes exchangeability of de Finetti (1964) to two dimen-
sions. It was introduced in Aldous (1981), Hoover (1982) (see also Kallenberg (2005)). The
condition says that a priori all features are symmetric. In particular, no Bayesian DM
considers any two features as a priori more similar to each other than to any other feature.

3.2. Interpretation and examples. From the subjective point of view, symmetry is a
restatement of the Laplacian Principle of Insu¢ cient Reason. It should be satis�ed by any
beliefs of the DM in a hypothetical state of perfect ignorance. In such a state, a Bayesian
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DM hasn�t yet observed any instances and outcomes, or anything that might be correlated
with the state of the world. She has no reason to treat any two features di¤erently a priori.
From the objective point of view, symmetry should not be interpreted as an assumption

about the distribution from which Nature draws the state of the world (which would be
quite restrictive) but about the DM�s perception of it (which is not so restrictive). Imagine
that (a) there is an objective state of the world, and (b) Nature randomly and uniformly
mixes features before letting the DM observe outcomes. This leads to two labels of features:
"original" and "perceived." If the mixing is truly uniform, then, from the point of view of
the DM, the "perceived" feature xi looks like the "original" xi with the same probability as
it looks like the "original" xi0.
To see this argument more clearly, consider Example 2: Suppose that the registrar o¢ ce

randomly assigns ID numbers to students and courses. The DM knows the IDs but not the
individual names of students or courses. If the assignment is completely random, then, from
the point of view of the DM, it looks as if the state of the world is drawn from a symmetric
distribution.
As an another example, consider the Net�ix problem from Example 3. From the point of

view of Net�ix, no renaming of its 5 million customers should change the correlations among
customers, movies and their preferences. Analogously, no renaming of their 65 000 movie
titles should a¤ect the distribution of the states of the world.3

Since a priori all features are exchangeable, the assumption precludes any possibility of
non-empirical categorization. However, the assumption allows for a wide range of theories
about correlations between outcomes of instances. These correlations may open a possibil-
ity of ex post categorization. Consider the following examples. In the �rst example, all
correlations are eliminated. Two subsequent examples are more sophisticated.

Example 4 (Idiosyncratic preferences). In the Net�ix example, suppose that each outcome
� (x) is chosen i.i.d. from uniform distribution on f0; 1g ; independently across instances.

Example 5 (Bad and good movies). Suppose that each movie m 2 X2 is independently
chosen to be good with probability p 2 [0; 1] or bad with probability 1 � p. State of the
world � depends deterministically on the quality of movies: for any instance (c;m) 2 X; let
� (c;m) = 1 if movie m is good; otherwise, let � (c;m) = 0:

3Recently, Net�ix announced a public competition for a recommendation algorithm that improves on its

own (see www.net�ixprize.com). A database of 100 million customer-movie rankings is available for any

contestant. In order to protect the con�dentionality of ratings, Net�ix replaced the customers�and movies�

names by randomly drawn IDs. In other words, from the perspective of the contestant, the Net�ix database

looks as if it were drawn from an invariant distribution.
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Example 6 (Two types of movies and customers). There are two types of customers, Men
and Women and two types of movies, Action and Romance. Each customer is chosen in-
dependently to be Man or Woman with probability 1

2
; similarly, each movie is chosen to

be Action or Romance with equal probability. State of the world � depends on the types of
customers and movies:

� (c;m) =

(
1;

0;

if c is Man and m is Action or c is Woman and m is Romance,
otherwise.

In the examples, customers and movies are divided into types (categories). In the �rst
example, there is only one category for customers and movies; in the second, there is one
category for customers and two categories for movies; in the last, there are two categories
for customers and movies. The outcomes depend on the category assignment either proba-
bilistically (as in the �rst example) or deterministically (as in the two subsequent examples.)
Appendix B.1 contains the Representation Theorem for symmetric distribution. The Theo-
rem shows that any symmetric distribution is a mixture of distributions generated as in the
examples, but with, possibly, in�nitely many categories.

3.3. Principle of Similarity. Recall that the Principle of Similarity says that if two objects
were observed to have similar properties, their unobserved properties should be expected to
be similar. Without any further analysis, it is unclear what the Principle has to do with
symmetric distribution. Nevertheless, the connection can be illustrated with a simple result.
Consider Example 1. Suppose that the Bayesian DM with symmetric beliefs ! observes
properties p 2 P 0 of two objects o1; o2 2 O; where P 0 is �nite set. The DM wonders whether
these objects share an unobserved property p� =2 P 0: The next Proposition says that the
probability of such an event increases in the number of shared properties p 2 P 0:

Proposition 1. For any symmetric !; any two sets P1; P2 � P 0; if jP1j � jP2j ; then for all
p� =2 P1 [ P2

! (� (o1; p
�) = � (o2; p

�) j� (o1; p) = � (o2; p) if p 2 P1)
� ! (� (o1; p

�) = � (o2; p
�) j� (o1; p) = � (o2; p) if p 2 P2) :

Proof. Consider a random variable s : P ! f0; 1g de�ned as a function of the state of the
world: for any property p; s (p) = 1 if and only if objects o1 and o2 share property p; i.e.
� (o1; p) = � (o2; p) : Let$ 2 � f0; 1gP be the distribution of variable s induced by symmetric
distribution !: The symmetry of ! implies that distribution $ is invariant with respect to
permutation of properties: $ (s 2 E) = $

�
�P s 2 E

�
for any bijection �P : P ! P and any

measurable E � f0; 1gP : By de Finetti�s Theorem, $ can be interpreted as a distribution of
in�nitely many Bernoulli draws indexed with p 2 P; with a parameter that is stochastically
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drawn once from some � 2 � [0; 1]. It is a simple consequence of the representation that the
conditional probability of s (p�) = 1 increases with the number of 1s observed so far,

! (s (p�) = s (p�) js (p) = s (p) i¤ p 2 P1)
� ! (s (p�) = s (p�) js (p) = s (p) i¤ p 2 P2) :

This yields the Proposition. �

The Proposition provides the main intuition for the connection between symmetry and
similarity-based reasoning. All the subsequent results can be seen as generalizations of this
intuition.

3.4. Examples without symmetry. In many cases, the symmetry assumption is too
strong and the DM has an a priori information that can be used to distinguish individ-
ual objects. For example, Net�ix.com may distinguish movies by their genres, the items sold
on the Amazon.com website can be exogenously categorized into Books, Movies, or Comput-
ers, and so on ... . The results of this paper go unchanged as long as the prior information
is not too detailed. Precisely, say that distribution ! 2 �� is �nitely symmetric if there are
�nite partitions X i =

S
k�K

X i;(k); such that for each k; l � K; the marginal distribution

marg
f0;1gX

1;(k)�X1;(l) !

is symmetric. Such a distribution allows for limited a priori categorization of objects and
properties where the number of prior categories is bounded by the size of the partition. Up
to minor modi�cations of the proof, the main results of this paper (Theorem 1 and Corollary
1) hold.
There are examples, in which the prior information is too detailed. For an extreme exam-

ple, suppose that X1 is the set of people, X2 is the set of natural numbers, and � (x1; x2) = 1
if person x1 is alive at the age x2: The prior information does not distinguish between peo-
ple X1; however, the prior information imposes non-symmetric structure on X2. Because
elements of X2 are not exchangeable, the categorization algorithm of this paper won�t apply.

4. Categorization

4.1. Model of learning. We discuss categorization as a DM�s strategy in the following
model of learning. A sequence of instances �x = x1; x2; ::: 2 X1 is called an instance process.
To avoid trivial cases, I assume that the DM never observes the same instance twice, xs 6= xt

for s 6= t. Each period, the DM observes an instance xt; makes a prediction and subsequently
observes outcome yt = � (xt). Learning rule l :

S
t

(X � f0; 1g)t�1 � X ! � f0; 1g is a
complete description of the predictive behavior of the DM. The predicted probability that the
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outcome of xt is equal to y is denoted as l
�
fxs; ysgs<t ; xt

�
(y) : In particular, each distribution

! induces a Bayesian learning rule

l!
�
(xs; ys)s<t ; xt

�
(y) := !

�
� (xt) = yj fxs; ysgs<t

�
:

A database d is any �nite subset of observations d � X � f0; 1g : The size of database d
is denoted with jdj : For any database d; let

di =
���xi 2 X i :

�
xi; xj; y

�
2 d for some

�
xi; xj

�
2 X and y 2 Y

	��
denote the number of distinct features i in database d: In particular, given an instance
process �x and state of the world �; the period t database of past observations is de�ned
as dt = f(xs; � (xs))gs<t and jdtj = t: If the value of the learning rule does not depend on
the order of past observations,4 write l (d; x) for database d and instance x: For example,
Bayesian learning rule l! does not depend on the order of observations.

De�nition 2. Instance process �x satis�es su¢ cient data condition if
t

d1t + d2t
!1:

The su¢ cient data condition implies that the number of observations grows quicker than
the number of distinct features in the database of past observations. In the Net�ix exam-
ple (Example 3), this means that the number of observations per customer and per movie
increases to in�nity.

4.2. Categorization algorithm. Next, I construct two learning rules. In both rules, the
DM divides instances into �nitely many categories. The number of categories is �xed in the
�rst learning rule, and it increases with the number of observations in the second one. The
rules share stylized characteristics with the categorizing behavior discussed in the psychology
literature: (a) categorization is endogenous and dynamic, (b) the number of categories is
small compared to the number of objects, and (c) the prediction is category-based: all objects
in the same category are predicted to share similar properties.
Any categorization process must solve two di¢ culties: how to allocate instances into cate-

gories and how to �nd a prediction of an outcome conditional on the category. Both di¢ cul-
ties are addressed simultaneously. There are k possible "bins" for features i and each feature
is assigned into only one bin. If features x1 and x2 are assigned to categories k1 and k2; re-
spectively, then the outcome � (x1; x2) is predicted to be 1 with probability � (k1; k2) 2 [0; 1] :

4More precisely, the value of the learning rule l does not depend on the order of past observations, if for

each t; each sequence ((x1; y1) ; :::; (xt; yt)) ; each xt+1; each bijection � : f1; :::; tg ! f1; :::; tg,

l ((x1; y1) ; :::; (xt; yt) ; xt+1) = l
��
x�(1); y�(1)

�
; :::;

�
x�(t); y�(t)

�
; xt+1

�
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Initially, the DM is uncertain which assignment into bins and which prediction function � are
the best, i.e. the most helpful in facilitating predictions. She acts as a Bayesian: she starts
with an uniform prior over all possible assignments and functions �. When new information
comes, she updates her prior through Bayes formula.
Formally, let k-(category) assignment of feature i be a map ci : X i ! f1; :::; kg : I refer to

ci (xi) as a category of feature xi: Let Cki = f1; :::; kg
Xi

be a set of k-assignments of feature
i and let Ck = Ck1 �Ck2 be a set of k-assignments. For any k-assignment c 2 Ck; any instance
x = (x1; x2) 2 X, write

c (x) =
�
c1
�
x1
�
; c2
�
x2
��
2 f1; :::; kg2

and call c (x) a category of instance x with respect to assignment c: Hence, k-assignment
divides instances into k2 categories.
A (category-based) prediction is a function p : f1; :::; kg2 ! � f0; 1g with the following

interpretation: if the DM decides to assign instance x to category k 2 f1; :::; kg2 ; then
she predicts that the outcome of x is equal to y with probability p (k) (y) : De�ne space of
prediction functions as

Rk :=
�
� : f1; :::; kg2 ! � f0; 1g

	
= [0; 1]k

2

:

A pair of an assignment and a prediction function is called a theory. Let

T k = Ck �Rk

be a space of theories.
The DM starts with a prior beliefs over theories. Let 	ki 2 �Ckii be the "uniform" measure

over assignments of i. It is formally de�ned as a measure such that for any feature xi 2 X i

category ci (xi) is drawn independently and uniformly from set f1; :::; kg. Let

	kC = 	
k
1 
	k2 2 �Ck

be the independent product of two measures. Distribution 	kC is the uniform measure over
a space of assignments Ck. Let 	R be the Lebesgue measure on the space of prediction
functions Rk: Let

	k = 	kC 
	kR 2 �T k

be the independent product of measures 	kC and 	
k
R: Distribution 	

k is the uniform measure
over an in�nite dimensional space of theories and it is treated as the prior beliefs.
Consider a distribution !k over outcomes � (:) de�ned in the following way: First, Nature

chooses a theory (c; �) from distribution 	k: Then, for each x 2 X; each outcome � (x) is
drawn independently from each other from distribution � (c (x)) : It is easy to check that
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distribution !k is symmetric. De�ne learning rule lk as the prediction that would be made
by a Bayesian DM with "beliefs" !k :

lk = l!k :

I refer to learning rule lk as a k-categorization algorithm.
So far, I have assumed that the number of categories k remains constant. More generally,

the DM may want to vary k with the number of data. She needs to be aware of two e¤ects of
increasing k. On one hand, a higher k allows for a better �t with the sample data allowing
possibly for sharper predictions. On the other hand, too high a k may lead to the over�tting
problem: the more categories she has, the more di¢ cult it is to use �nite data to choose
the right category assignment and the right prediction function. (For example, if in each
period t, the DM uses t categories, clearly his predictions will not converge to the Bayesian
prediction, except for possibly some trivial cases.)
In the solution that I propose, the DM acts as if he starts with a prior belief over the

number of categories k: Fix a sequence of strictly positive real numbers �k > 0 such thatX
k
�k = 1:

5 Let

!C =
X
k

�k!
k

be the mixture of probability distributions with weights k: De�ne the adaptive categoriza-
tion algorithm as the Bayesian learning rule corresponding to distribution lC = l!C . The
interpretation is that, initially, the beliefs of the DM are concentrated over the theories with
small number of categories. When the database increases, the DM may notice that low k do
not explain the data very well; he will update his beliefs to put more weight on larger k: 6

4.3. Categorization as entropy minimization. It is helpful to reinterpret the catego-
rization algorithm lk as entropy minimization. For each database d and category assignment
c, de�ne the number of instances assigned to category (k1; k2) and the frequency of outcome
1 among these instances as

n
�
k1; k2jc; d

�
= #

��
x1; x2; y

�
2 d : c

�
x1; x2

�
=
�
k1; k2

�
; y 2 f0; 1g

	
;

�
�
k1; k2jc; d

�
:=
# f(x1; x2; 1) 2 d : c (x1; x2) = (k1; k2)g

n (k1; k2jc; d) ;

5More precisely, it is enough that in�nitely many weights are strictly positive.
6I am grateful to the referee for suggesting learning rule lC as well as the strategy of the proof of Theorem

1. A previous version of the paper analyzed a non-Bayesian learning rule lC
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if n (k1; k2jc; d) 6= 0 and 1
2
otherwise. De�ne the entropy of assignment c as

E (cjd) = � 1

jdj
X

(k1;k2)2f1;:::;kg2
n
�
k1; k2jc; d

�
h
�
�
�
k1; k2jc; d

��
;

where h (:) is the entropy function

h (�) = � log �+ (1� �) log (1� �) :

Entropy E (cjd) measures the informational content of assignment c in database d: In partic-
ular, if the entropy is close to 0; then, for most categories, � (k1; k2) is very close to 0 or very
close to 1, i.e. predictions inside categories are almost deterministic. On the other hand, if
the entropy is close to log 2 (which is the maximal possible value), then � (k1; k2) is close
to 1

2
and categories are quite useless in facilitating prediction. De�ne the minimal value of

entropy in database d as

Emin (d) = min
c2Ck

E (cjd) :

The next Proposition says that, if the su¢ cient data condition is satis�ed, then, asymp-
totically, the categorization algorithm puts probability close to 1 to the set of assignments
with entropy close to the minimal entropy.

Proposition 2. Suppose that instance process �x satis�es the su¢ cient data condition. Then,
for any " > 0;

lim
t!1

Z
fc:E(cjdt)�Emin(dt)+"g�Rk

 k (c; �jdt) d	k (c; �) = 1:

The (standard) proof is contained in Appendix A. Jackson and Fryer Jr (2005) is also
concerned with the issue of dividing objects into categories. The authors postulate a simple
heuristic: �nd a categorization assignment that minimizes variance inside categories. Since
entropy minimization is not the same as minimization of inner-categroy variance, Jackson
and Fryer Jr (2005)�s algorithm is not going to satisfy the optimality results.

4.4. Optimality of categorization. This section shows that categorization is an optimal
solution to the prediction problem. Consider two types of DMs. A Bayesian DM knows
which symmetric distribution ! generates the state of the world. The best prediction she
can make is to use Bayes learning rule l!. A non-Bayesian DM does not know the true
distribution !, but nonetheless believes that ! is symmetric.
The next Proposition says that if k is su¢ ciently high, then the non-Bayesian DMwho uses

k-categorization algorithm lk makes asymptotically similar predictions to those made by the
Bayesian DM. It is convenient to evaluate the di¤erence between two measures p; q 2 � f0; 1g
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by their L2-distance kp� qk =
 P
y2f0;1g

(p (y)� q (y))2
!1=2

: Let E! denote the expectation

is taken with respect to the distribution over past databases induced by ! (and instance
process �x):

Theorem 1. Suppose that process �x satis�es the su¢ cient data condition. For any symmet-
ric !;

lim
k!1

lim
t!1

1

t
E
X

s<t



lk (ds; xs)� l! (ds; xs)


 = 0;

lim
t!1

1

t
E
X

s<t
klC (ds; xs)� l! (ds; xs)k = 0: (4.1)

By the �rst part of the Theorem, any symmetric ! can be approximated by a model with
a �nite number of categories. For a k high enough, additional categories do not substantially
increase the predictive power of the categorization algorithm. Note that the number of
categories k needed depends on the distribution !: The second part says that the adaptive
categorization lC makes on average the same predictions as the Bayesian DM uniformly
across all symmetric beliefs !.
To interpret the Theorem, consider �rst the subjective point of view on !: Any Bayesian

DM with symmetric beliefs expects to predict as if, approximately and asymptotically, she
was using the categorization algorithm. Therefore, any Bayesian DM is indi¤erent between
Bayesian updating and categorization.
From the objective viewpoint, Nature draws the state of the world from symmetric distri-

bution !: The DM may understand that the distribution is symmetric, even if she does not
know !. The categorization algorithm guarantees payo¤s as good as if the DM knew the
true !: This is very good news for any ambiguity-averse decision maker.
Note that the Theorem does not guarantee that the DM will predict all outcomes correctly

but only as good as the Bayesian. In Example 4, all outcomes are i.i.d. equal to 1 with
probability 1

2
: This is the prediction of the Bayesian DM no matter how much past data she

observes. By the Theorem, this is also the asymptotic prediction of the categorization algo-
rithm lC : On the other hand, if the su¢ cient data condition is satis�ed, then, asymptotically,
the categorization algorithm predicts correctly almost all outcomes in Examples 5 and 6.
The statement of the Theorem is related to the literature on the Bayesian merging of opin-

ions (Blackwell and Dubins (1962), Lehrer and Smorodinsky (1996), Lehrer and Smorodinsky
(2000); also Jackson, Kalai, and Smorodinsky (1999)). The proof uses the Representation
Theorem from Appendix B.1 as well as the techniques developed in Lehrer and Smorodinsky
(1996) and Lehrer and Smorodinsky (2000). Appendix C contains the details as well as the
discussion of the connection to the earlier work.
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4.5. Uniqueness of optimal solution. Theorem 1 shows that there is a learning rule
that guarantees uniformly good predictions. Moreover, this rule, by construction, can be
interpreted as a categorization. The Theorem does not guarantee that such a rule is unique,
and, in fact, there are in�nitely many such learning rules. This is a consequence of the
chosen criterion of optimality: any learning rule that behaves di¤erently than lC in the �rst
t periods and then follows the same predictions as lC satis�es the formula (4.1).
Let A be a compact and normed space of actions and u : A� f0; 1g ! R be a continuous

utility function, such that the solution to the optimization problem

max
a
(1� p)u (a; 0) + pu (a; 1)

exists, and it is unique and continuous in p.7 Denote the solution as amax (p) : Let a :S
t

(X � f0; 1g)t�1 �X ! R designate a behavioral rule. Let

u
�
a
�
(xs; � (xs))s<t ; xt

�
; � (xt)

�
be a payo¤ in period t from behavioral rule a in the state of the world �: For any distribution
! and any instance process �x; let

U (a;!; �x) := lim inf
t!1

E
1

t

X
s<t

u
�
a
�
(xs; � (xs))s<t ; xt

�
; � (xt)

�
denote a long-run expected quality of behavioral rule a; where the expectation is taken with
respect to the distribution over databases of past observations induced by ! and instance
process �x. Let

al := amax � l

denote the behavioral rule induced by learning rule l.

De�nition 3. Behavior a is uniformly optimal if U (a;!; �x) � U (a0;!; �x) for any symmetric
distribution ! and for any other behavior a0:

The de�nition of uniformly optimal behavior is very strong. It requires the behavior to be
(weakly) better than any other behavior for any other distribution over states of the world.
Any uniformly optimal behavior is robust to misspeci�cation of prior beliefs. The notion
of robustness is stronger if the behavior was simply optimal with respect to the minimax
preferences of Gilboa and Schmeidler (1989). In the latter, the DM cares only about the
worst-case payo¤. Here, the DM achieves the optimal payo¤ given any distribution !.

7For example, suppose that A = [0; 1] and u (a; y) = ay � 1
2a
2:
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Premise Robins use serotonin as a neurotransmitter.
Bluejays use serotonin as a neurotransmitter.

Conclusion Sparrows use serotonin as a neurotransmitter.

Premise Robins use serotonin as a neurotransmitter.
Bluejays use serotonin as a neurotransmitter.

Conclusion Geese use serotonin as a neurotransmitter.
Table 2. Premise-conclusion similarity

Corollary 1. Categorization behavior alC is uniformly optimal. For any process �x; for any
uniformly optimal behavior a;

lim sup
t!1

1

t
E
X

s<t



alC (ds; xs)� a (ds; xs)


 = 0:

The Corollary says that all uniformly optimal behavioral rules are asymptotically equal
and, in particular, all of them are equal to the categorization algorithm. The idea is very
simple. The best prediction possible given any symmetric ! is the Bayesian prediction. Be-
cause categorization makes the Bayesian prediction asymptotically, any uniformly optimal
behavior must do the same. Therefore, any two uniformly optimal behaviors are asymptoti-
cally equal. In particular, any uniformly optimal behavior is asymptotically indistinguishable
from categorization.

Proof. Let a! := amax � l! denote Bayesian behavioral rule. By standard arguments, for any
instance process �x, any symmetric ! and any behavioral rule a;

U (a;!; �x) � U (a!;!; �x)

with strict inequality if

lim sup
t!1

1

t
E
X

s<t
ka! (ds; xs)� a (ds; xs)k > 0:

The inequality, together with Theorem 1, implies the thesis of the Corollary. �

5. Similarity-based reasoning

Osherson, Wilkie, Smith, Lopez, and Sha�r (1990) performs a series of laboratory experi-
ments that aim to systematize features of similarity-based reasoning and categorization. In
each of individual experiments, they present subjects with a pair of inductive arguments.
Each argument consists of a premise followed by a conclusion. Subjects are asked to choose
the more credible argument in a pair. An example of such a comparison is presented in Table
2.
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Premise Robins use serotonin as a neurotransmitter.
Bluejays use serotonin as a neurotransmitter.
Robins, bluejays, and sparrows are small.
Geese are large.

Conclusion Sparrows use serotonin as a neurotransmitter.

Premise Robins use serotonin as a neurotransmitter.
Bluejays use serotonin as a neurotransmitter.
Robins, bluejays, and sparrows are small.
Geese are large.

Conclusion Geese use serotonin as a neurotransmitter.
Table 3. Premise-conclusion similarity

There are some features of the experiment design that are worth emphasizing. Each state-
ment in premise or conclusion refers to object of natural kind (most often animals) having or
not certain blank property. The blank properties are chosen so to minimize the prior knowl-
edge of these properties that the subjects (students of psychology) bring to the experiment.
Speci�cally, subjects are expected to realize that all properties in question are anatomical,
but they are not supposed to know much more. For example, property p =�use serotonin
as a neurotransmitter�from Table 2 is blank. (It is rare for non-professionals to be able to
di¤erentiate prior probabilities of "using" and "not using serotonin as a neurotransmitter.")
By de�nition, subjects have "no reason to believe" that various blank properties can be
distinguished a priori. In the language of this paper, the beliefs about blank properties are
symmetric with respect to their renaming.
On the other hand, subjects are expected to have prior knowledge of objects, and, specif-

ically, share notion of similarity between objects. For example, �robins�and �bluejays�are
considered as more similar than �robins�and �geese.� It seems natural to assume that prior
knowledge comes from prior observation that �robins�and �bluejays�share some properties,
like �being small�, with each other but not with �geese�. In particular, imagine a non-English
speaking subject who has never heard about �robins�, �bluejays�or �geese�, and who is asked
to evaluate inductive arguments in Table 3. Such subject should reason in the same way as
the English-speaker presented with Table 2. The non-English speaker�s beliefs are symmetric
with respect to both objects and properties.
We interpret experiments as in Table 2 in the context of example 1. We assume that sub-

jects have initially symmetric beliefs about both objects and properties. Subjects are asked
about the probability whether an object has certain property conditionally on two pieces of
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Premise Bluejays require Vitamin K for the liver to function.
Falcons require Vitamin K for the liver to function.

Conclusion All animals require Vitamin K for the liver to function.

Premise Bluejays require Vitamin K for the liver to function.
Falcons require Vitamin K for the liver to function.

Conclusion All birds require Vitamin K for the liver to function.
Table 4. Premise diversity

prior information: prior knowledge about similarity with respect to known properties that is
brought to experiment, and information about a blank property given by the experimenter.
Below, we discuss three examples of such experiment. In the �rst two cases, the theoretical
predictions coincide to some degree with the laboratory observations.

5.1. Premise-conclusion similarity. Faced with comparison from Table 2, 59 out of 80
subjects choose the �rst argument as the more credible. The interpretation is that a cate-
gory of sparrows is more similar to categories of robins and bluejays and the corresponding
inductive argument seems more appropriate. As we argue above, it seems reasonable to
assume that the subjects beliefs are symmetric, and to treat the reasoning in Table 2 as an
application of the Principle of Similarity and Proposition 1.
Further, Osherson, Wilkie, Smith, Lopez, and Sha�r (1990) argue that an inductive argu-

ment is more credible if the conclusion is more speci�c (and more similar to the premise.).
Consider an example in Table 4. Here, 75 out of 80 subjects point to the second argument
as more credible.
This experiment di¤ers from the previous one because here, the conclusion concerns a

class of rather than a speci�c object. Nevertheless, conclusion speci�city is an application
of the Principle of Similarity (as formulated as, possibly a variation of, Proposition 1).

5.2. Premise diversity. The next experiment indicates that an inductive argument is more
credible if the premise is more diverse. Consider an example in Table 5. Here, 76 out of 80
subjects point to the �rst argument as more credible.8

The premise diversity is somehow surprising, given what has been said so far about
similarity-based reasoning. Nevertheless, it has a consistent explanation. Given that rhinoceroses
are known a priori to be similar to hippopotamuses, it is not unexpected that rhinoceroses and

8It is instructive to compare premise-diversity with an observation reported in Glazer and Rubinstein

(2001) that subjects believe that the counterargument to some thesis is more credible if the object is more

similar to the object in the original argument. It is di¢ cult to explain Glazer and Rubinstein�s phenomenon

in a Bayesian setting and Glazer and Rubinstein (2001) propose a game-theoretic explanation.
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Premise Hippopotamuses have a higher sodium concentration in their blood than humans.
Hamsters have a higher sodium concentration in their blood than humans.

Conclusion All mammals have a higher sodium concentration in their blood than humans.

Premise Hippopotamuses have a higher sodium concentration in their blood than humans.
Rhinoceroses have a higher sodium concentration in their blood than humans.

Conclusion All mammals have a higher sodium concentration in their blood than humans.
Table 5. Premise diversity

hippopotamuses have similar amounts of sodium. In particular, the fact about rhinoceroses
does not add to what is already known from the analogous statement about hippopotamuses.
On the other hand, the same statement about hamsters is more informative: it signals that
"high sodium concentration" is shared by other mammals.
As above, consider Example 1. Take any three objects o; oA; oB; and any property p: A

natural way to formalize the premise diversity is to ask how the probability that object o
shares property p with objects oA and oB depends on the similarity of oA and oB: is it true
that

! (� (o; p) = � (oA; p) j� (oA; p) = � (oB; p) and oA,oB are similar)

� ! (� (o; p) = � (oA; p) j� (oA; p) = � (oB; p) and oA,oB are not similar)? (5.1)

This inequality does not hold generally for all symmetric !.9 This is because the probabilities
in (5.1) are conditioned not only on the information about the similarity/diversity of the
premise, but also on the fact that two randomly chosen objects oA and oB are either similar
or diverse. It is a one of the applications of the Principle of Similarity that the probability
that o is similar to oA (with respect to property p) increases (or decreases) if the objects in
the population tend to be similar to each other (or di¤erent from each other).
To isolate the e¤ect of premise similarity/diversity, consider a slightly more complicated

question. Take �ve objects o; oA; oB; oC ; oD 2 O and two properties p; p0 2 P: For example,
property p may correspond to �higher sodium concentration in their blood than humans�,

9As a simple example, consider a distribution ! as an equal mixture of two distributions !1 and !1=2;

where !1 chooses all outcomes to be equal to 1 and !1=2 chooses i.i.d. outcomes of all instances to be equal

to 0 or 1 with the same probability. Then, the information that objects oA and oB are not similar makes

certain that outcomes are chosen from distribution !1=2 and the right-hand side of (5.1) is equal to
1
2 : On

the other hand, the left-hand side of (5.1) is strictly higher than 1
2 :
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Mice have a lower body temperature than humans

Bats have a lower body temperature than humans

Bats have a lower body temperature than humans

Mice have a lower body temperature than humans
Table 6. Premise-conclusion asymmetry

and property p0 may correspond to �living in Africa�. De�ne events:

P � = f� (oA; p0) = � (oB; p
0) 6= � (oC ; p

0) = � (oD; p
0)g

PS = f� (oA; p) = � (oB; p)g \ P �;
PD = f� (oA; p) = � (oC ; p)g \ P �:

Event P � de�nes two di¤erent pairs of similar objects foA; oBg and foC ; oDg : In event PS,
two similar objects oA and oB share an additional property p: I refer to evidence about
property p as a premise and to this event as a similar premise. In event PD, two di¤erent
objects oA and oC share property p. I refer to that event as a diverse premise.

Proposition 3. For any symmetric !;

! (� (o; p) = � (oA; p) jPS) � ! (� (o; p) = � (oA; p) jPD) :

The proof can be found in Appendix D. The Proposition compares the probability of the
fact that objects o and oA share property p conditional on similar or diverse premise: The
probability that o and oA share property p is higher when the premise is diverse.

5.3. Premise-conclusion asymmetry. Finally, I present an example of similarity-based
reasoning that cannot be captured in the model of this paper. Consider the inductive argu-
ments in Table 6. Osherson, Wilkie, Smith, Lopez, and Sha�r (1990) report that a majority
of students select the �rst argument as more credible.10 Following Rips (1975), they argue
that "mice" are more typical animals; hence it is more informative about properties shared
by general category of similar animals. "Bats" are exotic, and it is not surprising that they
have exotic properties.
No Bayesian model exhibits consistent asymmetry of this form. To see it, suppose that

the DM has a probability distribution over whether "mice" and "bats" have property p:

10The results seem to be very weak. In the �rst round of the experiment, 41 out of 80 students pointed to

the �rst argument and 39 pointed to the second. Only in the second round, when the subjects were explicitly

instructed "Although the arguments may seem similar, there is always a di¤erence in how much reason the

facts of an argument give to believe its conclusions", did 40 out of 60 students select the �rst argument.
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� 2 �
�
f0; 1gfM;Bg

�
: Then the conditional probabilities conditional on the premise in the

�rst and second argument are equal, respectively, to

� (y (M) = 1; y (B) = 1)

� (y (M) = 1)
and

� (y (M) = 1; y (B) = 1)

� (y (B) = 1)
:

In the benchmark case, the probabilities that "mice" and "bats" have property p should
be equal, � (y (M) = 1) = � (y (B) = 1). (One can think about it as an application of
the Principle of Insu¢ cient Reason: Notice that property p "have lower body temperature
than humans" seems to be exchangeable with its logical negation �p "have higher body
temperature than humans".) But then both conditional probabilities must be equal.

6. Extensions

In this Section, I discuss possible extensions of the model. Details of some of the general-
izations can be found in the previous version of the current paper Peski (2006).
Finite space of outcomes. So far, a state of the world has been de�ned as a mapping

� : X ! Y; where the space of outcomes Y = f0; 1g is binary. As a simple extension,
consider any �nite space Y: The results do not change and the proofs change in a predictable
way. For example, the prediction function in Section 4 should be rede�ned as a mapping
� : f1; :::; kg2 ! �Y:

Stochastic instance process. Suppose that instances are drawn from a stochastic distrib-
ution �X 2 �X1. Say that the su¢ cient data condition is satis�ed for �X if it is satis�ed
almost surely for each of the realizations. If one assumes that the path of instances x1; x2; ::::;
is drawn independently from the realization of the state of the world �; then all the results
hold �X-surely.
The independence of instance process and the state of the world achieves the following

goal. Consider a scientist who designs experiments, i.e. chooses the instance process, and
whose goal is not to predict well, but to �nd interesting observations. Such a scientist will
be interested mostly in outcomes of instances that are di¢ cult to predict. This is because
such outcomes are probably most interesting and studying them will increase the knowledge
of the scientist. The assumption makes such experiments impossible. I believe that the
assumption is su¢ cient for empirical (or any non-experimental) sciences.
The assumption also eliminates self-selection. For example, one can imagine that students

ask about their grades only if they are hopeful of getting a positive grade. However, allowing
for a possibility of self-selection should not a¤ect any of the results of this paper. Notice
that, if the DM cares only about predictions, self-selection, if biased in a consistent way,
only helps: it adds an additional possibility of inference of an outcome from the fact of the
query.
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Multiple dimensions of features. Suppose that the space of instances is equal to X =

X1 � ::: � XD; where XD is in�nite. So far I have assumed that D = 2: When D > 2; an
adequate version of the main result of this paper still holds. In particular, the categorization
algorithm categorizes not only each of D features, but also pairs of features, triples, ..., and
(D � 1)-tuples of features.
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Appendix A. Proof of Proposition 2

The proof relies on a well-known connection between entropy and Bayesian updating.
Some preliminary remarks are needed. Observe thatY

(x;y)2d
� (c (x)) (y)

=
Y
k1;k2

��
�
�
k1; k2

�
(1)
��(k1;k2jc;d) �

�
�
k1; k2

�
(0)
�(1��(k1;k2jc;d))�n(k1;k2jc;d)

= exp

0@X
k1;k2

n
�
k1; k2jc; d

� � (k1; k2jc; d) log (� (k1; k2) (1))
+ (1� � (k1; k2jc; d)) log (� (k1; k2) (0))

!1A
� exp (� jdjE (cjd)) ;

because the expression in the third line is maximized when � (k1; k2) (1) = � (k1; k2jc; d) : For
any database d, and any assignment c; let C (cjd) be the set of all assignments that coincide
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with c on all observations in d :

C (cjd) :=
�
c0 2 Ck : c (x) = c0 (x) 8 (x; y) 2 d

	
:

Sets C (cjd) induce partition space Ck into exactly kd1+d2 disjoint sets. By the de�nition of
the uniform distribution 	kC ; for any assignments c and c

0;

	kC (C (cjd)) = k�d
1�d2 :

Also, note that  k (c; �jd) depends on assignment c only up to the observations in database
d : for any c0 2 C (cjd) ; any � 2 Rk;

 k (c; �jd) =  k (c0; �jd) :

By the above,Z
fc:E(cjdt)>Emin(dt)+"g�Rk

Y
(x;y)2dt

� (c (x)) (y) d	k (c; �) � exp (�tEmin (dt)� "t) :

Find an assignment cmax that minimizes the entropy in database dt, i.e. E (cmaxjdt) =
Emin (d) : De�ne prediction function �max such that for each category k1; k2;

�max
�
k1; k2

�
(1) = �

�
k1; k2jcmax; dt

�
:

Denote the set of prediction functions

Rt :
�
� 2 Rk : 8k1;k28y�

�
k1; k2

�
(y) � e�

"
2�max

�
k1; k2

�
(y)
	
:

By the de�nition of the uniform distribution 	kR;

	kR (Rt) �
�
1

2

�
1� e�

"
2

��k2
:

Using the above calculations, for any prediction function � 2 Rt,Y
(x;y)2dt

� (cmax (x)) (y) � exp
�
�t
�
Emin (dt) +

"

2

��
:

Hence, Z
fc:E(cjdt)�Emin(dt)+"g�Rk

Y
(x;y)2dt

� (c (x)) (y) d	k (c; �)

�
Z

fc2C(cmaxjd)g�Rt

Y
(x;y)2dt

� (c (x)) (y) d	k (c; �)

� exp
�
�t
�
Emin (dt) +

"

2

��
k�d

1
t�d2t

�
1

2

�
1� e�

"
2

��k2
:



CATEGORIZATION 27

Observe that

lim
t!1

R
fc:E(cjdt)�Emin(dt)+"g�Rk

 k (c; �jdt) d	k (c; �)R
fc:E(cjdt)>Emin(dt)+"g�Rk

 k (c; �jdt) d	k (c; �)

= lim
t!1

R
fc:E(cjdt)�Emin(dt)+"g�Rk

Y
(x;y)2dt

� (c (x)) (y) d	k (c; �)R
fc:E(cjdt)>Emin(dt)+"g�Rk

Y
(x;y)2dt

� (c (x)) (y) d	k (c; �)

�
�
1

2

�
1� e�

"
2

��k2
lim
t!1

exp
�
�t
�
Emin (dt) +

"
2

��
k�d

1
t�d2t

exp (�tEmin (dt)� "t)

=

�
1

2

�
1� e�

"
2

��k2
lim
t!1

exp

�
t

�
"

2
� (d

1
t + d2t )

t
log k

��
=1;

where the limit is a consequence of the su¢ cient data condition. This �nishes the proof of
the Proposition.

Appendix B. Representation of symmetric distributions

B.1. Representation theorem. In this part of the Appendix, I present a useful represen-
tation of a symmetric distribution. This can be described as follows. For any symmetric !
there exists a measurable function q : [0; 1]3 ! � f0; 1g which can be used to generate the
state of the world in the following procedure:

� draw variable �? from the uniform measure on interval [0; 1] ;
� for each feature i; for any xi 2 X i; draw independently �i (xi) from measure U [0; 1] ;
� for each instance (x1; x2) 2 X; draw independently � (x1; x2) from distribution q (�?; �1 (x1) ; �2 (x2)) :

The Representation Theorem says that the distribution of � generated in such a procedure
is equal to !: Variables �i (xi) are interpreted as categories of features xi, or, alternatively,
shocks to the outcomes of instances that are feature speci�c. Variable �? can be interpreted
as an aggregate shock to the outcomes of all instances.
Formally, let � := [0; 1]� [0; 1]X

1

� [0; 1]X
2

: I refer to � as the space of auxiliary variables
with a typical element � 2 �: For any x 2 X; denote

� (x) =
�
�?; �1

�
x1
�
; �2
�
x2
��
2 [0; 1]3 :

� (x) is equal to a triple of an auxiliary variable �?; an auxiliary variable assigned to feature
x1 and an auxiliary variable assigned to feature x2. Let � be a measure on � de�ned as the
product of independent uniform measures on the interval [0; 1].
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Theorem 2 (Representation of Invariant Distributions). For any symmetric distribution
! 2 ��; there is a distribution !� 2 �(�� �) ; such that
(1) marg� !

� = !;

(2) marg� !
� = �;

(3) there exists a measurable function q : [0; 1]3 ! � f0; 1g ; such that for any x

q (� (x)) = !� (� (x) j� (x))

= !�
�
� (x) j�; f� (x0)gx0 6=x

�
;

i.e., conditional distribution of � (x), conditional on the realization of all auxiliary
variables � and all other outcomes � (x0) ; x0 6= x; depends only on the realization of
� (x) :

Proof. The Theorem is a restatement of Corollary 7.23 of Kallenberg (2005). This result was
originally proven in Aldous (1981) and Hoover (1982). �

Say that measure !� represents distribution !. The representing measure is not unique,
but the choice of representation is not important for the proof as long as it is �xed. From
now on, instead of writing !�; I always write !: The second property says that variables

�?; �1
�
x1
�
x12Xi ; �

2
�
x2
�
x22Xi

are independent and uniformly distributed on the interval [0; 1]. The third property says
that, conditional on the realization of � (x), no additional information (apart from observing
outcome � (x) itself) a¤ects the prediction of outcome � (x) . In other words, variable � (x)
is a su¢ cient statistic for outcome � (x) :
In order to shorten the notation, write E�; E�; E�j� to denote expectations with respect to

� 2 �; � 2 �; and, � conditional on the realization of �: In particular,

E�;� = E�E�j�:

B.2. Approximation. By the above Theorem, each symmetric distribution can be rep-
resented by in�nitely many categories from interval [0; 1] : It turns out that each such a
distribution can be approximated by distributions generated only with �nitely many cate-
gories.
Divide [0; 1) into k intervals of equal length and for any z 2 [0; 1) ; let Ak (z) 2 f1; :::; kg

be the index of the interval that covers z, z 2
h
Ak(z)�1

k
; A

k(z)
k

i
: For any (z0; z1; z2) 2 [0; 1]3 ;

de�ne

qk (z0; z1; z2) := Ez01;z02
�
q (z0; z

0
1; z

0
2) jAk (zi) = Ak (z0i) for i = 1; 2

�
;



CATEGORIZATION 29

where the expectation is taken with respect to the uniform measure on [0; 1]2 : Hence,
qk (z0; z1; z2) is equal to the expectation of q (z0; z01; z

0
2) with respect to i.i.d. uniformly dis-

tributed z01 and z
0
2; conditional on the fact that A

k (zi) = Ak (z0i) for i = 1; 2:
Let the expected di¤erence between q (z) and qk (z) be denoted as

�k := Ez


qk (z)� q (z)



 ; (B.1)

where the expectation is taken with respect to the uniform measure on [0; 1]3 : By standard
arguments based on the Martingale Convergence Theorem11,

lim
k!1

�k = 0: (B.2)

Appendix C. Proofs of Theorem 1

The proof of the Theorem is closely related to the much more general argument from
Lehrer and Smorodinsky (1996). In order to facilitate the comparison between the two
results, I restate the de�nitions from Lehrer and Smorodinsky (1996). From now on, �x an
instance process (xt) with the su¢ cient data condition.
Say that the categorization algorithm almost weakly merges to (symmetric) measure ! if

lim
k!1

lim
t!1

1

t

X
s<t
klC (ds; xs)� ! (� (xs) = :j� (x1) ; :::� (xs�1))k = 0; !-almost surely.

(C.1)
(Here, ! (� (xs) = :j� (x1) ; :::� (xs�1)) is the conditional distribution of outcome � (xs) given
the realization of outcomes � (x1) ; :::; � (xs).) Additionally, for any two (not necessarily
symmetric) distributions �; �0 2 ��; de�ne the relative entropy of �0 with respect to � at �
as

h�
0

� (�) = lim inf
t!1

1

t
log

�0 (� (x1) ; :::; � (xt))

� (� (x1) ; :::; � (xt))
:

It follows from standard arguments that h�
0
� (�) � 0; �-almost surely: Lehrer and Smorodin-

sky (1996) (Theorem 1; see also Proposition 1 of Lehrer and Smorodinsky (2000)) show that
if

h!C! (�) � 0; !-almost surely, (C.2)

then the categorization algorithm almost weakly merges.
I was not able to establish the almost sure bound (C.2). Instead of almost weak merging,

Theorem 1 asserts a weaker notion of the convergence in expectations. Nevertheless, the
strategy of the proof is analogous: In order to show the convergence of predictions in the

11More precisely, the Martingale Convergence Theorem implies that limk!1�
2k = 0: The convergence

(B.2) follows from the fact that functions qk; q are bounded by 1, which implies that for any k < m;

�m � �k + k
m ; which in turn implies that for all k; lim supm!1�

m � �2k : I am grateful to the referee for

pointing the omission in the argument.
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expectation, we establish an expectation version of convergence C.2. The latter step is based
on the Representation Theorem 2.
Formally, for any two (not necessarily symmetric) distributions �; �0 2 ��; de�ne an

alternative ("exectation") version of the relative entropy

e�
0

� (t) = E�
1

t
log

�0 (� (x1) ; :::; � (xt))

� (� (x1) ; :::; � (xt))
:

Also, de�ne the t-period average distance between predictions

d�
0

� (t) =
1

t
E�
X
s�t
k�0 (� (xs) = :j� (x1) ; :::; � (xs�1))� � (� (xs) = :j� (x1) ; :::; � (xs�1))k2 :

(Recall that kp� qk is the L2-distance between measures p; q 2 � f0; 1g). The relationship
between the two distances is captyured by the followng result:

Lemma 1. 8e�0� (t) � �d�
0
� (t).

Next, I use Theorem 2 to �nd a represention of distribution ! : Assume that ! is de�ned
over outcome functions � 2 � as well as auxiliary variables �, that the distribution over
auxiliary variables � is equal to �, and that, conditionally on the realization of �; outcomes
� (x) are independenly drawn from distrbution q (� (x)) 2 � f0; 1g.

Lemma 2. For each " > 0; there exists k such that lim inft!1E�d!
k

!(:j�) (t) � �": Also,
lim inft!1E�d

!C
!(:j�) (t) = 0: (Here, E� is the expectation with respect to the uniform measure

on the auxiliary variables �:)

Lemma 3. Conditionally on �-almost all realizations of auxiliary variables �, limt!1d
!C
!(:j�) (t) =

0:

It follows from Lemmas 1 and 3that for any measure �; conditionally on �-almost all
realizations of auxiliary variables �

lim sup
t!1

(d�! (t))
2 � �8 lim inf

t!1
e�! (t) = �8 lim inf

t!1

�
e�!(:j�) (t)� e!!(:j�) (t)

�
= �8 lim inf

t!1
e�!(:j�) (t) :

The Theorem follows from the above inequality and Lemma 2.

C.1. Proof of Lemma 1. We start with a preliminary result:

Lemma 4. For any p; q 2 � f0; 1g ;X
y=0;1

q (y) (log p (y)� log q (y)) � �1
8
kp� qk2 :
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Proof. Fix x 2 (0; 1) : Consider function

fx (d) = x log (x+ d) + (1� x) log (1� x� d)� x log x� (1� x) log (1� x)

for �x < d < 1 � x: Then, f (0) = f 0 (0) = �0; and f 0 (d) � �1
2
d: It follows that f (d) �

�1
4
d2: Now, notice thatX

y=0;1

q (y) (log p (y)� log q (y))

� fq(0) (p (0)� q (0)) � �1
4
(p (0)� q (0))2 = �1

8
kp� qk2 :

�

By the above Lemma, for each s;

E�0(�(xs)=:j�(x1);:::;�(xs�1))

 
log �0 (� (xs) = :j� (x1) ; :::; � (xs�1))
� log �0 (� (xs) = :j� (x1) ; :::; � (xs�1))

!

� �1
8
k�0 (� (xs) = :j� (x1) ; :::; � (xs�1))� � (� (xs) = :j� (x1) ; :::; � (xs�1))k2 :

Hence, by the Law of Iterated Expectations and the Jensen�s nequality,

e�
0

� (t) =
1

t
E� log

�0 (� (x1) ; :::; � (xt))

�0 (� (x1) ; :::; � (xt))

=
1

t
E�
X
s�t

E�0(�(xs)=:j�(x1);:::;�(xs�1))

 
log �0 (� (xs) = :j� (x1) ; :::; � (xs�1))
� log �0 (� (xs) = :j� (x1) ; :::; � (xs�1))

!

� �1
8
E�
X
s�t
k�0 (� (xs) = :j� (x1) ; :::; � (xs�1))� � (� (xs) = :j� (x1) ; :::; � (xs�1))k2

= �1
8
d�

0

� (t) :

C.2. Proof of Lemma 2. We start with the �rst part of the result. Take any " > 0 and
�nd � > 0 so that

2� log � � 100� � �".

Recall the de�ntion of the approximation qk and �k from Appendix B.2. Fnd k su¢ ciently
high so that p

�k < �: (C.3)

For each realization �? 2 [0; 1], de�ne

B
�
�; �?

�
=

(
� 2 Rk :

supz1;z22[0;1]


qk (�?; z1; z2)� �

�
Ak (z1) ; A

k (z2)
�

 � 2�;

infz1;z22[0;1] infy �
�
Ak (z1) ; A

k (z2)
�
(y) � �:

)
:



32 MARCIN P ¾ESKI

B (�) is the set of prediction functions � such that prediction of qk (�?; :; :) and �
�
Ak (:) ; Ak (:)

�
di¤er by at most 2� and that � assigns probability at least � to each outcome. Because
qk (�?; :; :) is a step function that is constant on the parttion of [0; 1]2 into k2 "squares," and
because 	kR is the uniform measure on Rk; the 	kR-probability of set B (�; �

?) is bounded
from below by

	kR
�
B
�
�; �?

��
� �k

2

: (C.4)

For each x; de�ne c� (x) =
�
Ak (�1 (x)) ; A

k (�2 (x))
�
: Then, c� 2 Ck. For each database

d, let C (d) be the set of assignments that coincide with c 2 Ck on all observations in d
(recall the de�nition from the proof of Proposition 2). The "prior" probability of set C (d)
is bounded from below by

	kC (C (d)) �
�
1

k

�d1+d2
; (C.5)

where d1 + d2 is the total number of distinct features present in the database d: Inequalities
(C.4) and (C.5) imply that

	k
�
B
�
�; �?

�
� C (d)

�
� �k

2

�
1

k

�d1+d2
,

and that for each t;

log!k (� (x1) ; :::; � (xt))

� log
�
	k (B (�)� C (dt))

�
+ min
�2B(�;�?);c2C(dt)

X
s�t
log � (c1 (xs) ; c2 (xs)) (� (xs))

�
�
d1t + d2t

�
log

1

k
+ k2 log �

+
X
s�t

min
�2B(�;�?)

log
�
�
�
Ak (�1 (xs)) ; A

k (�2 (xs))
�
(� (xs))

�
: (C.6)

De�ne random variable

It = 1
�

qk (� (xt))� q (� (xt))



 > �
	
:

Because of the de�nition of � (and �k), the expectation of It is bounded by

E!It � �:

For each s and y; let

�s
�
y; �?

�
= min

�2B(�;�?)

�
�
�
Ak (�1 (xs)) ; A

k (�2 (xs))
�
(y)
�
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Then,

�s
�
y; �?

�
� �, and

q (� (xs)) � �s
�
y; �?

�
+ 3� whenever It = 0:

In particular, if E!(:j�;dt) is the expectation with respect to distribution ! conditionally on
the realization of auxiliary variables � and database dt, then

E!(:j�;dt)
�
log �t

�
� (xt) ; �

?�� log q (� (xt)) (� (xt))�
� 2It log � + (1� It)

X
y=0;1

q (� (xs)) (y)

�
log

�t (� (xt) ; �
?)

q (� (xt)) (� (xt))

�

� 2It log � �
X
y=0;1

�
�s
�
y; �?

�
+ 3�

�
log

�
1 +

3�

�s (y; �?)

�

� 2It log � �
X
y=0;1

�
�s
�
y; �?

�
+ 3�

�� 3�

�s (y; �?)

�
� 2It log � � 2 (3� + 9�)
� 2It log � � 100�: (C.7)

(Notice that random variable It is determined by the realization of � and database dt.)
Because of (C.6), (C.7), the su¢ cient data condition, and the choice of �;

lim inf
t!1

E�e
!k

!(:j�)

= lim inf
t!1

1

t
E!

 
log!k (� (x1) ; :::; � (xt))�

X
s�t
log q (� (xs)) (� (xs))

!
(C.8)

� lim inf
t!1

1

t
E!
X
s�t

�
log �s

�
� (xs) ; �

?�� log q (� (xs)) (� (xs))�
� lim inf

t!1

1

t
E!
X
s�t
(2It log � � 100�) � 2� log � � 100� � �". (C.9)

The second part of the Theorem follows from the �rst part and the fact that because
!C = �k!

k + (1� �k)!�k for some �k > 0 and some probability distribution !�k;

e!C!(:j�) (t) �
log�k
t

+ e!
k

!(:j�) (t) .

C.3. Proof of Lemma 3. Because q (� (xs)) is the conditional distribution of outcome
� (xs) given � and � (x1) ; :::; � (xs�1) ; and ! (� (xs) = :j� (x1) ; :::; � (xs�1)) is the conditional
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distribution given � (x1) ; :::; � (xs�1), standard convexity arguments show that

! (� (xs) = :j� (x1) ; :::; � (xs�1))
2 arg max

f :(X�Y )s�1!�f0;1g
E! kq (� (xs)) (� (xs))� f (ds) (� (xs))k :

The claim follows from Lemma 1.

C.4. Proof of Theorem 1. The second part of Theorem follows from the above Lemmas.
The proof of the �rst part of the Theorem follows from almost the same argument. The only
di¤erence is that inequality (C.6) is replaced by its analog that does not contain log�k and
that inequalities (C.9) can be restated with !k instead of !C and they contain additional
term that disappears with k:

Appendix D. Proof of Proposition 3

The proof relies on two Lemmas:

Lemma 5. There exists x � 0, such that
! (� (o; p) = � (oA; p) ; PS)

! (PS)
=
! (� (o; p) = � (oA; p) ; PD) + x

! (PD) + 2x
:

Proof. The proof relies on the Representation Theorem. Let ! 2 �(�� �) be a representing
measure and let q : [0; 1]3 ! � f0; 1g be a prediction function from the Theorem. Denote
an auxiliary variable

V =
�
�?; �P (p) ; �P (p

0)
	
:

Variable V is distributed uniformly on [0; 1]3. For any realization of V , any y� 2 f0; 1g ;
denote pV ; q

y�

V 2 � f0; 1g : for any y 2 f0; 1g,

pV (y) := E�Oq
�
�?; �P (p

0) ; �O
�
(y) ;

qV (yjy�) :=
E�O (q (�

?; �P (p
0) ; �O) (y

�)) (q (�?; �P (p) ; �O) (y))

E�O(oA)q (�
?; �P (p0) ; �O) (y�)

;

qV (y) :=
X
y�

pV (y
�) qV (yjy�) ;

dV (yjy�) := qV (yjy�)� qV (y) :

Here, pV (y�) is the probability that the outcome of (oA; p0) is equal to y� conditional on the
realization of variable V ; qV (yjy�) is the probability that the outcome of (oA; p) is equal to
y conditional on the outcome of (oA; p0) being equal to y� and the realization of V ; qV (y) is
the probability that outcome of (oA; p) is equal to y conditional on the realization of V . For
any function f : [0; 1]3 ! R; let

E�f (V ) := EV f (V ) p
2
V (0) p

2
V (1) ;



CATEGORIZATION 35

where EV is an expectation with respect to the realization of variable V 2 f0; 1g (hence,
with respect to the uniform measure on [0; 1]3).
The subsequent observations are useful in the rest of the proof:X

y

qV (y) = 1 and dV (0jy�) + dV (1jy�) = 0 for each y� = 0; 1; (D.1)

X
y;y�

q2V (y
�) (y) =

X
y;y�

(qV (y) + dV (yjy�))2

= 2
X
y

q2V (y) + 2
X
y�

d2V (0jy�) + 2
X
y;y�

qV (y) dV (yjy�) ; (D.2)

X
y;y�

q2V (yjy�) qV (y) =
X
y;y�

(qV (y) + dV (yjy�))2 qV (y)

= 2
X
y

q3V (y) +
X
y�

d2V (0jy�)
 X

y

qV (y)

!
+ 2

X
y;y�

q2V (y) dV (yjy�)

= 2
X
y

q3V (y) +
X
y�

d2V (0jy�) + 2
X
y;y�

q2V (y) dV (yjy�) ; (D.3)

qV (yj0) qV (yj1) = q2V (y) +
X
y�

qV (y) dV (yjy�) + dV (yj0) dV (yj1) : (D.4)

Because of (D.1), dV (0j0) dV (0j1) � 0. Denote

x := E�V
X
y�

�
dy

�

V (0)
�2
� 2E�V dV (0; 0) dV (1; 0) � 0:

By the Representation Theorem and (D.2),

! (PS)

= ! (� (oA; p) = � (oB; p) ; � (oA; p
0) = � (oB; p

0) 6= � (oAC ; p
0) = � (oD; p

0))

=
X
y;y�

! (� (oA; p) = � (oB; p) = y; y� = � (oA; p
0) = � (oB; p

0) 6= � (oAC ; p
0) = � (oD; p

0))

= EV p
2
V (0) p

2
V (1)

 X
y;y�

q2V (yjy�)
!

= E�V

 
2
X
y

q2V (y) + 2
X
y�

d2V (0jy�) + 2
X
y;y�

qV (y) dV (yjy�)
!

= E�V

 
2
X
y

q2V (y) + 2
X
y;y�

qV (y) dV (yjy�)
!
+ 2E�V

X
y�

d2V (0jy�) :
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By (D.3),

! (� (o; p) = � (oA; p) ; PS)

= ! (� (o; p) = � (oA; p) = � (oB; p) ; � (oA; p
0) = � (oB; p

0) 6= � (oAC ; p
0) = � (oD; p

0))

= EV p
2
V (0) p

2
V (1)

 X
y;y�

q2V (yjy�) qV (y)
!

= E�V

 
2
X
y

q3V (y) + 2
X
y;y�

q2V (y) dV (yjy�)
!
+ E�V

X
y�

d2V (0jy�) :

By (D.4),

! (PD)

= ! (� (oA; p) = � (oC ; p) ; � (oA; p
0) = � (oB; p

0) 6= � (oAC ; p
0) = � (oD; p

0))

= 2
X
y

EV p
2
V (0) p

2
V (1) qV (yj0) qV (yj1)

= E�V

 
2
X
y

q2V (y) + 2
X
y;y�

qV (y) dV (yjy�)
!
+ 4E�V dV (0j0) dV (0j1) ;

! (� (o; p) = � (oA; p) ; PD)

= ! (� (o; p) = � (oA; p) = � (oC ; p) ; � (oA; p
0) = � (oB; p

0) 6= � (oAC ; p
0) = � (oD; p

0))

= 2EV p
2
V (0) p

2
V (1)

X
y

qV (yj0) qV (yj1) qV (y)

= E�V

 
2
X
y

q3V (y) + 2
X
y;y�

q2V (y) dV (yjy�)
!
+ 2E�V dV (0j0) dV (0j1) :

The above computations lead to the thesis of the Lemma. �

Lemma 6. 2! (� (o; p) = � (oA; p) ; PD) � ! (PD) :

Proof. By the computations from the previous Lemma,

2! (� (o; p) = � (oA; p) ; PD)� ! (PD)

= 2EV p
2
V (0) p

2
V (1)

 X
y

qV (yj0) qV (yj1) (2qV (y)� 1)
!
:
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Because qV (0jy�) = 1� qV (1jy�) and qV (0) = 1� qV (1) ; it must be thatX
y

qV (yj0) qV (yj1) (2qV (y)� 1)

= (2qV (0)� 1) (qV (0j0) qV (0j1)� (1� qV (0j0)) (1� qV (0j1)))
= (2qV (0)� 1) (qV (0j0) + qV (0j1)� 1) :

�

By the �rst Lemma, either

! (� (o; p) = � (oA; p) ; PS)

! (PS)
� 1

2
and

! (� (o; p) = � (oA; p) ; PD)

! (PD)
� 1

2
or

! (� (o; p) = � (oA; p) ; PS)

! (PS)
<
1

2
and

! (� (o; p) = � (oA; p) ; PD)

! (PD)
<
1

2
:

Because of the second Lemma and the fact that

! (� (o; p) = � (oA; p)) = ! (� (o; p) = � (oA; p) ; PS) + ! (� (o; p) = � (oA; p) ; PD) ;

the second pair of inequalities is impossible. But then, by the �rst Lemma,

! (� (o; p) = � (oA; p) jPS) =
! (� (o; p) = � (oA; p) ; PS)

! (PS)

� ! (� (o; p) = � (oA; p) ; PD)

! (PD)
= ! (� (o; p) = � (oA; p) jPD) :
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