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This is Online Appendix to “Reputational Bargaining with Incomplete Information
about Preferences”. We study a two-sided uncertainty version of the war-of-attrition
model from “Reputational Bargaining with Incomplete Information about Preferences”.
There are two main results. First, we construct a two-type example to show that the
war-of-attrition may have multiple equilibria. Second, we show that when there is con-
tinuum of types, and players demand linear menus, there is essentially one equilibrium
of the war-of-attrition.

The Appendix is complete: it contains the description of the model, all required
notations, and the results.

1. Model

Two players, Alice and Bob, i = A,B, bargain over a heterogeneous pie with
N = 2 parts: chocolate and vanilla. An allocation is defined as (xA, xB) ∈ X :={

(a, b) ∈ [0, 1]N : an + bn = 1 for each n
}
. Each player has a linear preference over al-

locations ui ∈ U :=
{
u ∈ RN+ : ∑un = 1

}
. (The normalization is w.l.o.g.) The pay-

offs from allocation x is equal to uA (x) = ∑
n u

n
Ax

n
A for Alice type uA and uB (x) =∑

n u
n
Bx

n
B = 1−∑n u

n
Bx

n
A for Bob’s type uB .

To simplify the exposition, we adopt the notation that for each player i, a tuple
with a subscript(a, b)i denotes an allocation x such that xi = (a, b). Thus, (a, b)i =
(1− a, 1− b)−i denote the same allocation.

The bargaining takes form of a war of attrition. In alternating periods (starting
with player k = A,B in period 1), player i either continues or concedes. If he or
she continues, the game moves to the next period and the other player. If she or he
concedes, she must choose an allocation x from a (closed) menu of allocationsm−i ⊆ X.
We refer to m−i as the bargaining position of player −i.
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Player i start the war-of-attrition knowing their own preferences, and with beliefs
π−i ∈ ∆U−i about the preferences of her opponent, where U−i = suppπi ⊆ U is the
support of the beliefs. Additionally, and independently from the type distribution,
each player is either strategic with probability 1−λ or stubborn with a strictly positive
probability λ ∈ (0, 1). The stubborn player never concedes. The role of the stubborn
types is to pin down the equilibrium; it is well known that, without them, the war-
of-attrition games have a continuum of equilibria. The players maximize the expected
utility and they discount future with a common factor e−∆, where ∆ represents the
length between two subsequent decision points.

Let Ti be the set of periods in which player i makes decision in the war-of-attrition.
A strategy of the (strategic type of) player i is a pair σi =

(
σTi , σ

M
i

)
of measurable

stopping time σTi : U → ∆Ti and a choice σMi : U → ∆m−i. A belief of player −i is a
pair of mappings λi : Ti → [0, 1] and µi : Ti → ∆Ai, with the interpretation that λi (t)
is the probability at the beginning of the period that player i is stubborn, and µi (.|t)
is the probability distribution over the (strategic) types of player i who yield in period
t ∈ Ti. Let Uσ

i (ui) denote the expected payoff of player i type ui ∈ Ui.

2. Two-type example

We describe an example with two types, and with two different equilibria.
Fix two constants a, b such that

a

a+ 1 < b < a <
1
2 . (2.1)

For each player i, let

m−i = {(a, 0)i , (0, b)i}

be the menu of choices when player i concedes. Each player has two types uc = (1, 0)
and uv = (0, 1) and both types have a positive probability. The assumptions (2.1)
imply that each player’s type prefers to win regardless of the choice of the other player.
See Figure 2.1a. The allocation xi = (a, b)i is defined as the unique allocation such
that the two types of player i are indifferent between their optimal concession allocation
from menu m−i and xi. We refer to xi as the indifference point.
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Proposition 1. There exists π∗ ∈ (0, 1) such that for each i, if π
(
uv−i

)
≥ π∗, then

there is a sequence of equilibria of the above game as λ→ 0,∆→ 1 such that player i
concedes with a probability arbitrarily close to 1 in his first period of action.

The reason for the multiplicity of equilibria is the lack of natural sorting to determine
which types concede first. In the proof, we construct an equilibrium, in which the last
types to concede are uv−i and uci ; if the roles i and −i are exchanged, a different pair of
types ends the game.

2.1. Proof. We briefly describe the construction. To fix attention, assume that i = A.
The equilibrium has three phases:

(1) Atom concession. In its first period of action t0A, each type u of Alice concedes
with a positive probability. If Alice moves second, then Bob does not concede
in his first period. For each subsequent period after the initial concession,
the expected continuation payoff of each type of each player is equal to her
immediate concession payoff.

(2) War of attrition with both sides active. In the intermediate phase, t0i < t < t1i ,
each type u = uci , u

v
i of each player i concedes with a positive probability. The

rates are chosen so that each type is indifferent between waiting and conceding.
(3) War of attrition with one side active. In the last phase of the game, t1A < t <

T ∗A, the two remaining types uvB and ucA concede at constant rates that make
the opponent type indifferent between conceding and waiting. The concession
rate of Bob is higher. The phase ends when the strategic types fully reveal
themselves.

Next, we flesh out the details, starting from the end: Let F k
j (t) denote the probability

that type ukj survives till period t.
(1) War of attrition with one sides active. In the last phase of the game, t1i < t <

T ∗i , the two remaining types uvB and ucA concede at constant rates that make the
opponent type indifferent between conceding and waiting. One can calculate
using Lemma 6 that the concession rates are equal to ,

p2
A =

(
e∆ − e−∆

) 1
1
b
− e−∆ and p2

B =
(
e∆ − e−∆

) 1
1
a
− e−∆ .

where the approximation is when ∆ → 0. Here, 1
b
is the strength of type uvB

facing ucA (winning payoff is 1 and the concession payoff is b); analogously, 1
a
is
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0i

1i

chocolate

vanilla

m−i

(a, 0)

(0, b) xi

uci

uvi

mi

(1− a, 1)

(1, 1− b)
w−i

(a) Example with two
types for each player.

m−i

y2
i

y1
i

mi

0i

1i

x1

x2

a∗i

a∗−i

(b) Theorem 1.

the strength of type ucA facing uvB. The concession rate of Bob is higher.
Importantly, the two concession rates are too slow for the other two types (uvA
and ucB)

p2
A <

(
e∆ − e−∆

) 1
1−a
a
− e−∆ and p2

B <
(
e∆ − e−∆

) 1
1−b
b
− e−∆ ;

each of them would prefer to concede immediately. (To see it, notice that type
ucB winning payoff against ucA is equal to 1 − a. Hence, the strength of ucB is
equal to 1−a

a
. ) This ensures that none of those two types has a profitable

deviation to reach the third phase. We have

FB
(
t1B + 1

)
= F v

B

(
t1B + 1

)
=
(
1− p2

B

)− 1
2(T ∗B−t1B)

λ− λ,

FA
(
t1A + 1

)
= F c

A

(
t1A + 1

)
=
(
1− p2

A

)− 1
2(T ∗A−t1A)

λ− λ,

When ∆→ 0, this is approximately equal to

Fj
(
t1j + 1

)
+ λ ≈ e−γ2

j (T ∗−t1j)∆λv.

where γ2
A = b

1−b <
a
a−1 = γ2

B.
The phase ends when the strategic types fully reveal themselves.

(2) War of attrition with both sides active. In the intermediate phase, t0i < t < t1i ,
each type u = uci , u

v
i of each player i concedes with a positive probability. The
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rates are chosen so that each type is indifferent between waiting and conceding.
In order to satisfy the indifference condition, the average winning allocation of
player j conditionally on −j concession must lie on the ray that connects the 0
payoff and the indifference point:

wj = γxj = α (1, 1− b)j + (1− α) (1− a, 1)j

for some γ > 1 and α ∈ (0, 1) (see Figure 2.1a). It follows that

α = 1
2 + 1

2

(1
b
− 1
a

)
.

By Lemma 6, the concession rate of each player is equal to

p1 =
(
e∆ − e−∆

) 1
1
2a + 1

2b −
1
2 − e−∆ .

(Note that 1
2a + 1

2b −
1
2 = w

(c)
j

a
= w

(v)
j

b
is equal to the strength of type ucj and/or

uvj who wins with allocation wj.) In order to ensure that the average concession
allocation is equal to wj, the types must concede with probability p1

j

(
uk
)

=
αkp1, where

αk =

α, if k = v,

1− α, if k = c.

Hence,

Fj
(
t0j + 1

)
+ λ =

(
1− p1

)− 1
2(t1j−t0j)

λ
(
Fj
(
t0j + 1

)
+ λ

)
≈ e−

1
2γ

1(t1j−t0j)∆− 1
2γ

2
j (T ∗−t1j)∆λ. (2.2)

Moreover, because F k
j (t) = F k

j (t− 2)− αkp1Fj (t), it is easy to check that for
each t > t0j ,

F k
j (t− 2)
Fj (t− 2) − α

k
(
1− p1

)
= 1

1− p1

(
F k
j (t)
Fj (t) − α

k
(
1− p1

))
.



6 MARCIN PĘSKI

Hence,

F k
j (t0A + 1)
Fj (t0A + 1) =αk

(
1− p1

)(
1−

(
1− p1

)− 1
2(t1j−t0j)−O(1)

)

+
(
1− p1

)− 1
2(t1j−t0j)−O(1) F k

j

(
t1j
)

Fj
(
t1j
) ,

where O (1) ≤ 1. If we take γ1 = 2
1
a

+ 1
b
−3 , the latter is approximately equal to

F k
j (t0A + 1)
Fj (t0A + 1) ≈ αk

(
1− e−γ1(t1j−t0j)∆

)
+ e−γ1(t1j−t0j)∆1(k,j)∈{(c,A),(v,B)}. (2.3)

The end date of the phase, t1i , is chosen as the last period when types uvA
for Alice and ucB for Bob concede with a positive probability. (To make sure
that it is possible, we need to assume that the initial probability of type uvB is
sufficiently high.)

(3) Atom concession. In its first period of action t0A, each type u of Alice concedes
with a positive probability 1 − F k

A (t0A + 1). If Alice moves second, then Bob
does not concede in his first period. For each subsequent period after the initial
concession, the expected continuation payoff of each type of each player is equal
to her immediate concession payoff.

Let X1 =
(
t1j − t0j

)
∆ and X2 =

(
T ∗ − t1j

)
∆ for some j (neither of the two quantities

depends on j but for more that O (∆)). It follows from (2.3) implies that

π (ucB) ≈ αc
(
1− e−X2)

.

Hence, (2.3) allows to determine X2 if π (ucB) ≤ 1 − π∗ and π∗ > α. Further, (2.2)
implies that

X1 ≈ −2 1
γ1 logλ−

1
γ1γ

2
BX

2.

This makes sure that the probabilities add up for Bob. For Bob, let ρ = γ2
A/γ

2
B < 1.

Then, (2.2) implies that

FA
(
t0A + 1

)
+ λ ≈ e− 1

2γ
1X1e− 1

2γ
2
AX

2
λ

≈ e− 1
2γ

1X1 (e− 1
2γ

2
BX

2
λ
)ρ
λ1−ρ (2.4)

≈ e− 1
2γ

1X1(1−ρ)λ1−ρ,
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where in the last equality we used the fact that e− 1
2γ

1X1e− 1
2γ

2
BX

2
λ = 1. Hence, for

appropriately small λ, FA (t0A + 1) < mink πA
(
ukA
)
. This verifies that the probabilities

add up for Alice as well.

3. Continuum types

Next, we assume that players bargaining positions take form of linear menus: mi =
{x : ψ−i (x) ≤ v−i} for some preference ψ−i ∈ U−i and v−i > 0 and each i.1 Additionally,
we make two assumptions. The first assumption ensure that the beliefs about i’s types
are sufficiently regular in the neighborhood of vectors βi.

Assumption 1. (Regularity) For each player i, Ui = suppπi has a nonempty interior
in U , ψi ∈ intUi, and πi has a strictly positive Lipschitz continuous density with respect
to the Lebesgue measure on U .

Recall that the payoff from winning the war of attrition depends on the choice made
by the other player when conceding. The next assumption says that, no matter what
is the choice, all types of player i would rather win than lose.

Assumption 2. (Large Gap). For each ui ∈ Ui, for each xi ∈ mi and each yi ∈ m−i,
infx∈mi ui (x) > supy∈m−i ui (y) .

Let

α∗i = sup {α : α1i + (1− α) 0i ∈ m−i} ,

a∗i = α∗i1i + (1− α∗i ) 0i.

Here, a∗i is the unique allocation that lies in the intersection of the diagonal and the
boundary of menu m−i. Let

S∗i = 1− α∗−i
α∗i

=
ui
(
a∗−i

)
ui (a∗i )

,

where the last equality holds for arbitrary preference type ui ∈ U . Thus, S∗i is the
strength of player i defined as the winning/concession ratio under the restriction that,

1It is convenient notationally describe the menu as the set of all allocations that the opponent type
ψ−i payoff that is no more v−i. (Of course, such a menu is equal to the set of allocations that give
the same type of player i a payoff of at least 1− v−i.) Because in this ssection we assume N = 2, any
linear menu is equivalent to a menu that consists of two most extreme allocations in the menu.
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m−i

y2
i

y1
i

mi

0i

1i

x1

x2

u 2
1 (t)

u 11 (t)

xi(t)

wi(t− 1)

m2

m1

0i

1i

chocolate

vanilla

u V1 (t)

u C
1 (t)

x(t)
x∗

w
w′

Figure 3.1. Illustration of the proof .

when conceding, the player must choose an allocation that belongs to the diagonal.
Because of linearity of preferences, so defined strength does not depend on the player’s
type. The main result of this section shows that the strength characterizes the behavior
in the war of attrition.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Suppose that S∗i > S∗−i. For
each δ > 0, there exist λ∗,∆∗ > 0 such that if λ ≤ λ∗ and ∆ ≤ ∆∗, then there is T <∞
such that e−r∆T > 1− δ and, in any equilibrium, player −i concedes with probability at
least 1− δ before the end of period T .

Theorem 1 shows that when the type distribution is continuous, there is an unique
equilibrium. The equilibrium concession behavior is the same as if the players choices
were restricted to the diagonal. In the equilibrium, almost all of the types choose one
of the extreme allocations in the menus; however, we show that the ratios with which
the extreme allocations are chosen balance so that their average lies on the diagonal.
The Large Gap assumption ensures that the concession rates in the early game are
bounded; because the late game is arbitrarily long, it means that the late game effects
dominate over anything that happens in the early game.

3.1. Proof intuition. We describe the intuition behind the proof in few steps. As in
the rest of the paper, the argument relies on the analysis of the late game. The goal
is to show that after sufficiently many periods, the players behave as if they conceded
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with outcomes a∗i for each i. Then, their concession behavior is determined by strengths
S∗i . Because S∗j > S∗−j, player j concedes significantly faster than her opponent. The
rest of the argument proceeds in the same way as in the case of Lemma 1 of the main
paper.

Sorting. The main difficulty with two-sided incomplete information is the lack of
natural sorting. When the menus are linear, a partial sorting can be restored. Let
y1
i , y

2
i ∈ m−i be two extreme points of menu m−i. (See the left panel on Figure 3.1.)

Let Uki be the subset of types of player i who strictly prefer allocation yki to allocation
y−ki , i.e., the types who care about issue k relatively more than the type ψi, and,, as
follows, than all types in U−ki . We say that such types are on side k. Take any two
types u, u′ ∈ Uki and suppose that uk > u′k > ψki . Using a similar argument as in the
previous sections, we can show that for any allocation y /∈ m−i, we have

u (y)
u (yk) <

u′ (y)
u′ (yk) .

In other words, type u cares relatively less about winning and obtaining y rather than
losing than type u′. This implies that type u is going to concede before type u′ in the
war of attrition. From now on, we rank player i types according to their distance to
the last type ψi.

Let uki (t) denote the largest type on side k who survives till period t. (See the
left panel of Figure 3.1.) We say that player i is active on side k in period t if
uki (t) 6= uki (t+ 2), i.e, if outcome yki is chosen with strictly positive probability in
period t. Because of the general properties of the war-of-attrition games, each player
must be active on at least one side in each period before the final concession of the
strategic player.

Indifference condition. If the player is active on side k in two consecutive periods t−2
and t, then types uki (t) must be indifferent between conceding in those two periods.
There is a simple geometric characterization of this indifference. For each t ∈ Ti, let
p−i (t− 1) be the concession rate, i.e. the probability of −i conceding conditionally on
reaching period t− 1 and let

wi (t− 1) =
∑
k

Prob
(
−i chooses yk−i| − i concedes at t

)
yk−i
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be the average allocation left to her by player −i conditionally on him conceding. Then,
type uki (t) is indifferent if

uki (t)
(
yki
)
,

=p−i (t− 1) e−∆uki (t) (wi (t− 1)) + (1− p−i (t− 1))
(
1− e−2∆

) (
uki (t)

(
yki
))

or, if allocation

qi (t− 1) = p−i (t− 1) e−∆

e−2∆ + p−i (t− 1) (1− e−2∆)wi (t− 1)

belongs to the indifference curve of type uki (t) that passes through her optimal choice in
the menu. We refer to wi (t− 1) as the win outcome and to qi (t− 1) as the anticipated
payoff in period t− 1. The latter belongs to the ray between the win outcome and the
allocation 0.

If the player is active on both sides, then the anticipated payoff must be equal
to the indifference point xi (t), i.e., the unique allocation such that each type uki (t) is
indifferent between xi (t) and her optimal concession allocation yki . For future reference,
note that this is only possible if the indifference point belongs to the convex hull
spanned by the allocations y1

−i, y
2
−i and 0 (the dashed area of Figure 3.1).

Structure of the late game. We show in the proof that the players must be active on
both sides in each period of the late game, i.e., when the remaining types are sufficiently
close to the lowest type ψi. There are two steps to the argument. First, we show that
the indifference point must remain in the convex hull of y1

−i, y
2
−i and 0 (the dashed area

of Figure 3.1). Otherwise, say if at some t the indifference point leaves the convex hull
one the side k, then, we show using the indifference condition that the player must be
only active on side k for each t′ < t. But that leads to the contradiction as there must
be a substantial revelation of types on side −k before the late game is reached. TBA

The diagonal. Finally, we can show that the late behavior must remain close to the
diagonal. We can estimate the late game rate of movement of the indifference point by
the distance between xi (t) and the win outcome w−i (t):

∆xi (t) = xi (t)− xi (t+ 2) ≈ ci (t) [w−i (t)− xi (t+ 2)] , (3.1)

where the proportionality constant ci (t) depends on the concession rate, etc. The idea
is simple: if player i chooses yki with a relatively high probability in period t, then the
gap between types uki (t+ 2) and uki (t) is relatively large. But it also means that the
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indifference point is moving towards side k. A careful calculation that relies on the
Lipschitzness of the density in the neighborhood of ψi shows that the indifference point
does not change (much) only if the win outcome is very close.

Suppose that in the late game, the indifference points xi (t) remain in the close
neighborhood of some constant x∗i . In such a case, (3.1) implies that w−i (t) ≈ x∗i
for both players i. A the same time, the indifference condition implies that xi (t) is a
convex combination of allocations 0 and wi (t− 1) ≈ x∗−i. Putting those two conditions
together, we obtain that x∗i must lie on a diagonal for each i (see the right panel of
Figure 3.1).

If the indifference points do not converge, we provide an argument based on equation
() that shows that in such a case, the indifference point must diverge away from the
diagonal. Another argument, similar to the one used above in the discussion of the
structure of the late game, shows that it leads to a contradiction while in the late game.

3.2. Outline of the proof. Here, we describe the main structure of the argument,
with notation and key steps. The proofs of the key lemmas can be found in the rest of
the section.

3.2.1. Notation: Menus. We begin with defining notation that is specific to linear
menus. For each player i, define two extreme allocations in menum−i: for each k = c, v,
let

yki =


(
vi
ψi kth coordinate

, 0−kth coordinate
)
, if ψi ≥ vi,(

1kth coordinate,
vi−ψi
ψi −kth coordinate

)
otherwise.

Then, yki ∈ m−i for each player i and each side k. Let

bdm−i = con
{
y1
i , y

2
i

}
be the outer boundary of menu m−i.

For each allocation, we define projections on the menu boundary. For each player i,
each side k, and each allocation x 6= 0, let P k

i x ≥, Rk
−ix ∈ R be uniquely defined by∑

k

(
P k
i x
)

= 1 and
∑
k

(
P k
i x
)
yki = αx for some α > 0,

∑
k

(
Rk
−ix

)
= 1 and

∑
k

(
Rk
−ix

)
yk−i = αx for some α > 0.
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Figure 3.2

Let
Pix =

∑
k

(
P k
i x
)
yki and R−ix =

∑
k

(
Rk
−ix

)
yk−i.

Then, P k
i x is the “k “ th coordinate of the projection of x on bdm−i; Rk

i x is the “k “
th coordinate of the projection of x on the line containing bdmi. See the left panel of
Figure 3.2

3.2.2. Sorting. Next, we show that the equilibrium types can be partially sorted. Let

Uki =
{
u ∈ Ui : arg max

x∈m−i
u · x =

{
yki
}}

be the set of player i types for whom yki is their optimal choice. Then, Ui = U1
i ∪{ψi}∪

U2
i .

The next result says that any equilibrium can be sorted on each side separately. In
the Lemma below as well as the rest of this proof, we take (−1)c = −1 and (−1)v = 2.

Lemma 1. For each equilibrium σ′, there exists an equilibrium σ with exactly the same
payoffs, T ∗,σi = T ∗,σ

′

i for each i, and such that for each player i and each k = 1, 2, there
exists monotonic sequences (−1)k ηki (t) ≥ (−1)k ηki (t+ 2) , t ∈ Ti, such that ηki (T ∗,σi ) =
0 and for each u,

σ (u) = t and σMi = yki and iff (uv − ψvi ) ∈
[
(−1)k ηki (t+ 2) , (−1)k ηki (t)

)
.
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From now on, we assume that the equilibrium satisfies the thesis of the Lemma.
Define a vector

γ = (−1cth coordinate, 1vth coordinate) ∈ R2. (3.2)

Then, uki (t) := ψi + ηki (t) γ ∈ Uki is the unique type u such that ηki (t) = uv − ψvi . By
the Lemma, uki (t) is the “highest” type to concede in period t among all types in Uki .
We also take ηki (t) = 0 for each t > T ∗.

Let F (η) = π {u : (uv − ψvi ) ≤ η}. Let

f ∗ = dF (0)
dη

> 0. (3.3)

3.2.3. Notation: Concession rates. For each player i, each side k, and each t ∈ Ti, let

F k
i (t) =

π
{
u : 0 ≥ uv − ψvi ≥ ηki (t)

}
if k = c,

π
{
u : 0 ≤ uv − ψvi ≤ ηki (t)

}
if k = v.

be the mass of the types of player i on side k that have not conceded before period
t. By assumptions, each F k

i is differentiable, and its derivative is Lipschitz continuous
with constant K <∞.

We use the sorting properties to rewrite the definitions from Appendix A.1. For each
function h : Ti → R,we write

∆h (t) = h (t)− h (t+ 2) .

For each player i, each t ∈ Ti, t ≤ T ∗,σi , each k, let

Qk
i (t) = ∆F k

i (t)∑
l ∆F l

i (t) ,

be the conditional probability of the concession on side k given the concession. The
concession rate is equal to

pi (t) =
∑
k ∆F k

i (t)∑
k F

k
i (t) + λ

,

and, for each t ∈ T−i, the win outcome of player i and the weighted win allocation are
equal to

wi (t) =
∑
k

Qk
−i (t) yk−i, and

yi (t) = e.−∆p−i (t)
e−2∆p−i (t) + (1− e−2∆)

∑
k

Qk
−i (t) yk−i.
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3.2.4. Best responses and indifference condition. Next, we provide a characterization
of the best response concession thresholds. For each t ∈ Ti, t ≤ T ∗,σ define xi (t) ∈ X
to be the unique allocation such that, if offered in period t,it would make each of the
types uki (t) indifferent to conceding:

uki (t) ·
(
xi (t)− yki

)
= 0 for each k. (3.4)

We refer to xi (t) as the indifference point of player i.
We say that player i is active on side k in period t ∈ Ti if ηki (t) > ηki (t+ 2). Because

of Lemma 7, in each period before T ∗(with a possible exception of the first one), each
player must be active on at least one side.

Lemma 2. If player i is active on side k in period t, then, it must be that

uki (t+ 2) ·
(
yi (t+ 1)− yki

)
≤ 0, and

uki (t) ·
(
yi (t− 1)− yki

)
≥ 0.

If player i is active on both sides in periods t and t− 2, then

yi (t− 1) = xi (t) . (3.5)

Proof. A straightforward corollary to Lemma 6. �

3.2.5. Late game estimates. We being the analysis of the late game. For each i and
each η, define

T ηi = max
{
t :
∑
k

ηki (t) ≥ η

}
and let T η = maxi T ηi . We refer to periods t > T as the late game. If η is small, all the
remaining types in the late game are very close to ψi. The equilibrium behavior has
many natural approximations. For each t ∈ Ti, let

P k
i (t) = (−1)k ηki (t)∑

l (−1)l ηli (t)
and Qk

i (t) = (−1)k ∆ηki (t)∑
l (−1)l ∆ηli (t)

.

It is straightforward to verify that for each t ∈ Ti,

∆P k
i (t) =

∑
l (−1)l ∆ηli (t)∑
l (−1)l ηli (t)

(
Qk
i (t)− P k

i (t+ 2)
)
. (3.6)

Additionally, the regularity of the density implies the following approximations:
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Lemma 3. There exists constant C that is independent from λ and β such that if
η ≤ 1

4K , then for each i, k, each t∈ Ti and t > T η,

∣∣∣P k
i xi (t)− P k

i (t)
∣∣∣ ≤ C

(∑
l

F l
i (t)

)
,

∣∣∣∆P k
i xi (t)−∆P k

i (t)
∣∣∣ ≤ C

(∑
l

∆F l
i (t)

)
,

∣∣∣Qk
i (t)−Qk

i (t)
∣∣∣ ≤ C

(∑
l

F l
i (t)

)
,∣∣∣∣∣

∑
l ∆ηli (t)∑
l η

l
i (t) −

∑
l ∆F l

i (t)∑
l F

l
i (t)

∣∣∣∣∣ ≤ C

(∑
l

∆F l
i (t)

)
.

3.2.6. Late game: both sides active. We use the above estimates to establish the key
technical property of the late game:

Lemma 4. There exists n > 0 that is independent from λ and ∆ and such that, if
λ < 1

4n, then, for each t > T n, each player is active on each side.

Together with Lemma 2, the result implies that for η > 0 sufficiently small, each
t > T η, each player i such that t ∈ Ti, (3.5) holds.

Finally, we show that the win outcome must remain close to the diagonal. Recall
that γ = (−1, 1) is defined in (3.2). Then, |γ · x| measures the distance of allocation x
from the diagonal.

Lemma 5. There exists ∆∗, λ∗ > 0 such that for each δ > 0, there exists ηδ ≤ n such
that for each ∆ ≤ ∆∗, λ ≤ λ∗ for each t > T ηδ , t ∈ Ti,∥∥∥wi (t)− a∗−i∥∥∥ ≤ δ.

3.2.7. Proof of Theorem 1. Let ξ = 1
3

(
S∗j − S∗−j

)
> 0 and let

x =
S∗−j + ξ − 1
S∗j − ξ − 1 < 1.

As in the proof of Lemma 1 of the main paper, let Si (t) be defined as the maximum
strength of the type conceding in period t. Then, for each player j, t > T ηδ , t ∈ T−i,
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we have

Si (t) = max
k

max
η∈[ηki (t+2),ηki (t))

(ψi + ηγ) · (wi (t))i
(ψi + ηγ) · yki

= max
k

max
η∈[ηki (t+2),ηki (t))

1− α∗−i +
(
(ψi + ηγ) ·

(
wi (t)− a∗−i

))
i

α∗i + ηγ · yki
.

Hence, by Lemma 5, there exists η∗, λ∗,∆∗ > 0 such that for each η ≤ η∗, η ≤ λ∗,∆ ≤
∆∗, and each t ∈ Tiwe have

Sj (t) ≥ S∗j − ξ,

S−j (t) ≤ S∗−j + ξ.

The rest of the proof follows the same three-zone strategy as the proof of Lemma 1 of
the main paper. We omit the details.

Appendix A. Preliminary analysis of the war-of-attrition

In this Appendix, we perform a preliminary analysis of the model from Section ??.
The notations the results that can be found here are used in all the remaining parts of
the Appendix.

A.1. Notations. For each player i = 1, 2, let t0i = i be the first decision period for
player i.

For each player i and each t ∈ Ti, each measurable set U ⊆ Ui, define the probability
that player i with preferences in U yield in period t as

fσi (U |t) = (1− λ)
ˆ

U

σTi (t|u) dπi (u) .

Let fσi (t) = fσi (U|t) be the probability of concession in period t. Let

F σ
i (t) = λ+

∑
s∈Ti:s≥t

fσi (t) , and

pσi (t) = 1
F σ
i (t)f

σ
i (t) ,

be, respectively, the probability that player i has not conceded before period t and the
concession rate in period t.
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For each t ∈ T−i, let

wσi (t) =
ˆ
σM−i (u−i)

1
fσ (t)df

σ (u−i|t) ∈ X, (A.1)

yσi (t) = e−∆pσ−i (t)
e−2∆pσ−i (t) + (1− e−2∆)w

σ
i (t) ∈ X. (A.2)

Here, wσi (t) denotes the allocation that player i obtains in period t, conditionally on
the opponent’s concession in that period t; yσi (t) is the winning allocation weighted by
the concession probability. Further, for each type u ∈ Ui of player i, let

Li (u) = max
x∈mi

u (x) , and Sσi (u, t) = u (wσi (t))
Li (u) .

Here, Li (u) is the payoff received upon concession, and Sσi (u, t) is the (endogenous)
strength ratio.

The superscripts σ in the above notation denotes dependence on the strategy profile
σ; the subscript i, on the player i. We drop the superscripts and/or the subscripts
from the above notation whenever it does not lead to confusion.

A.2. Best response characterization. The expected payoff of player i type ui from
yielding in period t ∈ Ti given opponent strategies (σ) is equal to

Uσ
i (ui, t) =

∑
s:s<t,s∈T−i

e−s∆fσ−i (s) (ui (wσi (s))) + e−t∆F σ
−i (t+ 1)Li (ui) .

For each t ∈ Ti, we have

et∆ [Uσ
i (ui, t+ 2)− Uσ

i (ui, t)] (A.3)

=e−∆fσ−i (t+ 1) (ui (wσi (t+ 1))) +
[
e−2∆

(
F σ
−i (t+ 1)− fσ−i (t+ 1)

)
− F σ

−i (t+ 1)
]
Li (ui)

=F σ
−i (t+ 1)

[
e−∆pσ−i (t+ 1) (ui (wσi (t+ 1)))−

(
e−2∆pσ−i (t+ 1) + 1− e−2∆

)
Li (ui)

]
=
(
fσ−i (t+ 1) +

(
1− e−2∆

)
F σ
−i (t+ 3)

)
[ui (yi (t+ 1))− Li (ui)] .

We have the following corollary to the above calculations and definitions.

Lemma 6. For each type u−i of player −i, each t ∈ Ti, Uσ
−i (u−i, t+ 1) ≥ (≤)Uσ

−i (u−i, t− 1)
if and only if

u−i
(
yσ−i (t)

)
≥ (≤)L−i (u−i) , or pσi (t) ≥ (≤)

(
e∆ − e−∆

) 1
Sσ−i (u−i, t)− e−∆ .
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A.3. End of the war of attrition. Let T ∗,σi = max {t ∈ Ti : fσi (t) > 0} be the last
period in which a strategic type of player i concedes. We have the following standard
result.

Lemma 7. Suppose that σ is an equilibrium.
(1) For each t ≤ T ∗,σi , fσ (t) > 0. Also, |T ∗,σi − T ∗,σ−i | = 1.
(2) For each t < T ∗,σi , yσi (t) /∈ intmi.
(3) For each i, T ∗,σi <∞, and F σ

i (T ∗,σi + 2) = λ.

Proof. By Lemma 6, iff (t) = 0 for some t ∈ T−i, then it is a strictly better response
for (almost any type u of player i to yield in period t− 1 rather than to wait to period
t + 1. It follows that fσi (t+ 1) = 0. An induction implies that fσi (t′) > 0 for each
t′ > t. The second claim follows from the same argument.

If t < T ∗σi , then the part 1 of Lemma 7 implies that there is a type ui of player i for
whom period t+ 1 is a best response. By Lemma 6, ui (yσi (t)) < Li (ui). However, the
latter inequality cannot be satisfied if yσi (t) ∈ intmi.

For each i, let Lmin
i = infui∈Ui Li (ui) . Because fσi (t) > 0 for each t ≤ T ∗,σi , it must

be that for each t ∈ Ti, if t < T ∗,σi , there is a type u ∈ U−i of player −i such that
Uσ
−i (u−i, t− 1) ≤ Uσ

−i (u−i, t+ 1). It follows from Lemma 6 that for each t < T ∗,σi ,

pσi (t) ≥
(
1− e−∆

) 1 + e−∆

e−∆
1

maxu∈A−i Sσ−i (u−i, t)− e−∆ ≥
(
1− e−∆

)
Lmin
−i > 0,

which implies for each t ≤ T ∗,σi

F σ
i (t) = (1− pσi (t− 2))F σ

i (t− 2) ≤
(
1−

(
1− e−∆

)
Lmin
−i

)
F σ
i (t− 2)

≤
(
1−

(
1− e−∆

)
Lmin
−i

)(t−t0i )/2
.

Because F σ
i (t) ≥ λ, it must be that T ∗,σi − t0i ≤ log λ

log(1−(1−e−∆)Lmin
−i ) . �

A.4. Monotonicity. Recall that for A,B ⊆ R,A is strongly dominated by B, we write
A ≤S B if for each a,∈ A, b ∈ B, min (a, b) ∈ A and max (a, b) ∈ B.

Lemma 8. (Monotonicity) Take two types ui, u′i ∈ Ui, and suppose that Sσi (ui, s) ≤
Sσi (u′i, s) for each s ∈ T−i such that s < T ∗,σ−i . Then, arg maxUσ

i (ui, .) ≤S arg maxUσ
i (u′i, .).

If Sσi (ui, s) < Sσi (u′i, s) for each s ∈ T−i such that s < T ∗,σ−i , then, if Uσ
i (ui, t) ≤

Uσ
i (ui, t′) for some t < t′, then Uσ

i (u′i, t) < Uσ
i (u′i, t′).
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Proof. Notice that
1

Li (ui)
(Uσ

i (ui, t′)− Uσ
i (ui, t))

=
∑

s:t<s<t′,s∈T−i
e−s∆fσ (s)Sσi (ui, s) + e−t′∆

1−
∑

s:s<t′,s∈T−i
fσ (s)

− e−T∆

1−
∑

s:s<t,s∈T−i
fσ (s)


= 1
Li (u′i)

(Uσ
i (u′i, t′)− Uσ

i (u′i, t))−
∑

s:t<s<t′,s∈T−i
e−s∆fσ (s) [Sσi (u′i, s)− Sσi (ui, s)] .

Thus, function U0
i (ui, t) = 1

Li(ui)U
σ
i (ui, t) has increasing differences in the strength

ratio and time. The result follows from the Topkis Theorem. �

A.5. Early game. The next result discusses the concession behavior when a player
may still have very weak (i.e., with strength not much higher than 1) types. It says
that, essentially, either player −i concedes early with a probability arbitrarily close to
1, or all the weak types of player i concede early, where “early” here means with a
small amount of discounting.

Lemma 9. For each δ > 0, there exists ε > 0 and ∆∗ > 0 such that if ∆ ≤ ∆∗,
then there exists T0 such that e−∆T0 ≥ 1 − 2δ and for each equilibrium σ, either (a)
F σ
−i (T0) ≤ δ, or (b) σT0

i (ui) ≤ T0 for all ui ∈ Ui st. supt∈T−i S
σ
i (ui, t) ≤ 1 + ε.

Proof. Let k∗ = d− log2 δe ≤ − log2 δ+1. Find ε > 0 such that 1−2ε ≥ (1− δ)
1
k∗ . Fix

∆∗ > 0 so that 2∆∗ (1− log2 δ) ≤ log 1−δ
1−2δ . For each ∆ ≤ ∆∗, let n∆ be the smallest

even integer such that e−∆n∆ ≤ 1−2ε. Then, e−∆n∆ ≥ (1− 2ε) e−2∆. Take T0 = k∗n∆.
Then,

e−T0∆ ≥ (1− 2ε)k
∗

e−2∆k∗ ≥ (1− δ) e−2∆(1−log2 δ) ≥ 1− 2δ.
Suppose that there is a type ui ∈ Ui such that Sσi (ui, t) ≤ 1+ε for each t ∈ T−i, and

suppose that T ≥ T0 is a best response stopping time for such type ui. Then, it must
be that for each t ∈ Ti,t < T , type ui prefers to continue waiting till period T rather
than conceding in period t:

Fi (t)Li (ui) ≤
∑

t<s<T :s∈T−i
f−i (s) e−(s−t)∆ [Si (ui, s)Li (ui)] + Fi (T ) e−(T−t)∆Li (ui) .

After some algebra, and taking into account that Si (ui, s) ≤ 1 + ε, we get

0 ≤
∑

s>t:s∈T−i
f−i (s)

(
e−(s−t)∆ (1 + ε)− 1

)
.
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Due to the choice of n∆, for each t ≤ T − n∆, the above is not larger than

≤
∑

t<s<t+n∆:s∈T−i
f−i (s) ε+

∑
s>t+n∆:s∈T−i

f−i (s)
(
e−n∆∆ (1 + ε)− 1

)

≤ ε

 ∑
t<s<t+n∆:s∈T−i

f−i (s)−
∑

s>t+n∆:s∈T−i
f−i (s)

 .
In the second inequality, we used the fact that e−∆n∆ (1 + ε) ≤ (1− 2ε) (1 + ε) ≤
−ε− 2ε2 ≤ −ε. Thus, for any such t,

∑
t<s<t+n∆:s∈T−i

f−i (s) ≥
1
2

 ∑
t<s<t+n∆:s∈T−i

f−i (s) +
∑

s>t+n∆:s∈T−i
f−i (s)

 = 1
2

∑
t<s<T :s∈T−i

f−i (s) .

It follows that

1− F−i (s) =
∑

s<T0:s∈T−i
f−i (s) ≥

k∗∑
l=1

1
2l = 1− 1

2k∗ ≥ 1− δ.

�

Appendix B. Proof of Theorem 1

B.1. Proof of Lemma 1. We have a simple observation.

Lemma 10. For each equilibrium σ, any player i, each side k, any two types ψi +
ηγ, ψi + η′γ ∈ Uki and such that 0 ≤ (−1)k η′ ≤ (−1)k η, we have

Si (ψi + ηγ, t) ≤ Si (ψi + η′γ, t) .

Proof. Fix i and k. We begin with a simple observation. Suppose that 0 ≤ (−1)k η′ ≤
(−1)k η (the first inequality implies that ψi+ηγ, ψi+η′γ ∈ Uki ). Then, yki is the optimal
choice for preferences ψi + ηγ from the set of all allocations that deliver at most yki to
player with preferences ψi + η′γ:{

yki
}

= arg max
x∈X:(ψi+η′γ)(x)≤(ψi+η′γ)(yki )

(ψi + ηγ) (x) .

It follows that if (ψi + ηγ) (x) = (ψi + ηγ)
(
yki
)
for some x ∈ X, then

(ψi + η′γ) (x) ≥ (ψi + η′γ)
(
yki
)
.

Notice that for each t ∈ T−i, each η so that ψi + ηγ ∈ Uki ,
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Si (ψi + ηγ, t) = (ψi + ηγ) (wi (t))
(ψi + ηγ)

(
yki
) = 1

αη
,

where, wi (t) ∈ X. Then, by linearity

(ψi + ηγ)
(
yki
)

= (ψi + ηγ) (αηwi (t) + (1− αη) 0i) .

For each η′ such that 0 ≤ (−1)k η′ ≤ (−1)k η, the above observation implies that

(ψi + η′γ) (αηwi (t) + (1− αη) 0i) ≥ (ψi + η′γ)
(
yki
)

= (ψi + η′γ) (αη′wi (t) + (1− αη′) 0i) ,

which implies that αη ≥ αη′, or Si (ψi + ηγ, t) ≤ Si (ψi + η′γ, t). �

We proceed with the proof of Lemma 1. Fix an equilibrium σ. For each player i,
each k, choose a monotonic sequence (−1)k ηki (t) ≥ (−1)k ηki (t+ 2) , t ∈ Ti, such that
for each t ∈ Ti,

π
{
β + γη : (−1)k η ∈

[
ηki (t+ 2) , ηki (t)

)}
=
ˆ
Uki
σ (u|t) dπ (u) .

is equal to the probability that a type in Uki concedes in period t in equilibrium σ.
Consider a strategy

σ′ (u) = t and σMi = yki and iff (uv − ψvi ) ∈
[
ηki (t+ 2) , ηki (t)

)
.

We going to show that
(
σ′, σM

)
is an equilibrium with the same payoffs as σ.

First, notice that the strategy σ′i of player i leads to the same probabilities of yielding
by player i as well as the same outcomes. It follows that player −i payoffs

are not affected by the modification.
Second, we are going to show that t is a best response for each type u = β + γη

such that (−1)k η ∈
(
ηki (t+ 2) , ηki (t)

)
. On the contrary, suppose that t is not a best

response for u. Notice that if the interval is not empty, t is played with strictly positive
probability under strategy σ. Hence, there is some type u′ = β + (−1)k η′γ ∈ Uki for
which t is a best response, u′ 6= u. Suppose that (−1)k η′ > (−1)k η. By Lemma 10
and Lemma 8, the best response of all types v = β+ η′′γ such that (−1)k η′′ ≤ (−1)k η
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is strictly larger than t. But this implies that

∑
s∈Ti:s>t

ˆ
Uki
σ (u|s) dπ (u) ≥ π

{
β + γη′′ : (−1)k η′′ ≤ (−1)k η

}
=

∑
s∈Ti:s>t

π
{
β + γη′′ : (−1)k η′′ (−1)k η ∈

[
ηki (s+ 2) , ηki (s)

)}
+ π

{
β + γη′′ : (−1)k η′′ (−1)k η ∈

[
ηki (t+ 2) , η

)}
≥

∑
s∈Ti:s>t

ˆ
Uki
σ (u|t) dπ (u) + π

{
β + γη′′ : (−1)k η′′ (−1)k η ∈

[
ηki (t+ 2) , η

)}
.

>
∑

s∈Ti:s>t

ˆ
Uki
σ (u|t) dπ (u) .

But this leads to a contradiction. A similar contradiction can be found when (−1)k η′ <
(−1)k η . This concludes the proof of the Lemma.

B.2. Proof of Lemma 3. Let αki (t) ≥ 0 be such that

xi (t) =
∑
l

αli (t) yli +
(

1−
∑
l

αli (t)
)

0i,

so that

P k
i xi (t) = αki (t)∑

l α
l
i (t)

.

Lemma 11. There exists constants ci, dki > 0 such that ∑l d
l
i = 1, such that if we

define αji (t) = αji − d
j
i

(∑
l α

l
i (t)− 1

)
for each side j, then

(−1)k ηki (t) =
vi
(∑

l α
l
i (t)− 1

)
ciα
−k
i (t)

and P k
i (t) = α−ki (t) .
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Proof. For each k, we have

0 = uki (t)
(
yki
)
− uki (t)xi (t)

=
(
ψi + ηki (t) γ

)
·
((
αki (t)− 1

) (
yki
)
i
+ α−ki (t)

(
y−ki

)
i

)
=
(∑

l

αli (t)− 1
)
vi + ηki (t) γ ·

(
α−ki (t)

((
y−ki

)
i
−
(
yki
)
i

)
+
(∑

l

αli (t)− 1
)(

yki
)
i

)

=
(∑

l

αli (t)− 1
)
vi − (−1)k ηki (t)

(
α−ki (t) (γ · (yvi − yci ))− (−1)k

(∑
l

αli (t)− 1
)(

γ · yki
))

=
(∑

l

αli (t)− 1
)
vi − (−1)k ηki (t) ci

(
α−ki (t)− d−ki

(∑
l

αli (t)− 1
))

where we take ci = γ·(yvi − yci ) > 0, and d−ki = (−1)k(γ·yki )
ci

> 0. The constants satisfy the
required conditions. (To see that the constants are positive, notice that (yvi )

v > (yvi )
c

and that (yci )
v < (yci )

c. Also, notice that dki + d−ki = (−1)k((γ·yki )−(γ·y−ki ))
ci

= ci
ci

= 1.)
This implies the first equality. For the second one, observe that

P k
i (t) = (−1)k ηki (t)∑

l (−1)l ηli (t)
=

1
α−ki (t)

1
α−ki (t) + 1

αki (t)
= αki (t)∑

l α
l
i (t)

.

The sum in the denominator of the last expression is equal to ∑l α
l
i (t) = ∑

l α
l
i (t) −(∑

l d
l
i

) (∑
l α

l
i (t)− 1

)
= ∑

l α
l
i (t)−

∑
l α

l
i (t) + 1 = 1. �

Lemma 12. For each i, k, t, ∑l ∆αli (t) ≥ 0, and there is a constant α∗ > 0 such that
αki (t) , αki (t) ≤ α∗, and∣∣∣∣∣∑

l

αli (t)− 1
∣∣∣∣∣ ∣∣∣∆αki (t)

∣∣∣ ≤ αki (t)
∑
l

∆αli (t) .

Proof. Because space X is compact, there is a constant α∗ > 0 such that αki (t) ≤ α∗

for each k, t. It follows that αki (t) ≤ αki (t) ≤ α∗.
Using Lemma 11, we observe that

∑
l

1
(−1)l ηli (t)

= c

v−i

∑
αli (t)−

(∑
l d

l
i

) (∑
αli (t)− 1

)
∑
αli (t)− 1 = c

v−i

( ∑
αli (t)∑

αli (t)− 1 − 1
)
.

Because (−1)−k ηki (t) is increasing with t for each k, the left hand side is decreasing
with t, which implies that the right hand side is decreasing with t, or that ∑αli (t) is
increasing in t.
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By the first claim, for each i and t, there is k such that
∣∣∣∆α−ki (t)

∣∣∣ ≤ ∆αki (t) . Because

(−1)−k η−ki (t) = v−i
ci

∑
l
αli(t)−1

α−ki (t) is increasing in t, we have
∑
l ∆αli (t)

∆αki (t) ≥
∑
l α

l
i (t)− 1

αki (t+ 2) ,

which implies that∣∣∣∆α−ki (t)
∣∣∣ ∣∣∣∣∣∑

l

αli (t)− 1
∣∣∣∣∣ ≤ (∆αki (t)

) ∣∣∣∣∣∑
l

αli (t)− 1
∣∣∣∣∣ ≤ αki (t)

∑
l

∆αli (t)

�

For the next result, recall that f ∗ = dF
dη

(0) (see equation (3.3)).

Lemma 13. There exist constants C <∞ (all independent of β and λ) such that for
each i, k, t ∈ T i and t > T η,∣∣∣∣∣∑

l

∆αli (t)− 1
∣∣∣∣∣ ≤ C

∣∣∣∣∣∑
l

(−1)l ∆ηli (t)
∣∣∣∣∣ ≤ C2

∣∣∣∣∣∑
l

∆F l
i (t)

∣∣∣∣∣ ,∣∣∣∣∣∑
l

αli (t)− 1
∣∣∣∣∣ ≤ C

∣∣∣∣∣∑
l

(−1)l ηli (t)
∣∣∣∣∣ ≤ C2

∣∣∣∣∣∑
l

F l
i (t)

∣∣∣∣∣ ,∣∣∣∣∣f ∗ (−1)k ∆ηki (t)
∆F k

i (t) − 1
∣∣∣∣∣ ,
∣∣∣∣∣f ∗ (−1)k ηki (t)

F k
i (t) − 1

∣∣∣∣∣ ≤ C

∣∣∣∣∣∑
l

F l
i (t)

∣∣∣∣∣ ,∣∣∣∣∣f ∗
∑
l (−1)l ∆ηli (t)∑
l ∆F l

i (t) − 1
∣∣∣∣∣ ,
∣∣∣∣∣f ∗

∑
l (−1)l ηli (t)∑
l F

l
i (t) − 1

∣∣∣∣∣ ≤ C

∣∣∣∣∣∑
l

F l
i (t)

∣∣∣∣∣ .
Proof. By Lemma 11,

vi
ci

(∑
l

αli (t)− 1
)

= ci
vi

(∑
l

(
(−1)l ηli (t)

)−1
)−1

.

Hence,

vi
ci

∣∣∣∣∣∑
l

∆αli (t)
∣∣∣∣∣ =

∣∣∣∣∣∑
l

(
(−1)l ηli (t)

)−1
∣∣∣∣∣
−1 ∣∣∣∣∣∑

l

(
(−1)l ηli (t+ 2)

)−1
∣∣∣∣∣
−1 ∣∣∣∣∣∑

l

(−1)l ∆ηli (t)
ηli (t) ηli (t+ 2)

∣∣∣∣∣
=
∑
l

(−1)l αli (t)αli (t+ 2) ∆ηli (t) ≤
∑
l

(−1)l ∆ηli (t) ,

where the last inequality comes from the fact that αli (t) ≤ 1 for each i, , l, t. This shows
the first inequality in the first line.
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Because the increments in F are always positive, and ∑l η
l
i (T

∗,σ
i + 2) = 0, the first

inequality in the second line inequality follows from the above.
The first inequality in the third line follows from the fact that the derivative is

Lipschitz. All the remaining inequalities follow from the first. �

We can proceed with the proof of Lemma 3. The definition of αki (t) as well as 11
Lemma imply that

P k
i xi (t) = αki∑

l α
l
i

and P k
i (t) = αki .

Taking into account that αki (t) = αki (t) + dki (t)
(∑

l α
l
i − 1

)
, we have

P k
i xi (t)− P k

i (t) = αki (t)∑
l α

l
i (t)
− αki (t) = −

(
αki (t)− dki

) ∑
l α

l
i − 1∑
l α

l
i

.

An application of Lemma 13 demonstrates the first estimate in the thesis of Lemma 3.
Second, by Lemma 12,

∣∣∣∆ (
P k
i xi (t)− P k

i (t)
)∣∣∣ ≤ ∣∣∣∆αki (t)

∣∣∣ ∑l α
l
i (t)− 1∑
l α

l
i (t)

+
∣∣∣αki (t)− dki

∣∣∣
∣∣∣∑l ∆αli (t)

∣∣∣∑
l α

l
i (t)

+
∣∣∣αki (t)− dki

∣∣∣
∣∣∣∑l α

l
i (t)− 1

∣∣∣ ∣∣∣∑l ∆αli
∣∣∣(∑

l α
l
i (t)

) (∑
l α

l
i (t+ 2)

)
≤3α∗

∣∣∣∣∣∑
l

∆αli (t)
∣∣∣∣∣ .

Another application of Lemma 13 shows the second estimate in the thesis of Lemma
3.

Third, observe that due to Lemma 13,∣∣∣∣∣∣Q
k
i (t)

Qk
i (t) − 1

∣∣∣∣∣∣ =
∣∣∣∣∣ ∆F k

i (t)
f ∗ (−1)k ∆ηki (t)

f ∗
∑
l η

l
i (t)∑

l ∆F l
i (t) − 1

∣∣∣∣∣ ≤
∣∣∣∣∣1 +K

∑
l (−1)l ηli (t)

1−K∑
l (−1)l ηli (t)

− 1
∣∣∣∣∣

≤ 8K
∣∣∣∣∣∑
l

(−1)l ηli (t)
∣∣∣∣∣ ≤ C

∣∣∣∣∣∑
l

F l
i (t)

∣∣∣∣∣
for appropriately defined constant C.

The same calculations show that

∣∣∣∣∣
∑
l ∆ηli (t)∑
l η

l
i (t) /

(∑
l ∆F l

i (t)∑
l F

l
i (t)

)
− 1

∣∣∣∣∣ =
∣∣∣∣∣f ∗

∑
l ∆ηli (t)∑

l ∆F l
i (t)

∑
l F

l
i (t)

f ∗
∑
l η

l
i (t) − 1

∣∣∣∣∣ ≤ C

∣∣∣∣∣∑
l

F l
i (t)

∣∣∣∣∣ .
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B.3. Proof of Lemma 4. Define

TOi = max
{
t ∈ Ti, t ≤ T ∗,σi : xi (t) ∈ intOk

i for some k
}
,

T ηi = max
{
t ∈ Ti, t ≤ T ∗,σi : ηki (t) ≥ η for some k

}
for each η,

T ki = max {t ∈ Ti, t ≤ T ∗,σi : player i is only active on side k} .

For each x = 0, η, k,let T x = max T xi .

B.3.1. Geometry. For each player i, and each k, define

Yi =
{
x ∈ X\intm−i : P k

i x ≤ P k
i

(
y−k−i

)
for each k

}
= con

{
y1
−i, y

2
−i,0

}
\intm−i,

Y k
i =

{
x ∈ Yi : P k

i x = P k
i

(
y−k−i

)}
= Bi ∩ con

{
y−k−i ,0

}
\intm−i,

Ok
i =

{
x : P k

i x ≥ P k
i

(
y−k−i

)}
.

To interpret the above sets, it is helpful to notice that y (t) ∈ Yi for each t ∈ T−i.

Additionally, the definition (A.2) implies that yi (t) belongs to the convex hull spanned
by the allocation obtained from the optimal choices of the other player and the 0
allocation.) Thus, set Yi contains all possible weighted winning allocations of player i
(i.e., when−i concedes). Its subset Y k

i contains only those allocations that are obtained
if −i concedes and chooses y−k−i with (conditional) probability 1. (The reason for the
notation is that −k for player −i faces side k for player i. ) Sets Ok

i contain allocations
that cannot be obtained as winning allocations. (See the right panel of Figure 3.2.)

We say that side k of player i is regular if intOk
i 6= ∅.

Lemma 14. For each x /∈ m−i, each i and each p,

0 < P k
−i (Pix) < 1.

Proof. The projection of a projection. �

B.3.2. Best response properties. The subsequent claims are illustrated on Figure B.1.
We leave them without a proof.

Lemma 15. For each k, l, each t ∈ Ti, t ≤ T ∗,σi , if xi (t+ 2) /∈ intO−ki , and player i is
only active on side k in period t, then xi (t) /∈ O−ki . If xi (t+ 2) ∈ Ok

i , and player i is
only active on side k in period t, then xi (t) ∈ intOk

i .
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(0, 0)

y−k

yk

O−k

Ok

Y

x(t+ 2)
x(t)

(0, 0)

y−k

yk

O−k

Ok

Yy(t+ 1)

x(t+ 2)

(0, 0)

y−k

yk

O−k

Ok

Y

y(t+ 1)x(t+ 2)

Figure B.1. Illustration of Lemma 15

Lemma 16. For each k, l, each t ∈ Ti, t ≤ T ∗,σi , if xi (t+ 2) /∈ O−k−i , player i is active
on side k in period t + 2, and player −i is only active on side k in period t + 1, then
player i is only active on k in period t.

Lemma 17. For each k, l, each t ∈ Ti, t ≤ T ∗,σi , if xi (t+ 2) ∈ intO−ki , and player i is
active on side −k in period t+ 2, then player i is only active on −k in period t.

Lemma 18. For each k, l, each t ∈ Ti, t ≤ T ∗,σi , if P k
i xi (t+ 2) > P k

i yi (t+ 1), and
player i is active on side k in period t + 2, then the player is active only on side k in
period t.

B.3.3. Approximations. For each x, let Gk
i (x) = π

{
u ∈ Uki : u (x) ≤ u

(
yki
)}

. For each
player i, l, k, let

Q∗,ki,l = P k
i

(
yl−i
)
.

Lemma 19. There exists a constant C < ∞ and δ > 0 such that for each x ∈
X\intm−i, if

∑
lG

k
i (x) < δ, then∣∣∣∣∣ Gk

i (x)∑
Gl
i (x) − P

k
i (t)

∣∣∣∣∣ ≤ C
∑
l

Gk
i (x)

Proof. Let αk (x) be defined by x = ∑
l α

l
i (x) yli. Let αki (x) = αki (x)−dki

(∑
l α

l
i (x)− 1

)
,

where constants dki are defined in Lemma 11. Then, Lemma 11 implies that

Gk
i (x) = (−1)k

(
F

(
v−i
ci

∑
l α

l
i (x)− 1

α−ki (x)

)
− F (0)

)
.
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Using the same arguments as in the proof of Lemma 13, we can show that there exists
a constant C <∞, such that∣∣∣∣∣∣∣∣

Gk
i (x)

f ∗ v−i
ci

∑
l
αli(x)−1

α−ki (x)

f ∗
∑
l
v−i
ci

∑
l
αli(x)−1
αli(x)∑

lG
l
i (x) − 1

∣∣∣∣∣∣∣∣ ≤ C
∑
l

Gk
i (x) .

But
f ∗ v−i

ci

∑
l
αli(x)−1

α−ki (x)

f ∗
∑
l
v−i
ci

∑
l
αli(x)−1
αli(x)

=
1

α−ki (x)∑
l

1
α−li (x)

= αki (x)∑
l α

l
i (x) = αki (x) = P k

i (t) .

�

Lemma 20. There exist constants C <∞ and ζ2 > 0, ζ2 ≤ ζ1 (that do not depend on
λ and β) such that for each t ∈ Ti st. T ζ2 < t < T ∗σ, if xi (t+ 2) ∈ Y k

i , then

Qk
i (t)− C

(∑
k

∆F k
i (t)

)
≤ Q∗ki,k ≤ Qk

i (t+ 2) + C

(∑
k

∆F k
i (t)

)
.

Proof. We only show the first inequality; the proof of the second one is analogous.
Assume that xi (t) ∈ Yi and that xi (t+ 2) ∈ Y k

i .
By assumption, there exists α > 0 such that xi (t+ 2) = αy−k−i +(1− α) 0i =: x ∈ Y k

i .
Because xi (t) /∈ intOk

i , we can find x′ = α′y−k−i + (1− α′) 0i such that∑
l

Gl
i (xi (t))−Gl

i (xi (t+ 2)) =
∑
l

Gl
i (x′)−Gl

i (x) , and

Gk
i (xi (t+ 2))−Gk

i (x1) ≤ Gk
i (x′)−Gk

i (x)

Then,

Qk
i (t) = Gk

i (xi (t))−Gk
i (xi (t+ 2))∑

lG
l
i (xi (t))−Gl

i (xi (t+ 2)) ≤
Gk
i (x′)−Gk

i (x)∑
lG

l
i (x′)−Gl

i (x) . (B.1)

For each α ≥ 0, let Hk
i (α) := Gk

i

(
αy−k−i + (1− α) 0i

)
. Let α∗ be such that α∗y−k−i +

(1− α∗) 0i = Pi
(
y−k−i

)
. The assumptions on π imply that Hk

i has a Lipschitz contin-
uous derivative hki with a Lipschitz constant K. (To see it, notice that u·yki

u·(1−y−k−i )
is a

continuous function of u ∈ Uki .) Let hk = hki (α∗). As α→ α∗, Hk
i (α)→ 0 and, by the

L’Hospital’s rule,
Hk
i (α)∑

lH
l
i (α) →

hk∑
l hl

.
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At the same time, Lemma 19 implies that
Hk
i (α)∑

lH
l
i (α) → Qk

i,−k.

Hence, the two limits are equal.
Then, for appropriately small η, α′ ≤ 1

2K
∑
l h

l, and the expression (B.1) is not larger
than

≤ hk (α′ − α) +K (α′ − α)2∑
l hl (α′ − α)−K (α′ − α)2 −Q

k
i,−k = hk +K (α′ − α)∑

l hl −K (α′ − α) −
hk∑
l hl

= K

(
hk +∑

l h
l
)

(α′ − α)
(∑l hl −K (α′ − α)) (∑l hl)

≤ 8K
(∑l hl)2

[
Hk
i (α′)−Hk

i (α)
]

≤ C

[∑
l

Gl
i (xi (t))−Gl

i (xi (t+ 2))
]

= C

(∑
k

∆F k
i (t)

)

for constant C = 8K
(∑

l g
l
)−2

. �

Lemma 21. There exist constants ζ ′2 > 0 and C0 > 0 ((that does not depend on λ and
β) such that for for each t ∈ Ti st. T ζ

′
2
′
< t < T ∗σ, if xi (t+ 2) , xi (t) ∈ Y k

i and player
−i is active on side −k in periods t+ 1 and t− 1, then

βi ·
(
y−i (t)− yk−i

)
≥ C0 (−1)−k η−k−i (t+ 1) .

Proof. Let Q∗ = ∑
lQ
∗l
i,ky

l
i = Piy

k
−i, and let q∗ = ∑

p P
p
−iQ

∗yp−i = P−i
(
Piy

k
−i

)
. By

definition, q∗ belongs to the line that connects yk−i and y−k−i . Moreover, by Lemma 14,
P k
−iq
∗ > 0, and, because (−1)−k γ ·

(
y−k−i − yk−i

)
> 0, we have

C0 :=1
2 (−1)−k γ ·

(
y−k−i − q∗

)
= 1

2
(
P k
−iq
∗
)

(−1)−k γ ·
(
y−k−i − yk−i

)
> 0.

Let C <∞ be as in Lemma 20. Let ζ2be as in Lemma 20. We are going to fix ζ ′2 ≤ ζ2

later. From now on assume that t ≥ T ζ2 .
Because −i is active on side −k in period t+ 1 and t− 1, Lemma 2 implies that

u−k−i (t+ 1) ·
(
y−i (t)− y−k−i

)
−i

= 0.

Recall that u−k−i (t+ 1) = ψ−i + η−k−i (t+ 1) γ. Because ψ−i · yk−i = ψ−i · y−k−i , we have

0 =
(
ψ−i + η−k−i (t+ 1) γ

)
·
(
y−i (t)− y−k−i

)
−i

= ψ−i ·
(
y−i (t)− yk−i

)
−i

+ η−k−i (t+ 1) γ ·
(
y−i (t)− y−k−i

)
−i
, (B.2)
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and

ψ−i ·
(
y−i (t)− yk−i

)
−i

= (−1)−k η−k−i (t+ 1)
[
(−1)−k γ ·

(
y−k−i − y−i (t)

)
−i

]
= (−1)−k η−k−i (t+ 1) 2C0

+ (−1)−k η−k−i (t+ 1)
[
(−1)−k γ · (q∗ − y−i (t))−i

]
.

We are going to show that the term in the square brackets of the last line is smaller
than C0. First, notice that

y−i (t) = αwσ−i (t) = α∗wσ−i (t) + (α− α∗)wσ−i (t) ,

where we denoted α = e−∆pσ(t)
e−2∆pσ(t)+(1−e−2∆) and α0 is chosen so that α0ψ−i · wσ−i (t) = vi.

By (B.2),

(α− α0)ψ−i ·
(
wσ−i (t)− yk−i

)
−i

= −η−k−i (t+ 1) γ ·
(
y−i (t)− y−k−i

)
−i
,

and, using Lemma 13, we can find a constant C ′ <∞ such that

|α− α0| ≤ C ′
∣∣∣∣∣∑
l

F l
−i (t)

∣∣∣∣∣ ≤ C ′m′2.

Additionally, notice that wσ−i (t) = ∑
lQ

l
i (t)

(
1− yki

)
, and, by Lemma 20,

Q∗ki,k − C
(∑

k

∆F k
i (t)

)
≤ Qk

i (t) ≤ Q∗ki,k + C

(∑
k

∆F k
i (t)

)
. (B.3)

Hence, ∥∥∥α0w
σ
−i (t)− q∗

∥∥∥ ≤ ∥∥∥wσ−i (t)−Q∗∥∥∥ ≤ C ′′
(∑

k

∆F k
i (t)

)
≤ Cm′2.

Thus, [
(−1)−k γ · (q∗ − y−i (t))−i

]
≤2

(∥∥∥(α− α0)wσ−i (t)
∥∥∥+

∥∥∥α0w
σ
−i (t)− q∗

∥∥∥)
≤ (4C ′ + 2C)m′2.

Pick ζ ′2 ≤ ζ2 such that (4C ′ + 2C)m′2 ≤ 1
2C0. �

We have the following useful bounds on the yielding probability. Let ∆0 be such
that for each ∆ ≤ ∆0,

e−2∆ ≤ 1−∆ ≤ e−∆
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Lemma 22. Suppose that ∆ ≤ ∆0. There are constants 0 < pmin ≤ pmax < ∞ such
that for each equilibrium, each t ∈ Ti st. t0i < t ≤ T ∗,σi ,

∆pmin ≤ pi (t) ≤ ∆pmax.

Proof. By Lemma 7, for each each t ∈ Ti st. t0i < t ≤ T ∗,σi , there are types u, u′ ∈ U−i
such that t − 1 is a best response for type u and t + 1 is a best response for type u′.
By Lemma 6 ,(

e∆ − e−∆
) 1
Sσ−i (u, t)− e−∆ ≤ pi (t) ≤

(
e∆ − e−∆

) 1
Sσ−i (u′, t)− e−∆ .

The claim follows from the fact that Sσ−i (u, t) ≤ 1
vi

=: Smax and t Sσ−i (u, t) ≥
minx∈mi u(x)

maxx∈m−i u(x) =: Smin > 1, where the last inequality comes from Assumption 2. �

For each player i,define T Fi (η) = max {t : ∑l Fi (t) + λ ≥ η}.

Lemma 23. There exist constants a ≥ a′ > 0, such that for each ∆ ≤ ∆0, each
η ∈ [0, 1],

ηa ≤ βT
F
i (η) ≤ ηa

′
, and η a

a′ ≤ λ+
∑
l

F l
−i

(
T Fi (η)

)
≤ η

a′
a .

Proof. Notice that ∑
l

Fi (t) + λ =
∏

s∈Ti:s<t
(1− pσ (t)) .

Due to Lemma 22, and the choice of β ≥ β0 (which implies e−2∆ ≤ 1−∆ ≤ e−∆), we
have (

e−∆TFi (η)
)pmax ≤ (1−∆pmin)T

F
i (η)/2 .

≤η =
∏

s∈Ti:s<TFi (η)
(1− pI (t)) ≤

≤ (1−∆pmin)T
F
i (η)/2 ≤

(
e−∆TFi (η)

) 1
2pmin

.

Hence,

η
2

pmin ≤
(
e−∆TFi (η)

)2

≤e−∆TFi (η) = (1−∆)T
F
i (η)

≤e−∆TFi (η) ≤ η
1

pmax .

Take a = 2
pmin and a′ = 1

pmax
. The second claim follows from the first. �



32 MARCIN PĘSKI

B.3.4. Late game properties. Let ζ1 = mini,k maxu∈Uki (−1)k (uv − ψvi ).

Lemma 24. If η ≤ ζ1, then T η ≥ TO.

Proof. Suppose that TO = TOi < T η. By definition there is k, such that TOi =
max

{
t ∈ Ti, t ≤ T ∗,σi : xi (t) ∈ intOk

i

}
. By Lemma 15, it must be that player i is active

on side k in period t. By Lemma 16, player i is only active on side k in period t. By
another application of the first part, xi (t− 2) /∈ Ok

i . A repetition of the same argument
shows that player i is active only on side k for each t < TO, t ∈ Ti. But this implies
that η−ki (t0i ) = η−ki

(
TO
)
< η ≤ ζ1, which contradicts the choice of η ≤ ζ1. �

Lemma 25. If η ≤ ζ1, then, for each t > T η st. T η < t < T ∗σ, if player i is active
on side −k in period t + 1, and player −i is only active on side k in period t, then
xi (t+ 1) ∈ Y −ki .

Proof. Suppose that there is t > T η such that player i is active on side −k in period
t + 1, and player −i is only active on side k in period t. Lemma 24 implies that
xi (t+ 1) /∈ intOk

i and x−i (t+ 2) /∈ intO−k−i . Suppose that xi (t+ 1) /∈ Y −ki , which
implies that xi (t+ 1) /∈ O−ki . By Lemma 16, player i is only active on side k in period
t−1. Another application of Lemma 15 shows that x−i (t) /∈ O−k−i and player −i is only
active on side k in period t. A repetition of the same argument shows that each player is
active only on side k for each t′ < t. But this implies that η−ki (t0i ) = η−ki

(
TO
)
< η ≤ ζ1,

which contradicts the choice of ζ1. �

Lemma 26. If T η < T ∗,σ − 2, then, for each k,T k < T ∗,σ.

Proof. On the contrary, suppose that T ki = T ∗,σi for some i. Let T i = max {t : player i is active on side − k in period t} <
T ki . Because type ψi is the limit of types in U−ki , the proof of Lemma 1 implies
that type with preferences ψi must be indifferent between yielding in any period
t ∈ Ti and T ∗,σi ≤ t ≤ T i. The calculations in Lemma 6 show that it must be that
ψi ·yi (t) = Li (ψi) = v−i, which implies that yi (t) ∈ bdm−i. Because there are types in
Uki who weakly prefer to wait and yield only in period T ∗,δi , a similar argument shows
that it must be yi (t) = yki for each t ∈ T−i, T ∗,σi ≤ t ≤ T i. However, because yi (t) is
a convex combination of 1 − yl−i for l = 1, 2 and the zero allocation, it must be that
for each t ∈ T−i, T ∗,σi ≤ t ≤ T i, player −i is only active on −k side and that side k of
player i is not regular. Note that it follows that side −k of player −i is regular.
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If player i is the last player, i.e., T ∗,σi = T ∗,σ, then x−i (T ∗,σ − 1) = y−k−i ∈ intO−k−i . If
player −i is the last player, then Lemma 25 implies that it must be that x−i (T ∗,σ) ∈
Y −k−i . But because player −i is only active on side −k in period T ∗,σ − 2, then Lemma
15 implies that x−i (T ∗,σ − 2) ∈ intO−k−i . In any case, we obtain a contradiction with
Lemma 24. �

Lemma 27. There is m3 > 0, η3 ≤ ζ2, ζ1 such that if η ≤ m3, then, for each t > T η st.
T η+2 < t < T ∗σ, if player i is active on side −k in period t+1, y−i (t+ 1) ∈ U l

−i (t+ 2)
for each l, and player −i is only active on side k in period t, then, y−i (t− 1) ∈ U l

−i (t)
for each l, player i is active on side −k in period t − 1, and player −i is only active
on side k in period t− 2.

Proof. Take period t ∈ T−i such that T η + 2 < t < T ∗σ, and such that player i is active
on side −k in period t+1, and player −i is only active on side k in period t. By Lemma
25, xi (t+ 1) ∈ Y −ki , and by Lemma 24, xi (t+ 3) , xi (t− 1) ∈ Yi.

First, we are going to show that player −i is only active on side k in period t − 2.
By Lemma 18, it is enough to show that

P k
−ix−i (t) > P k

−iy−i (t− 1) (B.4)

Because y−i (t+ 1) ∈ U l
−i (t+ 2) for each l, and player −i is active on side k in period

t, it must be that y−i (t+ 1) ∈ Ik−i (t+ 2) and that

P k
−ix−i (t+ 2) ≥ P k

−iy−i (t+ 1) . (B.5)

By Lemma 20,

Q∗−ki,−k ≤ Q−ki (t+ 1) + C

(∑
l

∆F l
i (t)

)
, and

Q∗−ki,−k ≥ Q−ki (t− 1)− C
(∑

k

∆F k
i (t)

)
,
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where Q∗li,k = P l
i y
k
−i. Because P k

−i

(
y−ki

)
> P k

−i

(
yki
)
(due to the side −k of player i

facing the side k of player −i), inequality (B.5) implies that

P k
−ix−i (t+ 2) ≥ P k

−iy−i (t+ 1)

=
∑
l

Ql
i (t+ 1)P k

−iy
l
i

= P k
−iy

k
i +Q−ki (t+ 1)

[
P k
−iy
−k
i − P k

−iy
k
i

]
≥ P k

−iy
k
i +Q∗−ki,−k

[
P k
−iy
−k
i − P k

−iy
k
i

]
− C

(∑
l

∆F l
i (t)

)

= A− C
(∑

l

∆F l
i (t)

)
,

where we denoted A = P k
−i

(
1− yki

)
+ Q∗−ki,−k

[
P k
−i

(
1− y−ki

)
− P k

−i

(
1− yki

)]
. On the

other hand, we have

P k
−iy−i (t− 1) ≤ A+ C

(∑
l

∆F l
i (t)

)
. (B.6)

Because player −i is only active on side k in period t, we have Qk
−i (t) = 1. By the

equation (3.6) and Lemma 3, we have

P k
−ix−i (t) ≥ P k

−ix−i (t+ 2) +
∑
l ∆F l

−i (t)∑
l F

l
−i (t)

(
1− P k

−i (t+ 2)
)
− C

∑
l

∆F l
i (t)

≥ P k
−ix−i (t+ 2)

(
1−

∑
l ∆F l

−i (t)∑
l F

l
−i (t)

)
+
∑
l ∆F l

−i (t)∑
l F

l
−i (t)

− C
∑
l

∆F l
i (t)

≥ A

(
1−

∑
l ∆F l

−i (t)∑
l F

l
−i (t)

)
+
∑
l ∆F l

−i (t)∑
l F

l
−i (t)

− 2C
(∑

l

∆F l
i (t)

)

= A+
∑
l ∆F l

−i (t)∑
l F

l
−i (t)

(1− A)− 2C
(∑

l

∆F l
i (t)

)
. (B.7)

Note that A < 1. Find m3 ≤ ζ1, ζ2 small enough so that

m3 ≤
1− A
12f ∗C .

Then, for each η ≤ m3 t > T η, Lemma 3 implies that∑
l

F l
−i (t) ≤ 2f ∗

∑
l

(−1)l ηl−i (t) ≤ 4f ∗η ≤ 1− A
3C .
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The inequality (B.4) follows from the above bound, as well as the inequalities (B.6)
and (B.7). �

B.3.5. Proof of Lemma 4. Let m3 be as in Lemma 27.Let a ≥ a′ > 0 be constants from
Lemma 23. Let

m4 =
(1

2

) a
a′

(m3)(
a
a′ )

2
.

Let n > 0, n < m3 be a very small number to be fixed later and such that

n ≤ 1
4m

a
a′
4 .

Suppose that λ < 1
4n.

On the contrary, suppose that there is an equilibrium such that T k > T n. Using
Lemma 23, we can show that T n > T ∗,σ+2. By Lemma 26, T k < T ∗,σi for each i. Thus,
if T k−i = T k, then player −i is active on both sides in period T k + 2. In particular, by
Lemma 2,y−i

(
T k + 1

)
∈ U l

−i

(
T k + 2

)
for each l. Moreover, player i is active on both

sides (including side −k) in period T k + 1. In such a situation, a repeated application
of Lemma 27 shows that player −i is active only on side k in each period t such that
T k ≤ t < Tm3 .

Then, by Lemma 23, we have

λ+
∑
l

F l
i (Tm3) ≥ m

a
a′
3 ,

λ+
∑
l

F l
i (Tm4) ≤ (m4)

a′
a = 1

2m
a
a′
3 ,

βT
m4 ≥ ma

4 =
(1

2

)a2(a′)−1

m
a3(a′)−2

3 .

Using the first two inequalities, we conclude that∑
l

(
F l
i (Tm3)− F l

i (Tm4)
)
≥ m

a
a′
3 − (m4)

a′
a = 1

2m
a
a′
3 .

Let n4 = ηk−i (Tm4). Then, an application of Lemmas 13 and 23 shows that

n4 ≥
1
2f
∗F k
−i (Tm4) ≥ 1

2f
∗
(
m

a
a′
4 − λ− n

)
≥ 1

4f
∗
(1

2

)a2(a′)−2

m
a3(a′)−3

3 .

Let n0 = η−k−i
(
T k + 2

)
, where (−1)−k n0 ≤ n be the last type on side −k to yield in

the “late game”. Let T0 = max
{
t < T k : player − i is active on side −k in period t

}
.

By the above, T0 ≤ Tm3 .Moreover, the continuity implies that the type n0 must be
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indifferent between yielding in period T k + 2 and T 0 and weakly prefer it to yielding
in any period in-between. However, we are going to show that if n is sufficiently small,
then type n0 strictly prefers to yield in period Tm4 rather than in period T0. This will
yield a contradiction, and conclude the proof of the Lemma.

For this purpose, let u0 = βi + n0γ be the type that corresponds to n0. Notice that
formula (A.3) implies that

Uσ
−i (u0T

m4)− Uσ
−i (u0, T0)

=
∑

t∈Ti:T0<t≤Tm4

e−s∆
fσ (t+ 1) +

(
1− e−2∆

) ∑
s:s>t+1,z∈Ti

fσ (z)
 βi · [y−i (t+ 1)− y−k−i

]

+ n0
∑

t∈Ti:T0<t≤Tm4

e−s∆
fσ (t+ 1) +

(
1− e−2∆

) ∑
s:s>t+1,z∈Ti

fσ (z)
 γ · [y−i (t+ 1)− y−k−i

]
.

(B.8)

Because y−i (t+ 1) ∈ X\intmi, we have βi ·
[
y−i (t+ 1)− y−k−i

]
≥ 0 for each t. More-

over, by Lemma 21, for each t ≥ Tm3 ,

βi ·
(
y−i (t)− yk−i

)
≥ C0 (−1)k ηk−i (t+ 1) ≥ C0n4.

Hence, the first term of (B.8) is not smaller than

≥
∑

t∈Ti:T 0<t≤Tm4

e−s∆ (fσ (t+ 1)) βi ·
[
y−i (t+ 1)− y−k−i

]
≥ βT

m4 ∑
l

(
F l
i (Tm3)− F l

i (Tm4)
)
C0n4

≥ 1
4C0f

∗
(1

2

)a2(a′)−2

m
a3(a′)−3

3
1
2m

a(a′)−1

3

(1
2

)a2(a′)−1

m
a3(a′)−2

3 =: c0.

Let x∗ = maxx∈X
∣∣∣γ · (x− y−k−i )∣∣∣ Then, the second term of (B.8) is not smaller than

≥ −nx∗.

The lemma is concluded by picking n < c0
x
.

B.4. Proof of Lemma 5.

Lemma 28. For each x, if y ∈ bdmi and Pix = Piy, then R−ix = y and P−iy = y.
Moreover, there exist constants Ai > 1 for each i such that for each i, each x ∈ bdmi,

γ · (R−ix)−i = −Ai (γ · x) .
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Proof. See Figure 3.2. �

Let n be as in Lemma 4. Let

pi (t) = γ ·
(∑

k

P k
i wi (t) yki

)
,

pi (t) = γ ·
(∑

k

P k
i xi (t) yki

)
,

qi (t) = γ ·
(∑

l

Ql
i (t) yl−i

)
,

qi (t) = γ ·
(∑

l

Ql
i (t) yl−i

)
.

Using the projection notation from Section 3.2.1, we show (??) is equivalent to

Pixi (t) = Piyi (t− 1) = Pi

(∑
l

Ql
−i (t− 1) yl−i

)
.

Because ∑lQ
l
−i (t− 1) yl−i ∈ bdmi, Lemma 28 implies that

γ ·
∑
l

Ql
−i (t− 1) yl−i = A−i (γ · Pixi (t)) , or (B.9)

q−i (t− 1) = A−ipi (t) .

Further, (3.6) implies that

∆pi (t) = c (t) (qi (t)− pi (t+ 2)) , (B.10)

for c (t) =
∑

l
∆ηli(t)∑
l
ηli(t)

∈ [0, 1].
Let C < ∞ be the constant from Lemma 3. Let C = C ′maxAi. Then, Lemma 3

implies that

∆pi (t− 2) = c (t− 2) (A−ip−i (t− 1)− pi (t)± C ′η) , (B.11)

where ±Cη is a bound on the error term of the expression in the brackets.

Lemma 29. For each η ≤ n, we have that for each t > T η and t ∈ Ti, either (a)
pi (t) · p−i (t− 1) > 0, or (b) |pi (t)− p−i (t− 1)i| ≤ C ′η.

Proof. We prove the Lemma by induction on t ≥ T ∗. If t = T ∗, then c (T ∗ − 1) = 1,
and pi (T ∗ − 1) = qi (T ∗ − 1) = Aipi ± Cη, where ±Cη is a bound on the error term.
Thus, the claim holds for t = T ∗.
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Suppose that the claim holds for some t > T η and t ∈ Ti. Suppose that p−i (t− 1) >
0 (the proof in the other case is analogous). The inductive claim implies that pi (t) ≥
p−i (t− 1)−Cη, and we need to show that pi (t− 2) ≥ p−i (t− 1)−Cη. By Lemma 4
and the above discussion, equation (B.11) holds. Because A−i > 1,

A−ip−i (t− 1)± C ′η ≥ p−i (t− 1)− C ′η,

and

pi (t− 2)− p−i (t− 1) = ∆pi (t− 2) + pi (t)− p−i (t− 1)

≥ (1− c (t− 2)) (pi (t)− p−i (t− 1))− c (t)C ′η

≥ −C ′η.

�

Lemma 30. For each δ > 0, there is c0 > 0 and ηδ ≤ n, such that for each t > T ηδ

and t ∈ Ti, if pi (t) , p−i (t− 1) ≥ δ, then p−i (t− 2) ≥ δ + c (t− 2) c0δ. (An analogous
claim holds when pi (t) , p−i (t− 1) ≤ −δ.)

Proof. Choose ηδ so that (miniAi − 1) δ ≥ 2C ′ηδ. Let c0 = 1
2 (miniAi − 1). By formula

(B.11)

pi (t− 2)− δ ≥∆pi (t− 2) + pi (t)− δ

≥c (t− 2) ((A−i − 1) p−i (t− 1)− δ)

+ c (t− 2) (p−i (t− 1)− δ)

+ (1− c (t− 2)) (pi (t)− δ)

≥c (t− 2) ((A−i − 1) δ − C ′η) ≥ c (t− 2)Cδ.

�

Lemma 31. There exists a D < ∞ such that for each δ > 0, there is ηδ ≤ n, such
that if pi (t) ≥ Dδ for some t, then for each t′ > T ηδ ,t′ < t, t ∈ T ′j, pj (t′) ≥ δ. (An
analogous claim holds when pi (t) ≤ −Dδ.)

Proof. Let D = 2 maxiAi. Let η′δ be the constant from Lemma 30. Let ηδ ≤
η′δ be such that Cηδ ≤ 1

2Dδ. By Lemma 30, it is enough to show that if t0 =
max {t : pi (t) ≥ Dδ for i st. t ∈ Ti}, then p−i (t0 + 1) ≥ δ. To see it, notice that



WAR-OF-ATTRITION WITH TWO-SIDED INCOMPLETE INFORMATION 39

pi (t0 + 2) ≤ Dδ ≤ pi (t0). Hence, formula (B.11) and the fact that c (t0) ≤ 1 im-
ply that

0 ≤ Dδ − pi (t0 + 2) ≤A−ip−i (t0 + 1)− pi (t0 + 2) + C ′η

≤A−ip−i (t0 + 1) + C ′η −Dδ − (pi (t0 + 2)−Dδ)

≤A−ip−i (t0 + 1)− 1
2Dδ.

The claim follows from the choice of constant D. �

Lemma 32. There exists ∆∗, η∗ > 0 such that for each integer A > 0, for each
η ≤ 1

28Aη
∗, there exists λ∗ > 0 such that if ∆ ≤ ∆∗, λ ≤ λ∗, then for each player i,

∑
t∈Ti:T η≤t≤T 28(A+1)η

∑
l ∆ηli (t)∑
l η

l
i (t) ≥ A.

Proof. If ∆ > 0 is sufficiently small, then Assumption 2 implies that pσi (t) ≤ 1
4 for each

t ∈ Ti and t > 1. Then, Lemma 3 implies that there exists η∗ > 0 such that for each
η ≤ η∗, there exists λ∗ > 0 such that∑

l ∆ηli (t)∑
l η

l
i (t) ≤

1
2 for each t∈ Ti and T ηi ≤t≤ T η

∗

i .

Hence, for each k, there exist t1k, t2k such that 8kη ≤ ∑
l η

l
i (t1k) ≤ 2 · 8k and 4 · 8kη ≤∑

l η
l
i (t2k) ≤ 8k+1. Then, we have

∑
t∈Ti:T η≤t≤T 8(A+1)η

∑
l ∆ηli (t)∑
l η

l
i (t) ≥

8A∑
k=0

1
8k+1η

∑
t∈Ti:T 8kη≤t<T 8k+1η

∑
l

∆ηli (t)

≥
8A∑
k=0

1
8k+1η

(∑
l

ηli
(
t2k
)
−
∑
l

ηli
(
t1k
))
≥

8A∑
k=0

1
8k+1η

(
2 · 8kη

)
≥ 8A · 1

4 > A.

�

B.4.1. Proof of Lemma 5.

Proof. Let Pmax =
⌈
Dc−1

0 maxx∈X |γ · x|
⌉
, where C is the constant from Lemma 30. Let

η′δ be the constant from Lemma 31 (in the proof, we choose it so that it satisfies also
Lemma 30). Let ηδ = 1

82(Pmax+1)η
′
1
D

1
maxi Ai

δ
, where D is the constant from Lemma 31 .
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On the contrary, suppose that |pi (t)| ≤ δ for some t > T ηδ , t ∈ Ti. W.l.o.g. we
assume that pi (t) > 0. Then, Lemma 31 implies that p−i (t+ 1)≥ 1

D
1

maxi Ai δ. By
Lemma 30, for each t ≥ T η

′
D−1δ ,

p−i (t− 2) ≥ δ + c0D
−1 1

maxiAi
δc (t− 2) .

Hence, using the definition of c (.) , we have
1
δ
Pmax ≥

∑
t∈Ti:T ηδ≤t≤T

4dlog 1
δ
Pmaxeηδ

∑
l ∆ηli (t)∑
l η

l
i (t) .

It follows from Lemma 32 that

|pi (t)| ≤
1

maxiAi
δ.

Note that by Lemma 4 and equation (3.5), we have

wi (t) = R−iyi (t) = R−ixi (t) .

Hence, by Lemma 28,
|γ · wi (t)| ≤ δ.

The result follows from the fact that wi (t) belongs to the boundary of menu mi, and
that 1− e∗−i is the intersection of the boundary with the diagonal {x : γ · x = 0}. �
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