WAR-OF-ATTRITION WITH TWO-SIDED INCOMPLETE
INFORMATION

MARCIN PESKI

This is Online Appendix to “Reputational Bargaining with Incomplete Information
about Preferences”. We study a two-sided uncertainty version of the war-of-attrition
model from “Reputational Bargaining with Incomplete Information about Preferences”.
There are two main results. First, we construct a two-type example to show that the
war-of-attrition may have multiple equilibria. Second, we show that when there is con-
tinuum of types, and players demand linear menus, there is essentially one equilibrium
of the war-of-attrition.

The Appendix is complete: it contains the description of the model, all required

notations, and the results.

1. MODEL

Two players, Alice and Bob, ¢ = A, B, bargain over a heterogeneous pie with
N = 2 parts: chocolate and vanilla. An allocation is defined as (z4,zp) € X =
{(a, b) € [0,1]" : a” 4+ b* = 1 for each n} Each player has a linear preference over al-
locations w; € U = {u eRY : Yu"= 1}. (The normalization is w.l.o.g.) The pay-
offs from allocation x is equal to uy () = Y, w4z’ for Alice type us and ug () =
Yaupxh =1—3%, upa” for Bob’s type us.

To simplify the exposition, we adopt the notation that for each player ¢, a tuple
with a subscript(a,b), denotes an allocation z such that z; = (a,b). Thus, (a,b), =
(1 —a,1—10b)_, denote the same allocation.

The bargaining takes form of a war of attrition. In alternating periods (starting
with player & = A, B in period 1), player i either continues or concedes. If he or
she continues, the game moves to the next period and the other player. If she or he
concedes, she must choose an allocation « from a (closed) menu of allocations m_; C X.

We refer to m_; as the bargaining position of player —i.
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Player ¢ start the war-of-attrition knowing their own preferences, and with beliefs
m_; € AU_; about the preferences of her opponent, where U_; = suppm; C U is the
support of the beliefs. Additionally, and independently from the type distribution,
each player is either strategic with probability 1 — A or stubborn with a strictly positive
probability A € (0,1). The stubborn player never concedes. The role of the stubborn
types is to pin down the equilibrium; it is well known that, without them, the war-
of-attrition games have a continuum of equilibria. The players maximize the expected
utility and they discount future with a common factor e™?, where A represents the
length between two subsequent decision points.

Let T; be the set of periods in which player ¢ makes decision in the war-of-attrition.
A strategy of the (strategic type of) player i is a pair o; = (aiT ;oM ) of measurable
stopping time o} : U — AT; and a choice oM : U — Am_;. A belief of player —i is a
pair of mappings A; : T; — [0, 1] and p; : T; — AA;, with the interpretation that A; (¢)
is the probability at the beginning of the period that player i is stubborn, and p; (.|¢)
is the probability distribution over the (strategic) types of player ¢ who yield in period
t € T;. Let U7 (u;) denote the expected payoff of player i type u; € U;.

2. TWO-TYPE EXAMPLE

We describe an example with two types, and with two different equilibria.

Fix two constants a, b such that

a 1
<b < —. 2.1
a+1 = 2 (2.1)

For each player i, let

m_; = {(CL, O)z ) (07 b)z}

be the menu of choices when player i concedes. Each player has two types u® = (1,0)
and u’ = (0,1) and both types have a positive probability. The assumptions
imply that each player’s type prefers to win regardless of the choice of the other player.
See Figure . The allocation x; = (a,b), is defined as the unique allocation such
that the two types of player ¢ are indifferent between their optimal concession allocation

from menu m_; and x;. We refer to x; as the indifference point.
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(2

Proposition 1. There exists 7 € (0,1) such that for each i, if w (u”_
there is a sequence of equilibria of the above game as A — 0, A — 1 such that player i

) > 7", then

concedes with a probability arbitrarily close to 1 in his first period of action.

The reason for the multiplicity of equilibria is the lack of natural sorting to determine
which types concede first. In the proof, we construct an equilibrium, in which the last
types to concede are u”,; and u; if the roles 2 and —¢ are exchanged, a different pair of

types ends the game.

2.1. Proof. We briefly describe the construction. To fix attention, assume that i = A.

The equilibrium has three phases:

(1) Atom concession. In its first period of action t9, each type u of Alice concedes
with a positive probability. If Alice moves second, then Bob does not concede
in his first period. For each subsequent period after the initial concession,
the expected continuation payoff of each type of each player is equal to her
immediate concession payoff.

(2) War of attrition with both sides active. In the intermediate phase, t) < t < ¢},
each type u = uf,u} of each player ¢ concedes with a positive probability. The
rates are chosen so that each type is indifferent between waiting and conceding.

(3) War of attrition with one side active. In the last phase of the game, t} <t <
T%, the two remaining types uj and u$ concede at constant rates that make
the opponent type indifferent between conceding and waiting. The concession
rate of Bob is higher. The phase ends when the strategic types fully reveal

themselves.

Next, we flesh out the details, starting from the end: Let F f (t) denote the probability

k. . . .
that type uj survives till period ¢.

(1) War of attrition with one sides active. In the last phase of the game, t} < ¢ <
T, the two remaining types u% and u% concede at constant rates that make the
opponent type indifferent between conceding and waiting. One can calculate
using Lemma [6] that the concession rates are equal to ,

1 1
2 _ (A -A 2 _ (A -A
pA—<e —e >1 7Aande—(e —e )1 e

where the approximation is when A — 0. Here, % is the strength of type ul

facing u§ (winning payoff is 1 and the concession payoff is b); analogously, i is
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(I—a,1)

(1,1-1b)

chocolate 0; Yl x!

(A) Example with two (B) Theorem
types for each player.

the strength of type u$ facing u;. The concession rate of Bob is higher.
Importantly, the two concession rates are too slow for the other two types (u%
and u$)

1

16 _ A’
b e

1
2 A -A 2 A -A
pA<(e —e )T_Q_Aandp3<(e e )
each of them would prefer to concede immediately. (To see it, notice that type
ug winning payoff against u9 is equal to 1 — a. Hence, the strength of u§ is

l—a

equal to ) This ensures that none of those two types has a profitable

deviation to reach the third phase. We have
Fy (th+1) = By (h+1) = (1 p2) A,
Fa(th+1)=F5(th+1) = (1- pi)*%(
When A — 0, this is approximately equal to
F; (t; + 1) + A= e (T =5) A\,
b

a __ 2
15 < a1 B
The phase ends when the strategic types fully reveal themselves.

where 74 =

(2) War of attrition with both sides active. In the intermediate phase, t? < t < ¢},

each type u = uf,u} of each player ¢ concedes with a positive probability. The
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rates are chosen so that each type is indifferent between waiting and conceding.
In order to satisfy the indifference condition, the average winning allocation of
player j conditionally on —j concession must lie on the ray that connects the 0

payoff and the indifference point:

for some v > 1 and a € (0, 1) (see Figure [2.1a)). It follows that
1_'_1(1 1)
a=-—+=(-—-).
2 2\b a

By Lemma [6], the concession rate of each player is equal to

1
1 A -A
p = (e” —e — T T =&
( ) 2a T2 2
(c) (v)
(Note that i + i — % = wi = w{) is equal to the strength of type u§ and/or

u who wins with allocation w;.) In order to ensure that the average concession
allocation is equal to w;, the types must concede with probability pjl. (uk> =

aFp!, where

) a, if k=,
o g
l—a, ifk=c
Hence,
0 1 _%(tl'_to‘) 0
Fi(t9+1)+a=(1-p") "7 " A(F (8§ +1) +A)
~ e 37 (1) A= 33 (T =6)A (2.2)

Moreover, because F} (t) = Ff (t — 2) — o*p' Fj (t), it is easy to check that for
each t > t?,
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Hence,
FE@Y +1 ~1(tt—19)-0
J(OA >:k<1_p1) 1—(1—p1) 3(6-))-00)
Fy (£ +1)
oy -H(e-)-ow Ef (8)
T (1 —p) 1)’
F (1))
where O (1) < 1. If we take v! = ﬁ, the latter is approximately equal to
a'b

FF(th+1)

k —~AL(t1—9)A —~L(tl—9)A
G+ <1 - ) ) +e 0 M e omy (23)

The end date of the phase, ¢!, is chosen as the last period when types u%
for Alice and u$ for Bob concede with a positive probability. (To make sure
that it is possible, we need to assume that the initial probability of type u} is
sufficiently high.)

Atom concession. In its first period of action t%, each type u of Alice concedes
with a positive probability 1 — F% (t% + 1). If Alice moves second, then Bob
does not concede in his first period. For each subsequent period after the initial
concession, the expected continuation payoff of each type of each player is equal

to her immediate concession payoff.

Let X! = (tjl - t?) A and X? = (T* - tjl) A for some j (neither of the two quantities
depends on j but for more that O (A)). It follows from (2.3 implies that

7 (ug) = af (1 — e*XQ) .

Hence, (2.3) allows to determine X2 if 7 (u%) < 1 — 7* and 7* > «. Further, (2.2)
implies that

1 1
X'~ —2$log)\ — ﬁfy%XQ.

This makes sure that the probabilities add up for Bob. For Bob, let p = 73 /7% < 1.
Then, (2.2)) implies that

Fi (9 +1) + A a2 X em373X7)
LA o P Y P (2.4)

1.1 1
~ o 37 X (1=p)\1—p
~e 2 AP
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where in the last equality we used the fact that e 37 X em31B X7\ = 1. Hence, for
appropriately small A\, Fiy (t% + 1) < miny 74 (uﬁ) This verifies that the probabilities
add up for Alice as well.

3. CONTINUUM TYPES

Next, we assume that players bargaining positions take form of linear menus: m; =
{z :¢_; () < wv_;} for some preference ¢_; € U_; and v_; > 0 and each ZH Additionally,
we make two assumptions. The first assumption ensure that the beliefs about i’s types

are sufficiently regular in the neighborhood of vectors ;.

Assumption 1. (Regularity) For each player i, U; = suppm; has a nonempty interior
iU, P; € intlh;, and m; has a strictly positive Lipschitz continuous density with respect

to the Lebesgue measure on U.

Recall that the payoff from winning the war of attrition depends on the choice made
by the other player when conceding. The next assumption says that, no matter what

is the choice, all types of player ¢ would rather win than lose.

Assumption 2. (Large Gap). For each u; € U;, for each x; € m; and each y; € m_;,

inf,em, u; () > SUDy e, Ui (y) .
Let
o =sup{a:al;+ (1 —a)0; € m_;},
a; =01+ (1 —a;)0;.

Here, a}is the unique allocation that lies in the intersection of the diagonal and the

boundary of menu m_;. Let

*
I
i * - ) !

&; u; (ay)

where the last equality holds for arbitrary preference type w; € U. Thus, S} is the

strength of player i defined as the winning/concession ratio under the restriction that,

1t is convenient notationally describe the menu as the set of all allocations that the opponent type
1_,; payoff that is no more v_;. (Of course, such a menu is equal to the set of allocations that give
the same type of player i a payoff of at least 1 — v_;.) Because in this ssection we assume N = 2, any

linear menu is equivalent to a menu that consists of two most extreme allocations in the menu.
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Ficure 3.1. Illustration of the proof .

when conceding, the player must choose an allocation that belongs to the diagonal.
Because of linearity of preferences, so defined strength does not depend on the player’s
type. The main result of this section shows that the strength characterizes the behavior
in the war of attrition.

Theorem 1. Suppose that Assumptions and@ hold. Suppose that S} > S*,. For
each § > 0, there exist \*, A* > 0 such that if A\ < X\* and A < A*, then there is T < 0o

such that ™7 > 1—6 and, in any equilibrium, player —i concedes with probability at
least 1 — O before the end of period T

Theorem [1] shows that when the type distribution is continuous, there is an unique
equilibrium. The equilibrium concession behavior is the same as if the players choices
were restricted to the diagonal. In the equilibrium, almost all of the types choose one
of the extreme allocations in the menus; however, we show that the ratios with which
the extreme allocations are chosen balance so that their average lies on the diagonal.
The Large Gap assumption ensures that the concession rates in the early game are
bounded; because the late game is arbitrarily long, it means that the late game effects

dominate over anything that happens in the early game.

3.1. Proof intuition. We describe the intuition behind the proof in few steps. As in
the rest of the paper, the argument relies on the analysis of the late game. The goal

is to show that after sufficiently many periods, the players behave as if they conceded
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with outcomes a} for each 7. Then, their concession behavior is determined by strengths
S;. Because S7 > S* ., player j concedes significantly faster than her opponent. The
rest of the argument proceeds in the same way as in the case of Lemma 1 of the main
paper.

Sorting. The main difficulty with two-sided incomplete information is the lack of
natural sorting. When the menus are linear, a partial sorting can be restored. Let
yl,y? € m_; be two extreme points of menu m_;. (See the left panel on Figure [3.1})
Let UF be the subset of types of player i who strictly prefer allocation y¥ to allocation
y7 %, i.e., the types who care about issue k relatively more than the type ;, and,, as
follows, than all types in U, *. We say that such types are on side k. Take any two
types u,u’ € UF and suppose that u* > u/* > ¢F. Using a similar argument as in the

previous sections, we can show that for any allocation y ¢ m_;, we have

In other words, type u cares relatively less about winning and obtaining y rather than
losing than type u’. This implies that type u is going to concede before type «’ in the
war of attrition. From now on, we rank player i types according to their distance to
the last type ;.

Let u¥ (t) denote the largest type on side k& who survives till period t. (See the
left panel of Figure ) We say that player i is active on side k in period t if
uk (t) # ulF (t+2), ie, if outcome y¥ is chosen with strictly positive probability in
period t. Because of the general properties of the war-of-attrition games, each player
must be active on at least one side in each period before the final concession of the
strategic player.

Indifference condition. If the player is active on side k in two consecutive periods t —2
and t, then types uf () must be indifferent between conceding in those two periods.
There is a simple geometric characterization of this indifference. For each t € T;, let
p—i (t — 1) be the concession rate, i.e. the probability of —i conceding conditionally on

reaching period t — 1 and let

w; (t—1) = Z Prob (—z' chooses y",| — i concedes at t) y"
2
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be the average allocation left to her by player —i conditionally on him conceding. Then,
type uf (t) is indifferent if
uf () (uF) |
=p_i (t— 1) e 2uf (1) (w; (t— 1))+ (1= p_i (= 1)) (1= e722) (uF (1) (4))
or, if allocation

pi(t—1)e
B p (- (o)

belongs to the indifference curve of type u¥ (¢) that passes through her optimal choice in
the menu. We refer to w; (t — 1) as the win outcome and to g; (t — 1) as the anticipated
payoff in period ¢t — 1. The latter belongs to the ray between the win outcome and the
allocation 0.

If the player is active on both sides, then the anticipated payoff must be equal
to the indifference point x; (t), i.e., the unique allocation such that each type u? (t) is
indifferent between z; (t) and her optimal concession allocation y¥. For future reference,
note that this is only possible if the indifference point belongs to the convex hull
spanned by the allocations y',, 4%, and 0 (the dashed area of Figure .

Structure of the late game. We show in the proof that the players must be active on
both sides in each period of the late game, i.e., when the remaining types are sufficiently
close to the lowest type ;. There are two steps to the argument. First, we show that
the indifference point must remain in the convex hull of y!,, 2, and 0 (the dashed area
of Figure . Otherwise, say if at some ¢ the indifference point leaves the convex hull
one the side k, then, we show using the indifference condition that the player must be
only active on side k for each ¢’ < t. But that leads to the contradiction as there must
be a substantial revelation of types on side —k before the late game is reached. TBA

The diagonal. Finally, we can show that the late behavior must remain close to the
diagonal. We can estimate the late game rate of movement of the indifference point by

the distance between z; () and the win outcome w_; (t):
Az (1) =a; (t) —a; (t+2) = ¢; () [w—; (t) — x; (t+ 2)], (3.1)

where the proportionality constant ¢; (t) depends on the concession rate, etc. The idea
is simple: if player i chooses y¥ with a relatively high probability in period ¢, then the
gap between types uf (t +2) and uf (t) is relatively large. But it also means that the
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indifference point is moving towards side k. A careful calculation that relies on the
Lipschitzness of the density in the neighborhood of v; shows that the indifference point
does not change (much) only if the win outcome is very close.

Suppose that in the late game, the indifference points z; (¢) remain in the close
neighborhood of some constant z}. In such a case, implies that w_; (t) ~ =}
for both players 7. A the same time, the indifference condition implies that x; (t) is a
convex combination of allocations 0 and w; (t — 1) &~ z* ;. Putting those two conditions
together, we obtain that z; must lie on a diagonal for each i (see the right panel of
Figure .

If the indifference points do not converge, we provide an argument based on equation
() that shows that in such a case, the indifference point must diverge away from the
diagonal. Another argument, similar to the one used above in the discussion of the

structure of the late game, shows that it leads to a contradiction while in the late game.

3.2. Outline of the proof. Here, we describe the main structure of the argument,
with notation and key steps. The proofs of the key lemmas can be found in the rest of

the section.

3.2.1. Notation: Menus. We begin with defining notation that is specific to linear
menus. For each player ¢, define two extreme allocations in menu m_;: for each k = ¢, v,
let

i 0 - ) if ¥; > v;
E (7/%‘ kth coordinate’ —kth coordinate | » % = Ugy

Yi = 1 vi=i
kth coordinate) s

) otherwise.
—kth coordinate

Then, y* € m_; for each player i and each side k. Let
bdm_; = con {%17 yf}

be the outer boundary of menu m_;.
For each allocation, we define projections on the menu boundary. For each player 1,
each side k, and each allocation x # 0, let Pfz > R* .z € R be uniquely defined by

> (Pfa:) =1land ) (Pfx) y¥ = ax for some a > 0,
P k:

> (R’izx) =1land ) (Rlilx) y" . = ax for some a > 0.
k k
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c

Yy

FIGURE 3.2

Let
Pax =Y (Pfx) y¥ and R_;x = > (R]izm) y" .
k k

Then, PFz is the “k “ th coordinate of the projection of  on bdm_;; RFx is the “k “
th coordinate of the projection of x on the line containing bdm;. See the left panel of

Figure [3.2

3.2.2. Sorting. Next, we show that the equilibrium types can be partially sorted. Let
k_ . cx = ok
U = {u cU: arg max u - = {yl }}

be the set of player i types for whom y¥ is their optimal choice. Then, U; = U} U{1);} U
U
The next result says that any equilibrium can be sorted on each side separately. In

the Lemma below as well as the rest of this proof, we take (—=1)° = —1 and (—1)" = 2.

Lemma 1. For each equilibrium o', there exists an equilibrium o with exactly the same
payoffs, T;"° = TZ-*’UI for each i, and such that for each player i and each k = 1,2, there
exists monotonic sequences (—1)* nF (t) > (=1)" 0¥ (t +2) ,t € Ty, such that 0¥ (T}7) =

0 and for each wu,

o (u) =tand o} =yf and iff (u' — o)) € [(=1) nf (t+2), (=) nf (1)).
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From now on, we assume that the equilibrium satisfies the thesis of the Lemma.

Define a vector
Y= (_1cth coordinate 1vth coordinate) € Rz- (32)

Then, u¥ (t) := 1; + 0¥ (t)y € UF is the unique type u such that n¥ (t) = u¥ — ¢¢. By
¥ (t) is the “highest” type to concede in period ¢ among all types in UF.
We also take n¥ (t) = 0 for each t > T*.
Let F'(n) =m{u: (u’ —y) <n}. Let
dF (0)
dry

the Lemma, u

= > 0. (3.3)

3.2.3. Notation: Concession rates. For each player i, each side k, and each t € T}, let

P (1) = r{u:0>w —yp > k) ifk=c,
mau:0<u’ =Yy <nf(t k=,
{u:0<u —gp <nf ()} itk

be the mass of the types of player ¢ on side k that have not conceded before period
t. By assumptions, each FF is differentiable, and its derivative is Lipschitz continuous
with constant K < oc.

We use the sorting properties to rewrite the definitions from Appendix[A.1] For each

function A : T; — R,we write
Ah(t)=h(t)—h(t+2).
For each player i, each t € T;,t < T.°7, each k, let
AFF(t
@ = opn
S AR (t)
be the conditional probability of the concession on side k given the concession. The

concession rate is equal to
o (1) = ZRAFE()
' SR EF )+ N
and, for each t € T'_;, the win outcome of player ¢ and the weighted win allocation are

equal to
w; (1) = Z Qliz (t) yﬁi; and
k

(0 = e ey D05 (04
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3.2.4. Best responses and indifference condition. Next, we provide a characterization
of the best response concession thresholds. For each t € T}, t < T%° define z; (t) € X
to be the unique allocation such that, if offered in period t,it would make each of the

types u? (t) indifferent to conceding:

(2

uf (t) - (mz (t) — yf) = 0 for each k. (3.4)

We refer to x; (t) as the indifference point of player i.
We say that player i is active on side k in period t € Ty if nF (t) > nF (t + 2). Because
of Lemma E], in each period before T*(with a possible exception of the first one), each

player must be active on at least one side.

Lemma 2. If player i is active on side k in period t, then, it must be that
uf (t+2) - (yl-(t—l—l) —yf) <0, and
uf () (s (= 1) —yf) 2 0.
If player i is active on both sides in periods t and t — 2, then
yi(t—=1) =i (¢). (3.5)
Proof. A straightforward corollary to Lemma [6] 0

3.2.5. Late game estimates. We being the analysis of the late game. For each ¢ and

each 7, define
T!" = max {t Y b (t) > 7)}
k

and let 7" = max; T,. We refer to periods t > T as the late game. If 1) is small, all the
remaining types in the late game are very close to v;. The equilibrium behavior has

many natural approximations. For each t € T}, let

- _1\k ok L _1\k k

> (=1) i (¢) > (=1) An; (t)

It is straightforward to verify that for each t € T,

A () - ZLD) At
Z S (1) (8)

Additionally, the regularity of the density implies the following approximations:

(QF(t) - PE(t+2). (3.6)
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Lemma 3. There exists constant C' that is independent from A\ and B such that if

n < 15, then for each i,k, each te T; and t > T",

Plx; (t) — PF (1) < C

7

Q1) -QF(n| <

SLAN (1) SAF (1) I
‘ S (t) Sy F(t) =¢ (Z Ax (t)> ‘

‘AW@@—AHWOSC<ZAHQO,

3.2.6. Late game: both sides active. We use the above estimates to establish the key
technical property of the late game:

Lemma 4. There exists n > 0 that is independent from N\ and A and such that, if

A< in, then, for each t > T™, each player is active on each side.

Together with Lemma [2, the result implies that for n > 0 sufficiently small, each
t > T" each player ¢ such that t € T;, holds.

Finally, we show that the win outcome must remain close to the diagonal. Recall
that v = (—1,1) is defined in (3.2). Then, |y - z| measures the distance of allocation x

from the diagonal.

Lemma 5. There exists A*, \* > 0 such that for each d > 0, there exists ns < n such
that for each A < A*, X < X\* for each t > T t € T;,

3.2.7. Proof of Theorem . Let £ = é (S;‘ — Sij) > 0 and let

w; (t) —a*,|| < 0.

_SyrE-l

= <
Sr—€e—1

As in the proof of Lemma 1 of the main paper, let S; (¢) be defined as the maximum

strength of the type conceding in period ¢t. Then, for each player j, t > T t € T,
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we have

S; (t) = max max (Wi £ 1) - (wi :»i
ket rmim) (i +ny) -y

1—a*, + <<wi +n7) - (wi (t) — a*—i))-

1

= Imax max " &
ko ne[nkt+2)mk ) ai +ny-y;

Hence, by Lemma [f] there exists 7%, A*, A* > 0 such that for each n < n*;n < X\ A <
A*, and each t € T;we have

S;(t) = S —¢,
S ()< 5%, +¢.

The rest of the proof follows the same three-zone strategy as the proof of Lemma 1 of

the main paper. We omit the details.

APPENDIX A. PRELIMINARY ANALYSIS OF THE WAR-OF-ATTRITION

In this Appendix, we perform a preliminary analysis of the model from Section ?7.
The notations the results that can be found here are used in all the remaining parts of
the Appendix.

A.1. Notations. For each player i = 1,2, let t = i be the first decision period for
player .
For each player ¢ and each t € T}, each measurable set U C U;, define the probability

that player ¢ with preferences in U yield in period ¢ as

f7UR) =(1-2x) /O'iT (t|u) dm; (u) .

U
Let f7 (t) = f7 (U|t) be the probability of concession in period ¢. Let
Fry =2+ Y f2(1), and

s€T;:s>t

V() = s 7 0.

be, respectively, the probability that player ¢ has not conceded before period ¢ and the

concession rate in period t.
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For each t € T, let

wr ()= [ o) s
e p7; (t)
e 227, (t) + (1 —e=22)

Here, wy (t) denotes the allocation that player i obtains in period ¢, conditionally on

df? (u|t) € X, (A1)

y? (t) = w (t) € X. (A.2)

the opponent’s concession in that period ¢; 7 (¢) is the winning allocation weighted by

the concession probability. Further, for each type u € U; of player i, let

L;(u) = max u (), and SY (u,t) = W

Here, L; (u) is the payoff received upon concession, and S (u,t) is the (endogenous)
strength ratio.

The superscripts ¢ in the above notation denotes dependence on the strategy profile
o; the subscript ¢, on the player .. We drop the superscripts and/or the subscripts

from the above notation whenever it does not lead to confusion.

A.2. Best response characterization. The expected payoff of player i type u; from

yielding in period t € T; given opponent strategies (o) is equal to

U7 (uit) = 32 €727 (s) (wi (wf (5))) + e S F7; (t+1) L (ui).

sis<t,s€T_;

For each t € T}, we have
A U7 (ugy t +2) — U7 (us, t)] (A.3)

=e A f7 (¢4 1) (us (wf (¢ 1)) + [ (F7 (£ +1) = £, (¢ + 1)) = F% (¢ +1)] Li (ws)

=F7, (t+ 1) [e™2p%, (t 4+ 1) (u; (wf (4 1)) — (e722p7, (t+1) + 1 — e 722) L; (uy)]

= (7t + 1)+ (1= ™) F7, (t+3)) Jus (s (t+1)) — Li (u5)]

We have the following corollary to the above calculations and definitions.

Lemma 6. For each type u_; of player —i, eacht € T;, U, (u_;,t + 1) > (<) U, (u_, t — 1)
if and only if

ui (923 (1)) 2 () L (u) s 0r 97 (6) 2 () (o8 = e7%) oy 1

u_;,t) —e A’
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A.3. End of the war of attrition. Let 7,"" = max{t € T; : f7 (t) > 0} be the last
period in which a strategic type of player ¢ concedes. We have the following standard

result.

Lemma 7. Suppose that o is an equilibrium.

(1) For each t <T;7, f7(t) > 0. Also, |T;"° —T7| = 1.

(2) For each t <T;°7, yJ (t) ¢ intm,.
(3) For each i, T < oo, and F7 (T;7 +2) = \.

)

Proof. By Lemma @ iff (t) = 0 for some t € T_;, then it is a strictly better response
for (almost any type u of player i to yield in period ¢ — 1 rather than to wait to period
t + 1. It follows that f7 (¢t +1) = 0. An induction implies that f7 (#') > 0 for each
t' > t. The second claim follows from the same argument.

If ¢ < T}, then the part 1 of Lemma [7] implies that there is a type u; of player i for
whom period ¢ + 1 is a best response. By Lemma [6] u; (v (¢)) < L; (u;). However, the
latter inequality cannot be satisfied if y¢ (t) € intm;.

For each i, let L™™ = inf, ;. L; (u;) . Because f7 (t) > 0 for each ¢ < 7.7, it must
be that for each ¢t € T}, if t < T;°, there is a type u € U_; of player —i such that
U% (u_i,t —1) S U7 (u_s,t + 1). It follows from Lemma [6] that for each t < T},
l+e 2 1

e™® maxyueq 5% (u_;t) —e

Pl (1) > (1—e?) <> (1—e?) I >0,

which implies for each ¢ < T,

FPt)y=1—pl (t—2)F7 (t—2) < (1 B (1 B e—A) LT;D) P 2)
< (1= (o))

Because F7 (t) > ), it must be that 7,7 — ) < log(l—(llii:\A)LTi.“)' O

A.4. Monotonicity. Recall that for A, B C R, A is strongly dominated by B, we write
A <g B if for each a,€ A,b € B, min (a,b) € A and max (a,b) € B.

Lemma 8. (Monotonicity) Take two types u;,u;, € U;, and suppose that S (u;,s) <

S7 (ul,s) for each s € T_; such thats < T~7. Then, argmax U/ (u;,.) <g argmax Uf (ul,.).
If S7 (us,8) < SY(ul,s) for each s € T_; such that s < T~ , then, if U7 (u;,t) <

U? (u;, ') for some t < t/, then U7 (u},t) < U7 (u,t').
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Proof. Notice that

1
Ug iat/ - UU iat
-y (U7 (it = U7 (1)
— > e A7 (5) 87 (u, 5) + e VA (1 - > (s)) —e 1A (1 - Y f (s))
sit<s<t/,s€T_; s:s<t!,s€T_; sis<t,s€T_;
1
= (U7 () = U7 (uj 1) — Y ™27 (s) [S7 (s 8) — S (ui 5]
Li <ul) sit<s<t/,s€T_;
Thus, function UY (u;,t) = ﬁlff (u;,t) has increasing differences in the strength
ratio and time. The result follows from the Topkis Theorem. U

A.5. Early game. The next result discusses the concession behavior when a player
may still have very weak (i.e., with strength not much higher than 1) types. It says
that, essentially, either player —¢ concedes early with a probability arbitrarily close to
1, or all the weak types of player ¢+ concede early, where “early” here means with a

small amount of discounting.

Lemma 9. For each 6 > 0, there exists ¢ > 0 and A* > 0 such that if A < A¥,
then there exists Ty such that e=?T0 > 1 — 26 and for each equilibrium o, either (a)
Fo(Ty) <6, or (b) 0}° (w;) < Ty for all u; € U st. supyer  S7 (uit) < 1+e.

Proof. Let k* = [—log, d] < —log, d+ 1. Find € > 0 such that 1 —2¢ > (1 — 5)’%*. Fix
A* > 0 so that 2A* (1 — log, §) < log {=%. For each A < A*, let na be the smallest
even integer such that e 2”4 < 1—2¢. Then, e 2" > (1 — 2¢) e™ 22, Take Ty = k*na.
Then,
oA > (1 = 25)k* e 2K > (1 _ §) e 2A0losd) > 1 95

Suppose that there is a type u; € U; such that S7 (u;,t) < 14« for each t € T_;, and
suppose that T" > T} is a best response stopping time for such type u;. Then, it must
be that for each t € T;,t < T, type u; prefers to continue waiting till period T rather
than conceding in period t:

Fi(t) Li(w) < 3 foils)e O S; (g 8) Ly (w)] + Fy (T) e T2 Ly (w;)

t<s<T:seT_;

After some algebra, and taking into account that S; (u;, s) < 1+ ¢, we get

0< > fuls) (e’(s’t)A (1+¢)— 1) :

s>t:seT_;
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Due to the choice of na, for each t < T — na, the above is not larger than

< Y fa@et X [l (et (4o —1)

t<8<t+7‘LAZS€T_i S>t-|—7‘LAZS€T_i
<e ( DR ETO R S <s>) .
t<s<t+na:s€T_; s>t+nas€T_;

In the second inequality, we used the fact that e "4 (1 +¢) < (1—2¢)(1+¢) <
—e — 2¢? < —¢. Thus, for any such ¢,

1 1
> f-i(s) > 3 ( > fals)+ > fu (5)> =5 > fuils).
t<s<t+na:s€T_; t<s<t+na:s€T_; s>t+na:s€T—; t<s<T:seT_;
It follows that
M1 1
s<Tp:s€T_; =1

APPENDIX B. PROOF OF THEOREM [1I

B.1. Proof of Lemma [I, We have a simple observation.

Lemma 10. For each equilibrium o, any player i, each side k, any two types v; +
7y, i + 1y € UF and such that 0 < (=1)" 1/ < (=1)* 1, we have

Si (i +ny,t) < S; (U + 'y, t) .

Proof. Fix i and k. We begin with a simple observation. Suppose that 0 < (—1)]C n <
(—l)k n (the first inequality implies that 1; +ny, ¥; +n'y € UF). Then, y¥ is the optimal
choice for preferences 1; + 7y from the set of all allocations that deliver at most y* to

player with preferences v; + n/y:

{yf} = arg max (¥ +n7) ().
2EX:(Yitny) (@) < (Witn) (vF)

It follows that if (¢; + ) (z) = (¥i + 1Y) (yf’) for some x € X, then
(Wi +17) (&) = (i + ) () -

Notice that for each t € T';, each n so that 1; +ny € UF,
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(Wi +m) ()

Sz' (¢Z + 17, t) _ (wl + 77’7) (wi ]Et)) 1

where, w; (t) € X. Then, by linearity
(i + ) (9F) = (@i +17) (i (£) + (1 = ) 0,) .
For each 1/ such that 0 < (—1)* 5/ < (—1)" 5, the above observation implies that

(i + 1) (s (1) + (1 = ) 03) > (s +107) () = (s + 1) (mws () + (1 = ) 0;),
which implies that a,, > a,y, or S; (i +nv,t) < S; (i + 117, t). O

We proceed with the proof of Lemma [1} Fix an equilibrium o. For each player ¢,
cach k, choose a monotonic sequence (—1)*n¥ (£) > (=1)* ¥ (t +2) ¢ € T}, such that
for each t € T;,

w{B+m: (=D ne [nft+2),95 1)} =/ o (ult) dr (u).
u
is equal to the probability that a type in U concedes in period ¢ in equilibrium o.

Consider a strategy
o' (u) =t and oM = y¥ and iff (v’ — YY) € [T]f (t+2),nk (t)) :

We going to show that (a’ ,oM ) is an equilibrium with the same payoffs as o.

First, notice that the strategy o/ of player ¢ leads to the same probabilities of yielding
by player i as well as the same outcomes. It follows that player —i payoffs

are not affected by the modification.

Second, we are going to show that ¢ is a best response for each type u = 4+ vn
such that (—=1)"7 € (nf (t+2),nk (t)) . On the contrary, suppose that ¢ is not a best
response for u. Notice that if the interval is not empty, ¢ is played with strictly positive
probability under strategy o. Hence, there is some type v’ = 5 + (—1)k n'y € UF for
which ¢ is a best response, u/ # u. Suppose that (—=1)" 7’ > (=1)"5. By Lemma
and Lemma , the best response of all types v = 8+ 1"y such that (—1)" 5" < (=1)*n
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is strictly larger than ¢t. But this implies that

> /u o (uls)dr () = 7 {3+ " (~DFo < (~1) )

= 3w {8+’ () (=1 e [nf (s +2)0f (5)) ]

s€T;:s>t

+r{B+n": () 0 (=1)*n € [ (t+2),7)}

S RACREC J+m{B+am” (=) " (-1 n e [ (t+2),n)}.
SET;:s>t

> Y o (ult) dr (u) .

s€T;:s>t Uk

But this leads to a contradiction. A similar contradiction can be found when (—l)k n <

(=1)" 7 . This concludes the proof of the Lemma.

B.2. Proof of Lemma [3 Let af (#) > 0 be such that

()= Sal 0t + (1= Xl o) 0.

l

so that

Lemma 11. There erists constants ¢;,d¥ > 0 such that ¥,d\ = 1, such that if we
define @ (t) = o — d! (Zz al (t) — 1) for each side j, then

(Zl Ofi (t) —

IR
(1"t () = (t)
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Proof. For each k, we have
0= (1) (u) —uf (1) i (1)
= (@i +nf7) - ((eF @) = 1) (4F). + a7 () (v77))

= (St 1)vr a0 (o 0 (%), - (5)) + (St -1) (1)
_ @ ol (t) — 1> v — (—1F k() (a;’“ () (v (' = w5) — (~1)F (; a; (1) - 1) (-t >>
_ @ ol () - 1> o= (-1 (8 (af’“ (t) - d;* (? (0 - 1))

—1)*(v-yF)

where we take ¢; = v-(y? — y§) > 0, and d; * = ( > 0. The constants satisfy the

required conditions. (To see that the constants are positive, notice that (y¥)" > (y)°
M) =0u ") _ e

and that (y9)" < (y§)°. Also, notice that d¥ + d;* = - =4 =1)
This implies the first equality. For the second one, observe that
1
— —1) k (t T ar (t
- V0w ato

- ] - 1 I~ N Al ()

Zl <_1) 775 (t) a;’“(t) + % Zl @ (t)
The sum in the denominator of the last expression is equal to >, @ (t) = X, al (t) —
(i) (Sial(t) —1) =Sab () = Siad () +1=1. O
Lemma 12. For each i, k,t, 3, Aal (t) > 0, and there is a constant o > 0 such that

ok (1), @ (1) < a*, and

Sl (t) — 1| ATk ()] <@l (1)) Aal (1)

l

*

Proof. Because space X is compact, there is a constant o* > 0 such that of (t) < «
for each k,t. Tt follows that af (t) < of (t) < a*.
Using Lemma [11], we observe that

v 1 e Yat) - (Tid) (Zaé(t)—l)_c< Sk (1) _1>
T (=Dl v Yal(t) -1 v \Tal(t)—1 '
Because (—1) " 7% (¢) is increasing with ¢ for each k, the left hand side is decreasing

with ¢, which implies that the right hand side is decreasing with ¢, or that 3" ! (¢) is

increasing in .
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By the first claim, for each ¢ and ¢, there is k such that ’A@; b (t)‘ < Aa@* (t) . Because

(=) "7k (1) = o EL_;(t) is increasing in ¢, we have

> Aa (t) Y aj (1) — 1
Aak(t) — af(t+2) "’

which implies that

Aa;* (t)] <a; (1) Aaj(t)

l

Sal(h) -1

l

> ai(t)

l

~1| < (gt )

For the next result, recall that f* = % (0) (see equation )

Lemma 13. There exist constants C < oo (all independent of 5 and \) such that for
each i, k.t € T* and t > T",

‘) -1 <Y (D) Al (1) < C2S°AF! (1)
) =1 <O (=)' ()] < C* Y F (1)
fr(=n* Am (2) f (=D nf (¢)
AFF () _1" o =C
(=D Agt) | D ) !
> AF(t) il > F(t) H=¢ EZ:FZ (t)‘

Proof. By Lemma [11],

Hence,
Vi ! - I 1 Al L1 - ! Ant (t)
o leAai (t)‘ = le (=)'l (1) > (1)1 (2 +2)) 2.(=1) k() nl(t +2)

:;(_1)1(1() Lt +2) Al (t §§lj ) Ay (1),

where the last inequality comes from the fact that @ (t) < 1 for each i,,[,t. This shows
the first inequality in the first line.
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Because the increments in F' are always positive, and 3, 1! (7" + 2) = 0, the first
inequality in the second line inequality follows from the above.
The first inequality in the third line follows from the fact that the derivative is

Lipschitz. All the remaining inequalities follow from the first. O

We can proceed with the proof of Lemma . The definition of of (¢) as well as
Lemma imply that

k _
Pra; (t) = Zl ol and PF () = of.
Taking into account that of (t) = a¥ (t) + d¥ (¢) (Zl al — 1), we have
p ok af () o R ey a1
Plau(t) = PE () = 0 ~af () = - (af (0 — df) =002

An application of Lemma [13] demonstrates the first estimate in the thesis of Lemma [3]
Second, by Lemma, [12]

of (1) - dt

1

PNHOI

— Sal(t) -1
) (1 ! ol (1)

A (Pras () = PE ()] <[ 10

’Z ol (t) —1HZl
( ol (1)) (Sial (t+2))

¥ a0

l

+ |k (1) —

<3a*

Another application of Lemma [13| shows the second estimate in the thesis of Lemma

Bl
Third, observe that due to Lemma [I3]
Q) AFF(t) f*Zmﬁ(t)_1|<|1+KZZ(—1)177§(t)
QF (1) “ (=1 )nﬂw&AH@ TN ES (D)
S S0
1

l

-1

8K <C

for appropriately defined constant C.

The same calculations show that

2 A??ﬁ (t) 2 AFil (t) _
amw/<2wa>_4‘

sz>awu>_4<
> AFil (t) DY 7711' (t) N
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B.3. Proof of Lemma [ Define

7

TP = max {t € Tyt < T : w; (t) € intOf for some k’} :
T!" = max {t Tyt <T77 :nf(t) > n for some k} for each 7,

TF = max {t € T;,t < T;*" : player i is only active on side k} .

(2

For each x = 0,7, k,let 7" = max T?".

B.3.1. Geometry. For each player i, and each k, define
Y, = {x € X\intm_; : PFz < PF (yjf) for each k} = con {yl_i,yzi, 0} \intm_,
v — {x €Y;: Pre = pt (yj)} — B; Ncon {y:f, 0} \intm_;,

(2

OF = {x . Pfx > PF (y:k)}.

(2

To interpret the above sets, it is helpful to notice that y () € Y; for each t € T_;.
Additionally, the definition implies that y; (t) belongs to the convex hull spanned
by the allocation obtained from the optimal choices of the other player and the 0
allocation.) Thus, set Y; contains all possible weighted winning allocations of player i
(i.e., when —i concedes). Its subset Y;* contains only those allocations that are obtained
if —i concedes and chooses y~F with (conditional) probability 1. (The reason for the
notation is that —k for player —i faces side k for player i. ) Sets OF contain allocations
that cannot be obtained as winning allocations. (See the right panel of Figure )
We say that side k of player i is regular if intOF # ().

Lemma 14. For each x ¢ m_;, each i and each p,
0 < P* (Px) < 1.
Proof. The projection of a projection. O

B.3.2. Best response properties. The subsequent claims are illustrated on Figure [B.1]

We leave them without a proof.

Lemma 15. For each k.1, each t € Tyt < T;°7, if 2; (t + 2) & intO; ", and player i is
only active on side k in period t, then x; (t) & O;7*. If ; (t +2) € OF, and player i is

only active on side k in period t, then x; (t) € intOF.
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o O* o+
Y wt+1) /Y Y
. xﬁt 4 2) N
y_k -._7 ‘\j“%)% y_k AN y_k —J;§¢>i y‘(f‘jr 1
o Ok ) { Ok Ok
(0,0) y* (0,0) y* (0,0) Y-

FIGURE B.1. Illustration of Lemma

Lemma 16. For each k,l, each t € T, t < T, if z; (t +2) & OF, player i is active
on side k in period t + 2, and player —i is only active on side k in period t + 1, then

player i is only active on k in period t.

Lemma 17. For each k.1, each t € Ty, t < T;°7, if 2; (t + 2) € intO; %, and player i is

active on side —k in period t + 2, then player v is only active on —k in period t.

Lemma 18. For each k,l, each t € T;,t < T, if PFa; (t+2) > Pry; (t +1), and
player i is active on side k in period t + 2, then the player is active only on side k in

period t.

B.3.3. Approximations. For each z, let G¥ (z) = m {u ceUr u(xr) <u (yf)} For each
player ¢, [, k, let
Lemma 19. There exists a constant C' < oo and & > 0 such that for each x €
X\intm_;, if >, G¥ (x) < 6, then
G¥ (z) —

— o Pkt

saim
Proof. Let of (z) be defined by x = ¥, o (z) y!. Leta (z) = of (z)—dF (Zl al (z) — 1),
where constants d¥ are defined in Lemma . Then, Lemma [11| implies that

i L) -1
6t ta) = (-1 (r (222D L) p (o).

¢ @t (x)

<CY G ()
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Using the same arguments as in the proof of Lemma [13| we can show that there exists

a constant C' < oo, such that

* v 1Zl z
Gt(x) [TX (x)
— 1| <0y GF(a).
frm s ZzGH) 26
But
* V—j Z aé(m)—l 1
e e | e @@ =5

R LR

O

Lemma 20. There ezist constants C' < oo and (3 > 0,(y < (1 (that do not depend on
X and 3) such that for each t € Ty st. T <t < T+ if z; (t +2) € Y}*, then

- C (Z AFY (t)) <L <QI(t+2)+C (Z AFF (t)) :

Proof. We only show the first inequality; the proof of the second one is analogous.
Assume that z; (t) € Y; and that z; (¢ + 2) € Y*.

By assumption, there exists a > 0 such that @; (¢ +2) = ay"F+(1 — a)0; =: 2 € Y*.
Because z; (t) ¢ intOF, we can find 2’ = o/y~F + (1 — /) 0; such that

ZGZ (z; ( Gl (x; (t+2)) ZGZ (), and
Gy (2 (t+2)) — Gf (1) < Gf (') = G} (x)

Then,
Gy (i (1) =GP (zi(t+2)) _ Gi() =GP (x)
G (i (1) = Gy (i (E+2)) — X, Gi (o) — Gy (z)
For each a > 0, let Hf (o) := G¥ (ay:f +(1—a) OZ-). Let o be such that oy=F +
(1-—a*)0; = P, (y:f). The assumptions on 7 imply that HF has a Lipschitz contin-

QF (t) = (B.1)

ok
uous derivative h¥ with a Lipschitz constant K. (To see it, notice that ﬁ is a

—1

continuous function of u € UF.) Let h* = h¥ (a*). As a — o*, HF (o) — 0 and, by the
L’Hospital’s rule,
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At the same time, Lemma [19] implies that
Hf () Ok
> Hi () ok
Hence, the two limits are equal.
Then, for appropriately small 7, o/ < ﬁ >, h!, and the expression 1) is not larger
than

hF (of —a) 4+ K (of — a)® PN h* + K (o/ — «) B h*
T Y (o —a) = K (o —a)’ RS —K (o —a) YA
g (P (@ —a) SK_ [k o

K(Zlhl_K(O/—a))(Zlhl)S(Z hl)2 [Hz‘ (o) — H; (04)}

SC[;GE(% t)) — Gl(xz(t+2] (ZAF’“ )

for constant C' = 8K (Zl gl)72. O

Lemma 21. There exist constants (5 > 0 and Cy > 0 ((that does not depend on \ and
B) such that for for eacht € Ty st. T <t < T* if z; (t +2),2; (t) € Y}* and player

—1 is active on side —k in periods £ + 1 and ¢ — 1, then
Bi (y—s (6) — ") = Co (=) " nF(t+1).

Proof. Let Q* = ¥, Q%! = Py",, and let ¢* = %, PfZQ*y’iZ = P (Py"g ) By
definition, ¢* belongs to the line that connects y*, and y~F. Moreover, by Lemma
Pk ¢* > 0, and, because (—1) % - (y,z- - yﬂ-) > 0, we have

1

Co :=; (D) (v =) = 5 (Pha) (=D (v = ot) > 0.

Let C' < oo be as in Lemma[20} Let (sbe as in Lemma 20 We are going to fix ¢} < (o

later. From now on assume that ¢t > T¢2.

Because —1 is active on side —k in period t + 1 and ¢ — 1, Lemma [2] implies that
uZ (1) (= () —y=F)_ =0,
Recall that u:f (t+1)=v_;+n"F(t+1)7. Because ¢¥_; - y*, = _; - y_F, we have
0= (vt (t+1)7) - (v () —y=F)
=y (g ()=o) 4T e+ Dy (v () —yf) (B.2)

(2
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and
o (g () = 9h) =D e D) (D ()
= (1) Tk (t+1) 26
+ (=) D [(FD) Ty (@ —ya ()]

We are going to show that the term in the square brackets of the last line is smaller
than Cy. First, notice that

yi (1) = aw?, (1) = a*w?, (1) + (@ — a") w?, (1),

—1

e 2p(t)
e_QAp"(t)ﬁ»(lfe_ZA

where we denoted o« =

By (B.2),
(o —ag) i - (w, (8) — o) L= )y (y-s () —y=F) e
and, using Lemma |13, we can find a constant C’" < oo such that

> FL ()

Additionally, notice that w?, (t) = 32, Q% () (1 — yf), and, by Lemma ,

] and «yp is chosen so that agy—; - w7, (t) = v;.

| — ] < C' < C'mj,.

ai-c(Sartn)sqtm<airo(Saro).  ®3
k k
Hence,
laow?, () = " < |jw? (1) — @[ < C” (Z AFF (t)) < Cml,.
k
Thus,
(=) y (" =y ()]
<2 (||t = ao)w, (6)] + oo (1) a7 )
< (4C" +2C) my,.
Pick ¢} < (o such that (4C" + 2C) m} < G, O

We have the following useful bounds on the yielding probability. Let Ay be such
that for each A < Ay,
e <1I-A<e™®
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Lemma 22. Suppose that A < Ay. There are constants 0 < pmin < Pmax < 00 such
that for each equilibrium, each t € Ty st. 19 <t < T,

Apmin S Di <t> S Apmax-

Proof. By Lemma m, for each each ¢ € Tj st. 9 <t < T.?, there are types u,u’ € U_;
such that ¢ — 1 is a best response for type u and t + 1 is a best response for type u'.
By Lemma[g],
1 1
A A A A
e~ —e <p;(t) < (e” —e .
( )Sfi(u,t)—e—A_pO_( )Sii(u’,t)—e—A

The claim follows from the fact that S7; (u,t) < L+ =: Spa and t 57, (u,t) >

mingem, u(x)

=: Smin > 1, where the last inequality comes from Assumption . [l

maXgem_; u(x)

For each player i,define T} (n) = max {t : 3, F; (t) + A > n}.

Lemma 23. There exist constants a > a' > 0, such that for each A < Aq, each
n € [0,1],

a/

0 < B0 <, and pF < A+ FL (TF () <
l

Proof. Notice that

Y EW+x= T Q-p7(1).

seT;:s<t
Due to Lemma and the choice of 3 > 3 (which implies e 24 <1 - A <e ™), we

have
(e—ATiF(??))p"‘ax < (1 _ Apmin)TiF(")/Z,

<n= I (@Q-p(¥)<

SETi:s<TiF (n)
1, .
< (1 - Apmin)TiF(n)/2 < (e*ATiF(n)) 2Pmin )
Hence,
2 F 2
’r’pmin S (e_ATZ (77))

<e_ATiF(77) — (1 _ A)TiF(n)

<e AT ) < pimax .

Take a = zﬁ and a’ = I% The second claim follows from the first. O

max
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B.3.4. Late game properties. Let ¢; = min, , max,x (—1)" (u? — ¢?).
Lemma 24. If n < (i, then T" > T©.

Proof. Suppose that T¢ = TP < T". By definition there is k, such that T® =
max {t et <T 7 :x;(t) € intOf}. By Lemma it must be that player ¢ is active
on side k in period . By Lemma player ¢ is only active on side k in period t. By
another application of the first part, z; (t — 2) & OF. A repetition of the same argument
shows that player i is active only on side k for each t < T9,t € T;. But this implies
that n; % (£9) = n;* (To) < n < (4, which contradicts the choice of n < (;. O

Lemma 25. Ifn < ¢, then, for each t > T" st. T < t < T*, if player 1 is active
on side —k in period t + 1, and player —i is only active on side k in period t, then

Proof. Suppose that there is ¢ > T such that player ¢ is active on side —k in period
t + 1, and player —¢ is only active on side k in period ¢. Lemma implies that
z; (t+1) ¢ intOF and x_; (t +2) ¢ intO=F. Suppose that x; (t +1) ¢ Y, which
implies that x; (t + 1) ¢ O;*. By Lemma (16| player 4 is only active on side k in period
t —1. Another application of Lemma shows that z_; (t) ¢ OZF and player —i is only
active on side k in period ¢t. A repetition of the same argument shows that each player is
active only on side k for each t' < ¢. But this implies that n; * (%) = n; " (To) <n <,
which contradicts the choice of (;. U

Lemma 26. If T" < T*° — 2, then, for each k,T* < T*°.

Proof. On the contrary, suppose that T} = T for some i. Let T; = max {t : player i is
TF. Because type ; is the limit of types in U7F, the proof of Lemma [I| implies
that type with preferences ; must be indifferent between yielding in any period
t € Ty and T < t < T;. The calculations in Lemma @ show that it must be that
¥i-y; (t) = L; (¢;) = v_;, which implies that y; (¢) € bdm_;. Because there are types in
UF who weakly prefer to wait and yield only in period TZ-*"S, a similar argument shows
that it must be y; (t) = y¥ for each t € T_;, T,*° <t < T;. However, because y; (t) is
a convex combination of 1 — y', for [ = 1,2 and the zero allocation, it must be that
for each t € T_;, T,° < t < T, player —i is only active on —k side and that side k of

player i is not regular. Note that it follows that side —k of player —i is regular.

active on side -
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If player i is the last player, i.e., T;"7 = T, then x_; (T*% — 1) = y~F € intO=F. If
player —i is the last player, then Lemma [25 implies that it must be that x_; (T*7) €
Y. But because player —i is only active on side —k in period 7% — 2, then Lemma
implies that z_; (T —2) € intO—F. In any case, we obtain a contradiction with
Lemma 24 O

Lemma 27. There is ms > 0,13 < (o, such that if n < ms, then, for eacht > T" st.
T"+2 < t < T*, if playeri is active on side —k in period t+1,y_; (t + 1) € U', (t + 2)
for each 1, and player —i is only active on side k in period t, then, y_; (t — 1) € U, (¢)
for each I, player i is active on side —k in period t — 1, and player —i is only active

on side k in period t — 2.

Proof. Take period t € T_; such that T +2 <t < T*?, and such that player i is active
on side —k in period £+ 1, and player —: is only active on side £ in period ¢. By Lemma
, z; (t+1) € Y7 and by Lemma , zi(t+3),z;,(t—1) €Y.

First, we are going to show that player —i is only active on side k in period ¢t — 2.
By Lemma [18] it is enough to show that

PFao i (t)> Py i (t—1) (B.4)

7

Because y_; (t + 1) € U, (t + 2) for each [, and player —i is active on side k in period
t, it must be that y_; (t + 1) € I¥, (¢t + 2) and that

Prao_i(t+2)>Pry (t+1). (B.5)
By Lemma |20,

Qih < (t+1)+ (ZAF’ ) nd

Qi h > Q7 (t-1) (zm )
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where Q; Ply*.. Because P*, (yi_k> > Pk, (yf) (due to the side —k of player i

—1°

facing the side k of player —i), inequality (B.5|) implies that
Pra_i(t+2)>Pry_;(t+1)
= Z Q; (t+1) PLy;

Pryf + Q7% (t+1) [Py — PEyt]

> PEyl + Qi Tk [Pryt — Prak] - (Z AR )

=A-C (zl: AF! (t)) :

where we denoted A = P*, (1 - yf) + Q;‘;’Z [Pfi (1 - y[k) — P*, (1 - yf)] On the

other hand, we have
Pfiy_i t—1)<A+C (Z AFZ (t)) . (B.6)
]

Because player —i is only active on side k£ in period ¢, we have Q7131 (t) = 1. By the
equation (3.6) and Lemma (3] we have
SIAFL (1)

S FL (1)
SIAFL (ﬂ) Zz AF (t) !

— : 22 CY AF! (¢
STINON RISV RO NP P

Y AFL (t)) > AF (t) ( )
All— —20 AF
= ( SN0 N Y )

S AFY (1)
SAA0R (1—-A)-2C ( S TAF (t) > (B.7)

Note that A < 1. Find mg < (3, (» small enough so that
< 1—A
m .
P = 12f+C
Then, for each n < mg t > T", Lemma 3| implies that

Pra_i(t)> Pra_(t+2)+ (1-PF(t+2) —CY AF (#)

> Pfix—i (t+2) (1

= A+

l 1—A
;F_i( <2fz <Afn< e
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The inequality (B.4) follows from the above bound, as well as the inequalities
and (B.7)). O

B.3.5. Proof of Lemmaljl Let ms be as in LemmaR7Let @ > a’ > 0 be constants from

Lemma 23] Let .
1\ & a2
mi=(5)" ma3)"
Let n > 0,n < mg3 be a very small number to be fixed later and such that

a
/

n<-mg.

=~ =

Suppose that \ < in.

On the contrary, suppose that there is an equilibrium such that 7% > T™. Using
Lemma , we can show that 7" > 77 4+2. By Lemma , T* < T;*° for each i. Thus,
if Tk, = T* then player —i is active on both sides in period T* 4 2. In particular, by
Lemma ,y_i (T’C + 1) e U, (T’C + 2) for each I. Moreover, player i is active on both
sides (including side —k) in period T* + 1. In such a situation, a repeated application
of Lemma [27] shows that player —i is active only on side %k in each period ¢ such that
TF<t<Tms,

Then, by Lemma [23] we have

A+ S ENT™) > my
l

o 1 =«
a

A+ Y F(T™) < (ma)
l

" 1 a2(a')71 a3 o —2
5T4Zmiz<> mg

Using the first two inequalities, we conclude that

S°(FLTm™) — FAT™)) 2 mf — (ma)® = om§.
l

(NN
|=

Let ng = 7%, (T™4). Then, an application of Lemmas (13| and [23| shows that
1, I 1, (1\@)7 -
Let ng = n_F (Tk + 2), where (—1) " ng < n be the last type on side —k to yield in
the “late game”. Let T, = max {t < T* : player — i is active on side —k in period t}.
By the above, Ty < T™3.Moreover, the continuity implies that the type ny must be
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indifferent between yielding in period T* + 2 and T° and weakly prefer it to yielding
in any period in-between. However, we are going to show that if n is sufficiently small,
then type ng strictly prefers to yield in period 774 rather than in period Ty. This will
yield a contradiction, and conclude the proof of the Lemma.

For this purpose, let ug = 3; + ngy be the type that corresponds to ng. Notice that
formula (A.3)) implies that

UZ; (wgT™) = U?; (uo, To)

— 3 e 58 (f" (t—|—1)+(1—e’2A> ( >oof (2))) Bi {yfi (t+1>_3/:ﬂ

teT;:To<t<T™4 s:s>t+1,z€T;

RTEEDS e‘SA(f”(HlH(l—e_m)( > f”(z)))v-[y—AHl)—y:ﬂ-

teT;:To<t<T™4 s:s>t+1,z€T;
(B.8)

Because y_; (t + 1) € X \intm;, we have (; - {y_i (t+1)— y:ﬂ > 0 for each t. More-
over, by Lemma [2T], for each t > T3,

Bi (yi (1) = 4%5) = Co (=1)" o (¢ + 1) = Cona.
Hence, the first term of (B.8)) is not smaller than
> Y e+ B [y (E+1) =y

teT;:TO<t<T™4
> ﬁTm4 Z (le (ng) N Fwil (Tm4)) Con4
l
1 * 1 a®(@)™ a3(a’ -31 a(a’)™! 1 a®(@)™! a3(a’) 2
2300 (5) e () e =

Let x* = max,cx ‘”y . (a: — y:f)’ Then, the second term of (B.8)) is not smaller than

> —na*.
The lemma is concluded by picking n < <.

B.4. Proof of Lemma [5l.

Lemma 28. For each z, if y € bdm; and Pix = Py, then R_;x = y and P_;y = y.

Moreover, there exist constants A; > 1 for each i such that for each i, each x € bdm;,

v (Roz) = —Ai(y- ).
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Proof. See Figure 3.2 0

Let n be as in Lemma [ Let

(5

)= ( > Pl (1) )
(ze

= - (Zl:Qﬁ(t)y’_i)-

Using the projection notation from Section [3.2.1, we show (??) is equivalent to

Pa; (t) = Py (t <ZQl (t=1y )
Because 3, Q" (t — 1) y', € bdm;, Lemma [28 implies that
v - ZQI (t—1y,;,=A_ (v Px;(t), or (B.9)
q-i(t—1)=Api(t).
Further, (3.6) implies that
Api (t) = c(t) (@ (t) = pi (t+2)), (B.10)

for ¢ (t) = Zij"“ 0,1].

Let C' < oo be the constant from Lemma (3 I Let C = C'max A;. Then, Lemma
implies that

Api(t—2)=c(t—2)(Ap—(t—1)—p; (t) = C'n), (B.11)
where £C'n is a bound on the error term of the expression in the brackets.

Lemma 29. For each n < n, we have that for each t > T" and t € T;, either (a)
pi(t)-p=i(t—1)>0, or (b) [p; (t) —p= (t — 1);| < C"n.

Proof. We prove the Lemma by induction on ¢t > T*. If t = T*, then ¢(T* — 1) = 1,
and p; (T* — 1) = q; (T* — 1) = A;p, £ Cn, where +Cn is a bound on the error term.
Thus, the claim holds for ¢t = T™.
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Suppose that the claim holds for some ¢t > 7" and ¢t € T;. Suppose that p—; (t — 1) >
0 (the proof in the other case is analogous). The inductive claim implies that p; (t) >
P—; (t — 1) — Cn, and we need to show that p; (t —2) > p_; (t — 1) — Cn. By Lemma
and the above discussion, equation holds. Because A_; > 1,

ALp=i(t—=1)£Cn =p=(t—1) —C'n,

and

Pi(t—2)—poi(t—1)=Api(t—2)+pi (t) —p= (t —1)
>(1—c(t—=2)@{t) —p=i(t—1))—c(t)Cy
> —(C'n.

O

Lemma 30. For each § > 0, there is cg > 0 and ns < n, such that for each t > T
andt € Ty, if p; (t), D (t — 1) > 6, then p_; (t —2) > § + c(t — 2) cod. (An analogous
claim holds when p; (t) ,p— (t — 1) < =4.)

Proof. Choose 1 so that (min; A; — 1) 6 > 2C"ns. Let ¢g = & (min; A; — 1). By formula
(B-11))
pi(t—2)—0>Ap; (t—2) +pi(t) — 0
>c(t—2)((Aei = 1)p=i(t — 1) = 9)
+c(t—2) 5 (t—1)—06)
+ (1 —c(t=2))(pi(t) —9)
>c(t—2)((A; —1)6 — C'n) > ¢ (t — 2) C6.

O

Lemma 31. There exists a D < oo such that for each 6 > 0, there is ns < n, such
that if p; (t) > D¢ for some t, then for each t' > T t' <t, t € T, p; (t') > 6. (An
analogous claim holds when p; (t) < —D4.)

Proof. Let D = 2max; A;. Let 15 be the constant from Lemma . Let ny <
15 be such that Cns < %D(S. By Lemma , it is enough to show that if {5 =
max {t : p; (t) > D¢ for i st. t € T;}, then p—; (tx +1) > §. To see it, notice that
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Pi(to+2) < D§ < p;(tg). Hence, formula (B.11) and the fact that c(t;) < 1 im-
ply that

0< D6 —pi(to+2) <A pi(to+1) —Pi(to+2)+C'n

1
<A p=i(to+1)— §D5.
The claim follows from the choice of constant D. O

Lemma 32. There exists A*,n* > 0 such that for each integer A > 0, for each
n < 28%77*, there exists \* > 0 such that if A < A*, X < \*, then for each player 1,

Ly —
teTi:TWStSTQS(AH)n Zl ; ( )

Proof. If A > 0 is sufficiently small, then Assumptionimplies that p? (t) < i for each
t € T; and t > 1. Then, Lemma [3| implies that there exists n* > 0 such that for each
n < n*, there exists A* > 0 such that
> Ang (1)
> (t)
Hence, for each k, there exist t1,7 such that 8 < >l (1) < 2-8¥ and 4 - 8 <
Synt(t2) < 881 Then, we have

y HAMULS LY yale

teT;:Tn<t<T8(A+1)n U teTy: T8 n<t<T8*T1n 1

1 .
< §for each t€ T; and T <t< T .

8A

8A
> 8k41r177 <Z 1 (t%) — > (tl{:)> > 8k41rl7] (2 ' 8k77>
k=0 ! ! h=0

1
>8A.-- > A
- 4

B.4.1. Proof of Lemma [,

Proof. Let Py, = [Dca "max,cx |7 - x”, where C'is the constant from Lemma . Let

75 be the constant from Lemma [31] (in the proof, we choose it so that it satisfies also
Lemma . Let 15 = mn . 14, where D is the constant from Lemma |31}.

D max2 i
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On the contrary, suppose that |p; (t)] < § for some t > T™ t € T;. W.lo.g. we
assume that p; (f) > 0. Then, Lemma [31| implies that p—; (t+1)> 5—1+4. By
Lemma 30| for each ¢ > T"p-1s,

(t—2) > -1 —2).
p—i(t—2) >+ coD —y de (t—2)
Hence, using the definition of ¢ (.), we have
I

5 >
tET,: T <t<T
It follows from Lemma B2 that

Sumh(t)

4 I—log %Pmax-I ns

1
pi (1) <
|p()|_maXiAi

Note that by Lemma [4] and equation (3.5)), we have

J.

w; () = Ry (t) = Roqw; (1) -
Hence, by Lemma
- (8)] < 6.
The result follows from the fact that w; (¢) belongs to the boundary of menu m;, and

that 1 — e*, is the intersection of the boundary with the diagonal {z : v-2 =0}. O
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