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Abstract. We analyze a continuous version of the Gale-Shapley matching prob-

lem. Men and women are represented by a d-dimensional vector of characteristics

(such as intelligence, beauty, wealth, etc.) and their preferences over matches with

the opposite sex depend only on the respective characteristics. We assume that

preferences are monotonic. We show that each di¤erentiable and pairwise stable

matching has to satisfy a system of partial di¤erential equations. For generic values

of parameters, there exists at most one smooth (i.e., analytic) stable matching.

1. Introduction

In the traditional marriage problem, a �nite set of men is to be matched with a

�nite set of women so that the resulting matching is pairwise stable: there exists no

pair of a man and a woman that would prefer to marry each other rather than stay

with their current spouses (Gale and Shapley (1962)).12 In this paper, we analyze a

continuous version of the traditional problem. We assume that men and women are

drawn from a smooth (i.e., analytic) distribution over subsets of �nitely dimensional

space of characteristics. The dimensions correspond to various characteristics that

are relevant for a particular problem (for example, intelligence, beauty, wealth, etc.),

and each agent is represented by a vector of intensities of all characteristics. The

preferences over matching partners depend only on the respective characteristics of a

1Department of Economics, University of Toronto. Email: mpeski@gmail.com. I am grateful for

comments and discussion to Tom Wiseman, Umut Dur, Eduardo Azevedo, Marek Pycia, and the

participants in the seminars at UCLA, Wisconsin, and the University of Texas at Austin. All the

remaining errors are my own.
2Typically, a good matching also has to satisfy an individual rationality constraint: no man or

woman prefers to remain single rather than stay married to his or her current spouse. In this paper,

we do not discuss individual rationality. For a review of matching theory, see Roth and Sotomayor

(1992).
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man and a woman, and they are represented by smooth utility functions. A smooth

stable matching is an analytic, one-to-one function that preserves masses of matched

men and women and that satis�es the pairwise stability property.

We obtain two results. First, we provide a local characterization of stable match-

ings. A key observation is that any di¤erentiable stable matching maps hyperplanes

that are tangent to indi¤erence curves of the agents from one side of the market onto

hyperplanes that are tangent to the indi¤erence curves of the agents from the other

side. The observation follows from a fact that in locally, up to �rst-order approxima-

tion, men and women have common preferences and the stable matching must match

them in an assortative fashion. Additionally, we show that the orientiation of stable

matching can be derived from second-order approximations. We introduce a notion

of local bargaining power of women that relates the matching with local preferences

and densities of men and women. We use the local characterization to argue that any

smooth stable matching must satisfy a system of partial di¤erential equations.

The second result shows that if the preferences are monotonic, and the domains

have a conic shape, then for generic values of parameters, there is at most one smooth

stable matching. The immediate usefulness of the uniqueness result is limited because

(a) it is constrained only to smooth matchings and it does not say whether there ex-

ist (or not) non-analytical stable matchings, (b) it does not deliver the existence of

smooth stable matching. Nevertheless, we believe that the result is of interest to

economists for a number of reasons. First, although limited to analytical match-

ings, the uniqueness result is surprising because the stable matchings are typically

not unique in the �nite settings. The matching literature discusses su¢ cient condi-

tions for the uniqueness but typically they are very strong, and, in particular, much

stronger than monotonicity. For example, if all men have the same common (and

strict) preferences over all women and all women have the same common (and strict)

preferences over all men, then unique stable matching assigns men and women assor-

tatively according to the common rankings. Clark (2006) shows that there exists a

unique stable matching in every submarket of a given problem if and only if the pref-

erences satisfy alpha-reducibility: for every subsets of men and women, there exists a

man and a woman who are the mutually most prefered choices from these subsets.
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(This property was introduced in Alcalde (1994), and it is also known as the top-top

match property. See also Eeckhout (1999), Clark (2006), Yariv and Niederle (2009),

or Pycia (2010)).

The issue of uniqueness of stable matching is important for both applied and the-

oretical reasons. The lack of uniqueness complicates prediction, empirical analysis,

or comparative statics. Second, it is closely related to the (lack of) incentives for

truthtelling. If there is only one stable matching, then both sides of the market have

incentives to correclty reveal their preferences (Roth (1982), and Dubins and Freed-

man (1981)). If there are more than one stable matching, some agents may lie about

their preferences, which may invalidate the stable prediction of the model. Arguably,

the �rst class of issues are not so important in markets in which a central algorithm

implements the designed solution (for example, residency allocation), but they are

important in decentralized markets (for example, such as those studied in Echenique

and Yariv (2012)). The last issue remains problematic in decentralized as well as

centralized markets. Our result suggests that both problems may disappear in the

large markets.

The uniqueness result is related to the recent literature on matching in large markets

that originated in Roth and Peranson (1999). When preferences are chosen randomly

from uniform distribution, Immorlica and Mahdian (2005) show that for all but a

diminishingly small (in the size of the market) number of agents, truthful reporting

of their preferences is "-best response, and " converges to 0 as the size of the market

grows. A similar result is presented by Kojima and Pathak (2009) regarding the

allocation of students to colleges. The current literature usually makes restrictive

assumptions about the preference domains: for example, Kojima and Pathak (2009)

assumes that there are �nitely many (stochastic) preference types of students; Lee

(2012) studies the marriage problem with common dirstribution for each side of the

market. The �niteness of the preference domain is a strong assumption when the

number of agents converges to in�nity. A recent paper by Azevedo and Leshno (2011)

analyzes stable matching in the college-student problem with �nitely many colleges

and continuum of students. Similarly to here, the authors show that stable matching

is generically unique.
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Second, the continuum approach allows us to introduce and study local properties of

the stable matching, like the matching of the indi¤erence curves, local assortativeness,

and local bargaining power that are probably relevant to large non-continuummarkets

but would be di¢ cult to capture using more traditional, discrete approach.

Third, our method allows to compute analytic approximations to stable matchings.

We can draw the approximations on 2- or 3-dimensional diagrams and use the graphics

to trace the e¤ects of the changes in parameters of the model. This is a contribution

to a �eld that is typically focused on discrete models without any natural graphic

representations. We illustrate this application in section 2.

Finally, our results provide a motivation for the increased e¤ort in searching for

the existence and stronger uniqueness results. We hope that these results can be

obtained. Our belief is based on historical paralel to the development of the closely-

related problem of optimal transportation (or, matching with transferable utility).

In that problem, the original analytic solution was obtained in XVIII century by

Monge, and the complete, non-analytic solution that includes both the existence and

uniqueness was not ready till the second half of XXth century.

There are many open questions resulting from the current paper. The most impor-

tant one concerns existence: Although we know that smooth stable matchings exist in

some cases (and whenever they exist, our result implies that they are unique), we do

not know whether they exist in general. The second question concerns convergence:

Arguably the continuum limit is interesting mostly if it is a limit of �nite markets.

At this moment, we do not know whether the (possibly non-unique) stable matchings

of �nite markets converge to the unique matching in the continuum limit. We discuss

these issues further in section 6.

The next section uses examples to illustrate some ideas of this paper. Section 3

describes the model. Section 4 presents a local characterization of a stable matching.

In section 5, we de�ne the cone-shaped domains and state our main result, Theorem 1.

We also present the �rst step of the proof of Theorem 1 and explain how to determine

the �rst derivative of a stable matching around the top match from the fundamentals

of the model. Finally, section 6 comments on existence, convergence, and alternative
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domain assumptions. The appendix contains the rest of the proof of Theorem 1 and

computations for example of Section 2.

2. Examples

In this section, we use a series of examples of matching situations to illustrate

some of the properties of smooth stable matching. In each of the examples, we plot

an approximation to the unique smooth stable matching. The computations are

postponed untill Appendix C.

Example 1. In all of the examples but the last one, we assume that men and women

are fully described by a two-dimensional vector (i; b) : To focus attention, we refer to

the �rst dimension, i; as intelligence, and the second one, b; as beauty. The men and

women belong to the same domain:

E = f(i; b) : i; b � 0g :

and they are drawn from the same probability distribution with non-disappearing

Lesbegue density on E: For simplicity, we assume that the Lesbegue density is con-

stant in some neighborhood of (0; 0) : In particular, the choice of domains implies that

man m̂ = (0; 0) is (weakly) smarter and more beautiful than any other man in the

domain. Similarly, woman ŵ = (0; 0) is the smartest and the most beautiful among

all women.

Each man m derives utility

M (mi;mb; wi; wb) = 2wi + wb +miwi +mbwb

from the match with woman w: Likewise, each woman w derives utility

W (mi;mb; wi; wb) = mi +mb +miwi +mbwb

from the match with man m:

We discuss important properties of the preferences. First, in this and all the ex-

amples below, the preferences of both men and women are strictly monotonic, i.e.,

all men and women would strictly prefer to marry smarter and/or more attractive

spouses. Because of monotonicity, man m̂ and woman ŵ are mutual top matches,
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and must be matched with each other by any stable matching. We use this starting

point to describe the matching in some neighborhood of the top match.

Second, up to �rst-order approximations, in a small neighborhood of the top man

m̂, men rank women according to the quality index equal to 2wi + wb: Similarly,

in a neighborhood of the top woman ŵ; women rank men according to the quality

index equal to mi +mb: Because the indices are common for all men and women in

some small neighborhood of the top match, one can think about them as common

preference rankings. The well-known results about common ranking suggests that

the unique stable matching will match the men and women assortatively by quality.

Sorting by qualities is closely related to the key property of stable matching: that

the tangent lines to the indi¤erence curves at the point of the match are locally

mapped onto each other (see Lemma 1 below). Here, the tangent line to the women�s

indi¤erence curve in the neighborhood of the top match is equal to mi+mb = const,

i.e., the set of men with the same quality: Similarly, the tangent line to the men�s

indi¤erence curve is equal to 2wi + wb = const, i.e., the set of women with the same

quality: Stable matching maps the former onto the latter.

Finally, the preferences contain the second-order component which implies that,

other things equal, smarter men prefer smarter women and smarter women prefer

smarter men. Because the preferences of men and women agree, one may expect that

stable matching to marry smart men (axis mi = 0) with smart women (axis wi = 0)

and beautiful men (axis mb = 0) with beautiful women (axis wb = 0). We say that

the matching preserves orientation.

We compute (the second-order) approximation of the unique smooth stable match-

ing � and plot it on Figure 1. As it is expected, the matching preserves orientation.

The �gure plots the di¤erence between � and the identity matching, i.e., matching

that assigns each man to the woman with identical characteristics. Each arrow orig-

inates at some m and points towards woman � (m) : For example, an arrow pointing

in the NE direction means that the man at the beginning of the arrow is matched

with a woman that is smarter and more attractive than he. The length of the arrow

is proportional to the distance between the man and his woman.
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Figure 1.

Notice that smart men (i.e., men that lie on the b-axis on the Figure) are matched

typically with women that are equally smart but less beautiful. At the same time,

beautiful men are married to women that are equally beautiful but smarter. This

observation follows from an asymmetry between the comparative value of being smart

among women and men. Men value smart women relatively more than they value

beautiful women, whereas women value both intelligence and beauty equally. Because

more men are attracted to smart women than the other way, smart women get better

matches than smart men.

Example 2. Assume that the domains and density of men and women are the same

as in the previous example and the preferences are given by the following functions:

M (mi;mb; wi; wb) = wi + wb + 2 (miwi +mbwb) ;

W (mi;mb; wi; wb) = mi +mb +miwi +mbwb:

The preferences are monotonic, which implies that man m̂ and woman ŵ must be

matched with each other. Figure 2 plots (the second-order approximation to) stable

matching.

At the �rst-order approximation, both men and women value rank their potential

partners according to the quality index equal to the sum of the two characteristics,

intelligence and beauty. In a small neighborhood of the top match, stable matching

should match man and women assortatively according to their quality ranking.
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Figure 2.

At the second-order approximation, the preferences include cross-derivative terms

that imply that smarter men prefer smarter women and smarter women prefer smarter

men. Similarly to the �rst example, this implies that stable matching preserves

orientation.

Finally, men�s preferences put relatively more weight on the cross-derivative term.

This means that, choosing among women of certain �xed quality, men typically value

women with more extreme characteristics (i.e., that are close to the i- and b-axes),

whereas women (as compared to men) prefer more balanced characteristics (i.e., men

that are located near the i = b axis). Thus, there is relatively more demand for

women with extreme characteristics and relatively less demand for women with bal-

anced characteristics. In the same vein, there is more demand for men with balanced

characteristics.

These di¤erences between men and women are re�ected by stable matching. Rel-

ative to the identity matching, men with balanced characteristics are matched with

women of higher quality. Additionally, men with extreme characteristics are matched

with women of lower quality and, more speci�cally, with a lower value of the fea-

ture about which the men care less. For example, very smart men are matched with

women who are somehow less beautiful then themselves.
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One can show that the preferences in the �rst two examples exhibit a continuous

version of alpha-reducibility introduced in Clark (2006) (also called top�top match

property): for every (compact) subset of men and women E 0M � EM and E 0W � EW ;

there exists m0 2 E 0M and w0 2 E 0W such that m0 is the most preferred man of woman

w0 among all men in set E 0M and w0 is the most preferred woman of man m0 among

all members of set E 0W . Clark (2006) shows that this property is a su¢ cient condition

for the uniqueness of stable matching in the discrete markets. Next, we discuss two

examples without alpha-reducibility.

Example 3: Assume that the domains and density of men and women are the same

as in the �rst example and the preferences are given by the following functions:

M (mi;mb; wi; wb) = wi + wb � 2 (miwi +mbwb) ;

W (mi;mb; wi; wb) = mi +mb +miwi +mbwb:

Thus, at the �rst-order approximation, men and women rank each other with respect

to the quality index that is equal to the sum of intelligence and beauty. As in the

previous two examples, stable matching matches men and women assortatively by

quality.

Additionally, the second-order coe¢ cients imply that smart women prefer to match

with smart men, but smart men prefer (relatively) beautiful women. Thus, women

would prefer a matching that preserves orientation and men would like a matching

that reverses the orientation (i.e., that matches the i-axis of men with the b-axis of

women).

In section 4, we show that the orientation depends on the weighted average of

the cross-derivative matrices of men and women. The weight depends, among other

things, on the relative densities of men and women around the top match. We in-

terpret this weight as a measure of a local bargaining power. In this example, the

absolute value of the cross-derivative coe¢ cient in men�s preferences is larger than the

corresponding coe¢ cient in women�s preferences, which implies that stable matching

should reverse orientation.

Figure 3 plots the di¤erence between (the second-order approximation to) the

unique stable matching and the reverse matching, i.e., a matching that maps man
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Figure 3.

(i; b) to woman (b; i) : So, for example an arrow that originates at (i; b) points towards

the direction of a match of man (b; i) : Notice that Figure 3 resembles Figure 2. This

is not surprising: because of the reverse orientation, women prefer to match with rela-

tively balanced partners and men prefer relatively more extreme women. This creates

an excess demand for women with extreme characteristics and a lower demand for bal-

anced women. The di¤erence in the relative demand pushes balanced men to matches

with higher quality women and extreme men to matches with relatively lower quality

partners.

Example 4. In the last example, we assume that the space of characteristics has

three dimensions: intelligence, beauty, and wealth. We assume that distribution of

the characteristics of men and women are the same and the domains are equal to

EM = EW =
�
(i; b; w) : i2 + b2 + w2 � 2 (sb+ sw + bw) � 0

	
:

Thus, the domains have the shape of a symmetric cone with the apex at (0; 0; 0) and

the central axis equal to x = y = z:

Preferences are given by

M ((mi;mb;mw) ; (wi; wb; ww)) = wi + wb + ww +miwb +mbww +mwwi;

W ((mi;mb;mw) ; (wi; wb; ww)) = mi +mb +mw +miwi +mbwb +mbwb:
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Thus, at the �rst-order approximation, both men and women rank their partners

according to the quality index equal to the sum of all three characteristics. Addition-

ally, the second-order component implies that smarter women would like to match

with smarter men, more beautiful women want more handsome men, and wealthier

women want wealthier men. At the same time, smart men would like to match with

beautiful women, handsome men would like wealthy women, and wealthy men would

like smart women.

As in the above examples, up to �rst-order approximation, stable matching sorts

men and women by their qualities. In particular, the hyperplanes that consist of men

with the same quality, mi + mb + mw = const; are mapped onto hyperplanes that

consist of women of the same quality, wi + wb + ww = const :

Sorting by qualities does not explain the orientation of the matching of the hy-

perplanes of the same qualities. In order to shed some light on the orientations, we

consider a couple of hypothetical alternatives. First, suppose that instead ofM; the

second order terms of men�s preferences are equal to the second-order terms in women

preferencesW : In such a case, both men and women want to match intelligence with

intelligence, beauty with beauty, and wealth with wealth. The unique stable match-

ing is the identity matching, or the women�s preferred matching. Second, if instead,

women�s utility function included the second-order terms from the men�utility M;

then both men and women would want to match smart men with beautiful women,

beautiful men with wealthy women, and wealthy men with smart women. The unique

stable matching would be a rotation around the axis x = y = z that replaces coordi-

nate i with b; b with w, and w with i: Such matching is the preferred matching for

men.

Given utility functions M and W ; the unique stable matching is somewhere be-

tween two extreme cases. It is a rotation that goes in the same direction but not as far

as the rotation from the second case described above. The �rst-order approximation

to the unique smooth stable matching is shown in Figure 4. Each arrow originates at

some man m and its end (denoted with a big dot) points towards woman � (m) : The

arrows are arranged counter-clockwise around the central axis of the conic domain

x = y = z: For example, the beautiful and wealthy men (the i-axis, which corresponds
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to line b = w = 0) are matched with slightly wealthier and smarter but somehow less

beautiful women.

3. Model

For any two vectors v and u; we write v �u or v0u to denote the scalar product. For
any vector v or matrix A; we denote the transpose as v0 and A0: For any two vectors

v; u 2 Rd; we write v � u (or v < u) if vi � u0i (or vi < u0i) for each i. We write e
j for

the unit vector with 1 on its jth coordinate and 0 otherwise.

There are two types of agents, men and women. Men and women are represented

as a d-dimensional vector of characteristics, m;w 2 Rd. Each of the dimensions corre-
sponds to a characteristic that is relevant in the particular problem (like intelligence,

beauty, wealth, etc.).

The mass of men is given by a distribution GM 2 �EM with a closed support

EM � Rd: Similarly, the mass of women is given by a distribution GM 2 �EM with a

closed support EM � Rd: We assume that distributions GM and GW have Lesbegue

densities, respectively, gM and gW ; that these densities are analytic, and that function

g (m;w) =
gM (m;w)

gW (m;w)
for m 2 EM ; w 2 EW
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can be extended as an analytic and strictly positive function to some neighborhood

of EM � EW :

Let M (m;w) denote the utility of man m from the match with woman w: Let

W (w;m) denote the match utility of woman w with man m: We assume that the

utility functions are analytic, i.e., locally, they have a representation by an in�nite

Taylor series. We denote the �rst- and second-order derivatives at (m0; w0) by, re-

spectively,

M (m0; w0) ;Mw (m0; w0) ;Mmw (m0; w0) ;Mmm (m0; w0) ; andMww (m0; w0) :

For example, Mw (m0; w0) is a normal vector to man m0�s indi¤erence curve at

his match with woman w0: We use similar notation for the derivatives of function

W. If man m0 and woman w0 are clear from the context, we write Mw instead of

Mw (m0; w0) with a similar convention for other pieces of notation. All the results

and de�nitions depend only on the ordinal properties of the utility function and are

not a¤ected by any (analytic) monotone transformation.

We assume that preferences are strictly monotonic: Mw (m0; w0) ;Wm (m0; w0) > 0

for each m0; w0:

A matching is a measurable function with a measurable inverse � : EM ! EW such

that for all measurable subsets E � EM and E 0 � EW ;

FW (� (E)) = � (E) and FM
�
��1 (E 0)

�
= ��1 (E 0) : (3.1)

Matching � is stable if for each m;m0 2 EM ; eitherM (m;� (m)) �M (m;� (m0)),

or W (m0; � (m0)) � W (m;� (m0)) :

Matching � is di¤erentiable (or continuously di¤erentiable, smooth) if function �

is di¤erentiable (or continuously di¤erentiable, analytical). For any di¤erentiable

matching � (not necessarily smooth), equation (3.1) is equivalent to

jdetD� (m0)j = g (m0; � (m0)) for each m0; (3.2)

where D� (m0) =
d�
dm
jm0 is the derivative matrix of � computed at m0:
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Figure 5. Indi¤erence curves under stable matching.

4. Local characterization

4.1. First-order approximations. We show that any stable matching must (lo-

cally) match hyperplanes that are tangent to the indi¤erence curves for each matched

pair of manm and woman w = � (w) and the indi¤erence curves increase in the direc-

tion for both men and women: For each man m; letMw and Wm denote the normal

vectors to the indi¤erence curves of man m and woman w = � (w) that are computed

at match (m;� (w)) : Let D� denote the derivative of the matching function at m:

Lemma 1. Suppose that � is twice di¤erentiable stable matching. For each m;

M0
w (D�)Wm > 0 and for each vector v, if W 0

mv = 0; thenM0
w (D�) v = 0:

Proof. The argument relies on the �rst-order approximations to the utility functions.

On the contrary, suppose that the Lemma is not true. There are two possible cases:

(a) eitherM0
w (D�)Wm < 0; in which case assume that v = 0; or (b)M0

w (D�)Wm �
0 and there exists a small vector v such thatM0

w (D�) v > 0 (see Figure 5 for case

(b)). In each case, we can �nd " > 0 su¢ ciently small, so that

M (m;� (m+ v � "Wm))�M (m;w)

=M0
w (D�) v � "M0

w (D�)Wm +O
�
kvk2

�
> 0;
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and man m prefers to match with woman w0 = � (m+ v � "Wm), instead of his

current match w. At the same time, woman w0 strictly prefers to match with m

instead of her current match, m0 = m+ v � "Wm;

W (m;� (m+ v � "Wm))�W (m+ v � "Wm; � (m+ v � "Wm))

= �W 0
mv + " kWmk2 +O

�
kvk2

�
= " kWmk2 +O

�
kvk2

�
> 0:

The existence of blocking pair (m;� (m+ v � "Wm)) violates stability. �

The Lemma has two important implications. The �rst implication is formal. For

each j < d; let

y�j (m;w) = �(Wm (m;w))d
(Wm (m;w))j

(4.1)

be the (minus) ratio of dth and jth coordinate of the normal vectorWm (m;w) : Then,

vector y�j (m;w) ej + ed is tangent to woman w�s indi¤erence curve at the point of

her match with man m,
�
y�j (m;w) ej + ed

�
� Wm (m;w) = 0. Lemma 1 implies that

any smooth stable matching must satisfy

Mw (m;� (m)) � (D� (m))
�
y�j (m;� (m)) ej + ed

�
= 0; for each m: (4.2)

This system of di¤erential equationsplays a central role in the characterization of the

unique stable matching.

The second implication is that, locally, any stable matching looks like an assortative

matching. To explain this claim, imagine that the space of men�s characteristics

around man m is sliced by hyperplanes that are orthogonal to the normal vectorWm

to woman w�s indi¤erence curve. These hyperplanes are approximately tangent to

the indi¤erence curves of women in a neighborhood of woman w: It is natural to think

about the hyperplanes as collections of men with (approximately) the same quality,

where the quality is measured by the distance from m with respect to vector Wm:

Locally, all women in the neighborhood of w have the same preferences and they rank

men in a neighborhood of m in approximately the same way, by their quality. In the

same way, imagine that the space of women�s characteristics is sliced by hyperplanes

that are orthogonal to the normal vectorMw to manm�s indi¤erence curves. Locally,

all men in the neighborhood of man m rank women in the neighborhood of w in

approximately the same way, by their quality. The second part of Lemma 1 implies
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that slices from the space of characteristics of men are matched with slices of the space

of characteristics of women. The �rst part of Lemma 1 implies that the matching is

assortative: higher quality slices are matched with slices of lower quality.

4.2. Second-order approximations when d = 2. Additional information about

the orientation of the matching can be obtained from the second-order approxima-

tions. In order to illustrate the main issues, we discuss �rst the two-dimensional case,

d = 2. Figure 6 illustrates the local trade-o¤ between the two characteristics along

the tangent lines to the indi¤erence curves. To �x attention, we refer to the �rst

coordinate as intelligence and the second as beauty. Then, women to the right of

woman w are smarter and less pretty than w; and the women to the left of w are

prettier and less smart than woman w: Similarly, men to the right of m are smarter

and less pretty than m:

We say that the matching preserves orientation if smarter men are matched with

smarter women and vice versa (see the top part of Figure 6). Formally, let v be a

vector tangent to the indi¤erence curve of woman w = � (m) at the point at her

match with man m; and let u be a vector tangent to the indi¤erence curve of man m:

Both vectors point towards increasing intelligence. Then, the orientation is preserved

if u0 (D�) v > 0. Analogously, the matching reverses the orientation if smarter men

are matched with prettier women (see the bottom part of Figure 6).

We argue that the orientation of the stable matching depends on the way that the

preferences change along the tangent lines, or more precisely, on the second-derivative

matrices Wmw and Mmw. Consider the following cases:

(a) Smarter men like smarter women (i.e., v0Mmwu > 0) and smarter women like

smarter men (i.e., v0Wmwu > 0): This case is illustrated on the top part of Figure

6. We claim that the stable matching must preserve the orientation. Indeed, if man

m+ v were to be matched with less smart woman w � u; and woman w + u were to

be matched with less smart man m0; then m + v and w + u would form a blocking

pair.

(b) Smarter men like prettier women, and smarter women like prettier men (i.e.,

v0Mmwu < 0 and v0Wmwu < 0): In such a case, the stable matching must reverse

orientation. Indeed, man m + v and woman w � u on the top part of Figure 6
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Figure 6. The top part shows stable matching in case of alligned

preferences; the bottom one corresponds to the case of misalligned pref-

erences.

prefer to marry each other rather than any spouses that equate each of them with

intelligence and beauty.

In cases (a) and (b), the preferences of men and women are aligned in a sense that

they change in analogous ways. In the last case that we consider, the preferences are

misaligned.

(c) Smarter men prefer smarter women and smarter women prefer prettier men

(i.e., v0Mmwu > 0 and v0Wmwu < 0). This case is illustrated on the bottom part of

Figure 6. In this case, men prefer to match in a way that preserves the orientation,

whereas women would prefer the reverse matching. We argue that the orientation

depends on the derivative of the matching in the direction of the normal vectors to
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the indi¤erence curves. We need the following de�nition: Let

� (m) =
Mw

kMwk
� (D�) Wm

kWmk
: (4.3)

Parameter � (m) is always positive. We refer to � (m) as a measure of local bargaining

power of woman w = � (m) : To see why, suppose that the utilities are normalized

so that the normal vectors have unit length, kMwk = kWmk = 1. Consider a

hypothetical scenario in which woman w gives up her current match m and marries

man m � "Wm instead. This leads to her �rst-order utility loss of " kWmk2 = ":

At the same time, her new partner, man m � "Wm; experiences the utility gain of

"Mw � (D�)Wm = �": Thus, � is equal to the ratio of the �rst order utility gain of

the man relative to the �rst-order utility loss of the woman. If � is large, woman

w has an opportunity to provide a substantial �rst-order utility gain to her partner

with a relatively little cost to herself. She can leverage this opportunity to gain the

second-order improvement in the orientation of the match.

We will show that if the local bargaining power of woman is high enough,

� (m) >
v0Mmwu

�v0Wmwu
; (4.4)

then the orientation of the stable matching is reversed, as it is wished by women.

On the contrary, suppose that the stable matching preserves the orientation as it is

illustrated on the bottom part of Figure 6. Here, smart man m + v is matched with

smart woman w�u: In particular, the orientation is determined by the preferences of
men rather than women. We argue that it must be that the local bargaining power of

women is not too high, To see why, �nd " > 0, such that woman w + u is indi¤erent

between her current match with m+ v and a match with a pretty (but of slightly less

overall quality) man m�v� "Wm: Simple calculations show that, up to second-order

approximation,

" � 2 1

kWmk2
(�v0Wmwu) : (4.5)

If the matching is stable, it should be that man m� v � "Wm prefers to match with

woman

� (m� v � "Wm) � w � u� " (D�)Wm
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rather than w + u: Thus, using (4.5), up to second-order approximations,

0 �M (m� v � "Wm; � (m� v � "Wm))�M (m� v � "Wm; w � u)

� (Mw � v0Mmw) � (�2u� " (D�)Wm)

� 2v0Mmwu� "Mw � (D�)Wm

� 2v0Mmwu� 2
1

kWmk2
(�v0Wmwu)Mw � (D�)Wm

=

�
2
kMwk
kWmk

�
v0 (Mmw + � (m)Wmw)u;

which contradicts (4.4).

4.3. Second-order approximations - general case. Here, we describe how to

extract information about the orientation of the stable matching along the tangent

hyperplanes in the general case d � 2: Let � (m) be de�ned as in (4.3). Also, let

W (m) =
Mwm

kMwk
+ �

Wmw

kWmk
: (4.6)

The values of parameter � and matrix W depend on the stable matching � and the

matched man m. We suppress the reference to man m whenever his identity is clear

from the context. MatrixW; de�ned in (4.6), is a weighted average of cross-derivative

matricesMmw andWmw: As we explain above, the cross-derivative matrices describe

how the change in the preferences in the neighborhood of matched pair (m;� (m)) :

The larger local bargaining power of women �, the more W depends on the women�s

preferences. We have two results:

Lemma 2. Suppose that � is a twice continuously di¤erentiable stable matching.

Then, for each man m; any vector v such that v � Wm = 0; v
0W (D�) v � 0.

Proof. Take any vector v that is tangent to woman w�s indi¤erence curve: Choose

" so that woman � (m+ v) is indi¤erent between her current match and man m0 =
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m� v � "Wm. Due to the second-order approximations, we have

0 =W (m0; � (m+ v))�W (m+ v; � (m+ v))

=

"
W (m;w)� v0Wm � " kWmk2 +Ww (D�) v

�v0Wmw (D�) v + v0Wmmv + ((D�) v)
0Www ((D�) v)

#

�
"

W (m;w) + v0Wm +Ww (D�) v

+v0Wmw (D�) v + v0Wmmv + ((D�) v)
0Www ((D�) v)

#
+O

�
kvk3 ; "2; " kvk

�
= �2v0Wmw (D�) v � " kWmk2 +O

�
kvk3 ; "2; " kvk

�
:

In the last equality, we used the fact that v0Wm = 0 by the choice of vector v: It

follows that

" = � 1

kWmk2
2v0Wmw (D�) v +O

�
kvk3

�
: (4.7)

If the matching is stable, then manm0 (weakly) prefers his current match to woman

� (m+ v) ;

0 �M (m0; � (m0))�M (m0; � (m+ v))

= 2v0Mmw (D�) v � "M0
w (D�)Wm +O

�
kvk3 ; "2; " kvk

�
: (4.8)

In the last equality, we use the fact that, by Lemma 1, M0
w (D�) v = 0. After

substituting (4.7) into (4.8) and dropping the higher-order terms, we obtain

0 � 2v0 [Mmw + (M0
w (D�)Wm)Wmw] (D�) v

= 2 kMwk (v0W (D�) v) :

�

Lemma 3. Suppose that � is a twice continuously di¤erentiable stable matching.

Then, for each m; any two vectors v and u such that v � Wm = u � Wm = 0;

v0W (D�)u = u0W (D�) v: (4.9)

Proof. Take any two vectors v and u that are tangent to woman w�s indi¤erence

curve and such that the length of vector u is small relative to v; kuk = kvk3=2 :
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Choose " so that woman � (m+ v) is indi¤erent between her current match and man

m0 = m+ v + u� "Wm. Due to the second-order approximations, we have

0 =W (m0; � (m+ v))�W (m+ v; � (m+ v))

= u0Wmmv + u0Wmw (D�) v � " kWmk2 + "O (kvk) +O
�
kvk3 ; "2; " kvk

�
: (4.10)

In the last equality, we used the fact that v0Wm = u0Wm = 0 and the choice of vectors

u and v and that u0Au is of order kvk3 for any matrix A:
At the same time, if the matching is stable, then man m0 (weakly) prefers his

current match to woman � (m+ v) ;

0 �M (m0; � (m0))�M (m0; � (m+ v))

= ((D�)u)0Mww (D�) v + v0Mmw (D�)u� "M0
w (D�)Wm +O

�
kvk3 ; "2; " kvk

�
:

(4.11)

After substituting the solution of " from (4.10) into (4.11), we obtain

0 � ((D�)u)0 Mww

kMwk
(D�) v � �u0

Wmm

kWmk
(D�) v

+ v0
Mwm

kMwk
(D�)u� �u0

Wmw

kWmk
(D�) v: (4.12)

Inequality (4.12) holds for all vectors u and v that are tangent to woman w�s

indi¤erence curve. In particular, it holds when u is replaced by �u: Together with
(4.12), the latter implies that the inequality sign in (4.12) can be replaced by equality.

Additionally, (4.12) holds when the roles of u and v are replaced. Because matrices

Mww and Wmm are symmetric, we obtain,

v0
Mwm

kMwk
(D�)u� �u0

Wmw

kWmk
(D�) v = u0

Mwm

kMwk
(D�) v � �v0

Wmw

kWmk
(D�)u; (4.13)

After some rearrangement of terms, we get (4.9). �

Lemma 3 holds trivially when d = 2: In such a case, any two vectors v and u that

are tangent to woman w�s indi¤erence curve are colinear. The result is non-trivial

when d � 3:
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Notice that the theses of the above results imply that for each man m; any vectors

v and u;

v0P 0WW (D�)PWv � 0 and v0P 0WW (D�)PWu = u0P 0WW (D�)PWv:"

It follows that matrix P 0WW (D�)PW is symmetric and positive-de�nite. We use this

observation in the sequel.

5. Uniqueness

In this section, we state the main result of this paper.

5.1. Conic domains. De�ne a standard cone with apex at 0 as

E� =
�
m : m2

1 + :::+m2
d�1 �m2

d � 0 and md � 0
	

= fm : m0I�m � 0 and md � 0g ;

where I� is a d-dimensional matrix obtained from the identity matrix but with the

last cell in the diagonal switched from 1 to �1.
We focus on domains that are cones obtained as linear transformations of standard

cones and with an apex that lies above any other element of the domain. Say that

linear operator � : Rd ! Rd is proper if ��1 (m) < 0 for each m 2 E�n f0g. De�ne
symmetric d-dimensional matrix

� = �0I��;

where �0 is a transpose of matrix �: We say that � is a proper cone matrix. We

say that cone E = ��1 (E�) = fm : m0�m � 0 and md � 0g is generated by � (or,
equivalently, by �):

We assume that EM and EW are generated by proper cone matrices, respectively, �

and 	: Because continuous matching � maps the boundary of EM onto the boundary

of EW ; the boundary conditions imply that

m0�m = 0 =) � (m0)	� (m) = 0 for each m: (5.1)

Domain EM contains the top man m̂ = 0 2 EM : any other man in the domain
m 2 EM has strictly worse characteristics than m̂. Similarly, domain EW contains

the top woman ŵ = 0. The monotonicity assumption implies that m̂ is the top match
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of woman ŵ and vice versa. It follows that each stable matching matches them with

each other, � (m̂) = ŵ:

5.2. Normalization and change of coordinates. From now on, we write f̂ instead

of f (m̂) for any function f of men�s characteristics evaluated at m̂ and instead of

f (m̂; ŵ) for any function of men�and women�s characteristics. For example,M^
mw is

the cross-derivative matrix evaluated at the point of top matching (m̂; ŵ) :

From now on, we assume that preferences are normalized so that the normal vectors

at the top match have unit length,


M^

w



 = 

W^
m



 = 1: The assumption is without
loss of generality, because we can always multiply the utility function by a constant

without changing any of its properties.

It is convenient to rotate the coordinate systems in the space of both men�s and

women�s characteristics, so that the normal vectors at the top match have 0 on all

coordinates except for the last, M^
w = W^

m = (0; :::; 0; 1). We use this convention

because it is easier to express all the relevant objects in the rotated coordinates. In

order to go back to the original coordinates that correspond to features like intelligence

or beauty, we need an inverse rotation.

For any d-dimensional matrix A; we write AP to denote the d-dimensional matrix

obtained by crossing out the last column and the last row. It is easy to check that if

� is a proper cone matrix, then �P is symmetric and positive-de�nite.

5.3. Main result. For each d; let Md = Rd
2
be the space of d-dimensional matrices,

and let Pd � Md be the subspace of proper linear operators. Let P =
�
Rd
�2 �M2

d �
P 2d � R+ be the space of parameters

�
M^

w;W^
m;M^

mw;W^
mw; �;  ; ĝ

�
2 P : Space P

is a convex subset of a Euclidean space; hence it can be equipped with a Lesbegue

measure �P 2 �P :We say that a claim holds for the generic values of the parameters
if there exists subset P0 � P such that �P (PnP0) = 0; and that the claim holds

whenever
�
M^

w;W^
m;M^

mw;W^
mw; �;  ; ĝ

�
2 P0:

Theorem 1. For the generic values of the parameters, there exists at most one smooth

stable matching.

The proof relies on two observations. First, the discussion above implies that each

smooth stable matching must be a solution to a system of di¤erential equations (3.2)
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Figure 7. Local bargaining power at the top match.

and (4.2) subject to boundary conditions (5.1). Second, any smooth (i.e., analytical)

function over an open connected domain is determined by its �rst- and higher-order

derivatives computed at a single point. Thus, it is enough to show that all the m̂-

derivatives of a solution to the system of di¤erential equations � are determined by

the fundamentals of the model. The idea is to di¤erentiate equations (3.2), (4.2), and

(5.1) and evaluate the di¤erentials at the top match. We proceed by induction on the

order of derivatives. At each step, we obtain a system of �nitely many linear equations

with unknowns being equal to the derivatives of � computed at the top match. At

each step, the number of equations is the same as the number of unknowns. We show

that, for the generic values of the parameters, the equations have unique solutions.

In the rest of this section, we show how to derive the �rst-order derivatives. We

show that the local bargaining power at the apex is determined by the density of

men and women at the top match together with the shapes of men�s and women�s

cones. We use this information to �nd all the �rst-order derivatives. In the end of

the section, we illustrate some of the issues in two separate examples for case d = 2

and d � 3:
The higher-order derivatives are determined in Appendix B (with some mathemat-

ical preliminaries contained in Appendix A).

5.4. Local bargaining power �̂. We compute the local bargaining power �̂ at the

top match. Notice that any continuous matching �maps the boundary of set EM onto
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the boundary of set EW : Moreover, Lemma 1 implies that hyperplanes orthogonal to

W^
m are approximately mapped with hyperplanes that are orthogonal toM^

w: Because

of the choice of coordinates, it means that hyperplane md = �" is (approximately)
mapped onto plane md = �M^

w �
�
D̂�
�
W^
m" = ��̂": It also means that cone

EM (") = fm 2 EM : md � �"g

is mapped onto cone

EW

�
�̂"
�
=
n
w 2 EW : wd � ��̂"

o
:

(See Figure 7.)

The matching equation (3.1) implies that the mass of cone EM (") must be (ap-

proximately) equal to the mass of cone EW
��
M^

w �
�
D̂�
�
W^
m

�
"
�
: The two masses

can easily be computed using standard geometric methods (see Appendix A.4):

mass of EW
�
�̂"
�

mass of EM (")
�
ĝW voldEW

�
�̂"
�

ĝM voldEM (")
=
1

ĝ
�̂d
�
det	P

det�P

� 1
2
(d�2)�

det�

det	

� 1
2
(d�1)

;

where det�P is a determinant of (d� 1)-dimensional matrix �P obtained by crossing
out the last row and the last column from matrix �, det 	P is obtained in a similar

way from matrix 	, and vold is the volume in Rd. The above equation leads to

formula that expresses �̂ in terms of matrices �; 	; and the ratio of density functions

ĝ computed at m̂;

�̂ = ĝ
1
d

�
det�P

det	P

� 1
2
d�2
d
�
det	

det�

� 1
2
d�1
d

: (5.2)

Local bargaining power �̂ has natural comparative statics. The smaller mass of the

women in the neighborhood of the top match, i.e., the smaller value of ĝW ; the larger

density ratio ĝ and the larger woman ŵ�s bargaining power.

5.5. First-order derivative D̂�. We are ready to compute the �rst-order derivative

matrix D̂� of the matching function at the top match. We begin with three prelimi-

nary observations about D̂�: First, together with the choice of coordinates, Lemma 1

implies that for any vector
��
D̂�
�
v
�
d
= 0 for any vector v with the last coordinate

equal to vd = 0: Moreover, the de�nition of bargaining power and the unit length
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of normal vectors implies that
��
D̂�
�
(0; :::; 0; 1)

�
d
= �̂: Thus, the derivative matrix

can be written as

D̂� =

24 �D̂��P �
D̂�
�y

0 �̂

35 ; (5.3)

where
�
D̂�
�P

is a (d� 1)-dimensional matrix and
�
D̂�
�y
is a (d� 1)-vector. The

last row of matrix D̂� consists of 0s in all places but the last column.

Second, Lemmas 2 and 3 imply that for each pair of vectors v and u with the

last coordinate 0, v0Ŵ
�
D̂�
�
u = u0Ŵ

�
D̂�
�
v and v0Ŵ

�
D̂�
�
v � 0; where Ŵ is the

matrix de�ned (4.6) as the weighted sum of cross-derivative matrices and evaluated

at m̂.Therefore, matrix

Ŝ =
�
Ŵ
�
D̂�
��P

= Ŵ P
�
D̂�
�P

(5.4)

is symmetric and non-negatively de�nite (the second equality follows from represen-

tation (5.3)). We make a generic assumptions that matrix Ŵ P is invertible.

Third, notice that equation (3.2) implies that

det
���D̂���� = ĝ: (5.5)

Next, we consider a �rst-order approximation to the boundary conditions equation

(5.1) using a �rst-order approximation to matching �; � (m0) =
�
D̂�
�
m+O

�
kmk2

�
:

After dropping the higher-order terms, it follows that

m0�m = 0 =) m0
�
D̂�
�0
	
�
D̂�
�
m = 0 for each m:

The two equations on both sides of the above equality are irreducible polynomials of

the same order. The above implication is satis�ed if and only if the former polynomial

is equal to the latter polynomial multiplied by a constant, or if and only if the two

polynomials have the same coe¢ cients. Therefore,�
D̂�
�0
	
�
D̂�
�
= c� for some c: (5.6)

Because the determinants of the matrices on both sides of (5.6) must be equal, it

must be that c =
��
det D̂�

�2
det	
det�

� 1
d

=
�
ĝ2 det	

det�

� 1
d ; with the last equality due to

(5.5).
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Because of (5.3) and (5.4), equation (5.6) implies that��
D̂�
�P�0

	P
�
D̂�
�P

(5.7)

= Ŝ
�
Ŵ P 0

��1
	P
�
Ŵ P

��1
Ŝ =

�
ĝ2
det	

det�

� 1
d

�P :

Equation (5.7) is a quadratic matrix equation with unknown square matrix Ŝ: By the

discussion above, matrix Ŝ is symmetric and non-negatively de�nite. It is well-known

that equation (5.7) has a unique symmetric and non-negatively de�nite solution.

(For the sake of completeness, we present the argument in Lemma 4 Appendix A.3).

Together with (5.4), this determines
�
D̂�
�P
=
�
Ŵ P

��1
Ŝ:

Finally, vector
�
D̂�
�y
is determined from equation (5.6) after substituting all the

other elements of matrix (5.3). This completes the derivation of matrix D̂�:

We illustrate the above derivations and the role of preferences and local bargaining

power in determining the matching around m̂ and ŵ: In order to focus attention,

we assume that, given the choice of coordinates described earlier in this section, the

boundary conditions are given by the standard cones. In other words,

� = 	 = I�; (5.8)

which implies that �P = 	P = Id�1, where Id�1 is (d� 1)-dimensional identity
matrix. We consider two cases: d = 2 and d > 2 separately.

6. Comments

In this section, we discuss some generalizations of Theorem 1 as well as some open

questions.

6.1. Domain assumptions. We can mildly relax the assumptions on the domains

from section 5 so that the domains look like cones only locally, at some neighborhood

of 0. Assume that EM = � (E�) and EW =  (E�) for some analytical mappings

�;  : Rd ! Rd such that � (0) =  (0) = 0 and such that their derivatives at

0, D̂�; D̂ : Rd ! Rd, are a proper linear mapping. De�ne proper cone matrices

� =
�
D̂�
�0
I�
�
D̂�
�
and 	 =

�
D̂ 
�0
I�
�
D̂ 
�
: Then, Theorem 1 holds without any

modi�cation of its proof.
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What about non-cone shape domains? For example, one can imagine that EM and

EW are compact subsets with smooth boundaries. If the preferences are monotonic,

one can still show that there exists man m̂ 2 EM and ŵ 2 EW such that ŵ is the most

preferred match of man m̂ and vice versa. One can approach the uniqueness question

with such domains along the same lines as in the proof of Theorem 1. Speci�cally, it is

enough to show that all of the higher-order m̂-derivatives of solution � to the system

of partial di¤erential equations (3.2) and (4.2) with boundary conditions � (bdEM) =

bdEW are uniquely determined by the fundamentals of the model. Because of the

di¤erent nature of the domain around the top match m̂; the higher-order equations

are di¤erent than the equations derived in the proof of Theorem 1. Nevertheless, one

can still show that the number of equations is equal to the number of unknowns and

we expect that an analog of Theorem 1 holds.

6.2. Existence. Theorem 1 is concerned with uniqueness and does not comment on

existence. In many cases, we know that smooth stable matching exists. For example,

one can show that for any strictly monotonic smooth function � : EM ! EW that

preserves masses, any men�s utility functionM; one can �nd women�s utilty function

W such that � is stable matching.

The question is whether smooth stable matching exists for a a given utility functions

M;W ; domains EM and EW ; and densities gM and gW : Our results suggest to look

for the existence of a solution to a particular type of partial di¤erential equations. In

general, the issue of the existence of a solution to a system of di¤erential equations is

di¢ cult. In the Cauchy problem, one looks for solution f : Rd ! R to the system of

equations of form A (f;Df; :::; Dnf) = 0 with boundary condition f (y1; :::; yd�1; 0) =

f0 (y1; :::; yd�1) for some functions A and f0: Under some regularity conditions on A

and f0, the standard o¤-the-shelf result, the Cauchy-Kovalevskaya Theorem proves

the existence and uniqueness of a smooth solution in some neighborhood of (0; 0; :::; 0).

Unfortunately, the Cauchy-Kovalevskaya Theorem cannot be applied to the existence

of stable matching because the boundary conditions (5.1) are di¤erent than in the

Cauchy problem.
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6.3. Convergence. Arguably, smooth stable matching and its uniqueness is inter-

esting mainly if it is a limit of matching in �nite population models. Speci�cally,

�x N and consider a random matching market with N men and women drawn from

distributions, respectively, FM and FW : For each realization of the random market,

there exists at least one stable matching (that can be found, for example, by Gale-

Shapley algorithm). The stable matching generally is not unique. Let �(N)M and �(N)W

denote, respectively, the men- and the women-optimal matching given the realization

of preferences of N men and women. Then, all stable matchings are contained be-

tween �(N)M and �(N)W (see Roth and Sotomayor (1992)). We can consider sequences of

random variables �(N)M and �(N)W as N converges to in�nite. The question is: do these

sequences converge to some well-de�ned object? Is the limit a smooth matching? We

leave these questions for future research.

Appendix A. Mathematical preliminaries

A.1. Multi-indices. We are going to use a multi-index notation. A multi-index


 = (
1; :::; 
d � 1) is a (d� 1)-tuple of positive integers, 
l � 0: For any two multi-
indices 
 and 
0 we write 
 � 
0 if 
l � 
0l for each l: Moreover, de�ne 
 + 
0 =�

1 + 
01; :::; 
d�1 + 
0d�1

�
for each 
; 
0 and 
 � 
0 for each 
 � 
0: Finally, let j
j =


1 + :::+ 
d�1 and 
! = 
1!:::
d!:

Let � be the space of all multi-indices and let �n be the space of all multi-indices


 such that j
j = n: Let ? 2 �0 denote the multi-index with 0 at all positions. For
each l = 1; :::; d; let l� 2 �1 denote the multi-index that has 1 at the lth position and
0 at all other positions.

We use the multi-indices in two ways. First, they denote the powers of vectors: For

each x 2 Rd�1; and 
 2 �; let

x
 = x
11 :::x

d�1
d�1 :

Second, they denote the derivatives of functions. For each f : Rd ! R; each k � 0
and 
 2 �; we write

f
;k =
dj
j+k

dx
dyk
f =

dk+j
j

dx
11 :::dx

d�1
d�1 dy

k
f:
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A.2. Matrix notation and terminology. LetA be an n-dimensional square matrix

for n = d or d�1:We write A =
�
ajl
�
; where j corresponds to rows and l corresponds

to columns. Let a�j�l be the jl�cofactor of matrix A; i.e., a
�j
�l = (�1)

j+lmj
l ; where m

j
l

is the determinant of a matrix that is obtained from A by crossing out jth row and

lth column. Let C =
�
a�j�l
�
be the matrix of cofactors. Then, if A is invertible,

A�1 =
1

detA
C 0:

Moreover, for each row j;

detA =
X

l
ajl a

�j
�l :

It is sometimes convenient to divide matrix A into four parts that correspond to

the �rst n� 1 and the last coordinates: We write

A =

"
AP A(y)

A(yy)0 A(0)

#
where A(0) is a number, A(y) and A(yy) are (n� 1)-vectors, and AP is a (n� 1)-
dimensional matrix. If A is symmetric, then A(y) = A(yy): If A(P ) is invertible, we use

the following formula for the determinant of matrix A :

detA = detAP det
�
A(0) � A(y)0

�
AP
��1

A(y)
�
: (A.1)

A.3. Quadratic matrix equation.

Lemma 4. Suppose that d-dimensional matrices A and Bare symmetric and posi-

tively de�nite. Then there exists a unique symmetric and positively de�nite matrix S

that solves

SAS = B:

Moreover, the unique solution is an analytic function of A and B:

First, notice that for each d-dimensional symmetric and positive-de�nite matrix A;

there exists a unique symmetric and positive-de�nite matrix A1=2 such that

A1=2A1=2 = A: (A.2)

Indeed, the spectral theorem and equation (A.2) imply that A1=2 and A each have

d independent eigenvectors, that A1=2 must have the same eigenvectors as A; and
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that for each eigenvector v; if Av = �v; then A1=2v = �1=2v: The eigenvalues and

eigenvectors determine symmetric A1=2:

Notice also that A1=2 is an analytic function of A for all (symmetric and positively

de�nite) A:

Observe that

A1=2SASA1=2 =
�
A1=2SA1=2

� �
A1=2SA1=2

�
= A1=2BA1=2;

which implies that

A1=2SA1=2 =
�
A1=2BA1=2

�1=2
; and

S = A�1=2
�
A1=2BA1=2

�1=2
A�1=2:

A.4. Cone masses. Consider a cone E generated by a proper cone matrix �,

E = fm : m0�m � 0;md � 0g :

Because � is a proper cone matrix, for each vector m such that md = 0; we have

m0
d�md > 0; and matrix �P is positively de�nite. Let E1 be a part of this cone that

lies between plane y = �1 and apex 0. The next lemma �nds the volume of E1:

Lemma 5. There exists constant cd that depends only on d such that

vold (E1) = cd (� det�)�
1
2
(d�1) �det�P � 12 (d�2) :

We need a preliminary observation.

Lemma 6. There exists constant cd�1 that depends only on d such that for each

positively de�nite and symmetric (d� 1)-dimensional matrix A; for each b 2 Rd�1;

vold�1
�
y 2 Rd�1 : (y � b)0A (y � b) � 1

	
= cd�1 (detA)

�1=2

Proof. Let cd�1 be the volume of (d� 1)-dimensional ballBd�1 =
�
y 2 Rd�1 : y0y � 1

	
:

For each square and positive Let A = A1=2A1=2 for some matrix A1=2 (such a matrix
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exists due to assumptions about A). Then,�
y 2 Rd�1 : y0Ay � 1

	
=
n
y 2 Rd�1 :

�
A1=2y

�0
A1=2y � 1

o
=
n�
A1=2

��1
y 2 Rd�1 : y0y � 1

o
=
�
A1=2

��1
Bd�1:

Thus,

vold�1
�
y 2 Rd�1 : y0Ay � 1

	
= cd�1 (detA)

�1=2 :

The result follows. �

We can move to the proof of Lemma 5. First, compute the (d� 1)-dimensional
Lesbegue measure of the ellipse fm : md = �1;m0�m � 0g : Notice that for each y 2
Rd�1

(y0;�1)� (y;�1)

= y0�Py � y0�(d) � �(d)0y + �(0)

=
�
y0 � �(d)0

�
�P
��1�

�P
�
y �

�
�P
��1

�(d)
�
+ �(0) � �(d)0

�
�P
��1

�(d)

=
�
y0 � �(d)0

�
�P
��1�

�P
�
y �

�
�P
��1

�(d)
�
� (� det�)

det�P

=
(� det�)
det�P

��
y0 � �(d)0

�
�P
��1�� det�P

(� det�)�
P

��
y �

�
�P
��1

�(d)
�
� 1
�
:

where we used formula (A.1). It follows from the de�nition of the proper cone matrix

that det� < 0: By Lemma 6,

vold�1 fm : md = �1;m0�m � 0g

= vold�1

�
y 2 Rd�1 :

�
y0 � �(d)0

�
�P
��1��� det�

det�P
�P
��

y �
�
�P
��1

�(d)
�
� 1
�

= cd�1 (� det�)�
1
2
(d�1) �det�P � 12 (d�2) :

Finally,

voldE1 =
1

d+ 1
vold�1 fm : md = �1;m0�m � 0g

= cd (� det�)�
1
2
(d�1) �det�P � 12 (d�2)
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for some constant cd:

A.5. Generic solvability of a system of equations. Take any open and convex

U � Rn. Let �U be the Lesbegue measure on WU : Then, �U (U) > 0:

Square matrix-valued function A : Rn ! Rm�m is analytic if Ai;j : Rn ! R is

analytic for each i; j = 1; :::;m: Let ZA � Rn denote the set of elements of its domain

z 2 RN such that the system of linear equations

A (z) y = 0; (A.3)

has a non-zero solution. In other words,

ZA = fz : detA (z) = 0g :

Lemma 7. For any open and convex U � Rn; any analytic function A : Rn !
R(d�1)�(d�1), either U � ZA or � (ZA \ U) = 0; where � is a Lesbegue measure on Rn:

Proof. Note that detA (z) is an analytic function on open and convex domain. More-

over, ZA is a closed set. If ZA\U has a non-empty interior, then there exists an open
set W � ZA \ U such that detA (z) = 0 for each z 2 W: The properties of analytic

functions imply that detA (z) = 0 for each z 2 Rn: �

By the above lemma, if function A (:) is analytic, and if there exists at least one

z 2 U such that the system of equations (A.3) has a unique solution, then A.3 has a

unique solution for generic parameters z 2 U:

Appendix B. Proof of Theorem 1

As we explain in Section 5, smooth (i.e., analytical) matching over an open con-

nected domain is determined by its �rst- and higher-order derivatives computed at

the top match m̂:We are going to show that, for the generic values of the parameters

M^
w;W^

m;M^
mw;W^

mw; �;  ; ĝ; all higher-order derivatives of smooth stable matching

at m̂ can be uniquely determined as functions of the parameters. In section ??, we

establish our claim for the �rst-order derivatives. Here, we show that the claim holds

for all higher orders.
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We describe the plan of the proof. Parts B.1 and B.2 develop the notation. The

smooth stable matching must satisfy partial di¤erential equations that are restated

in part B.3.

We are going to interpret the higher-order derivatives as unknown variables in a

system of linear equations. In part B.4, we classify all of the variables by their order

n = 2; 3; ::: and rank k = �1; 0; :::; n � 1. Let Varn;k be the vector of all variables of
order n and rank k: In part B.5, we show that for each n and k � n � 1; variables
Varn;k must satisfy a system of linear equations:

Cn;k (Parameters)Varn;k = Termsn;k (Vn0;k0 st. n0 < n or n0 = n and k0 < k) ;

where the matrix of coe¢ cients Cn;k (Parameters) is an analytic function of the pa-

rameters of the model, and Termsn;k is a function of variables of lower order or rank.

The number of equations is equal to the number of variables Varn;k (or, in other

words, Cn;k is a square matrix). In parts B.6 and B.7, we show that for each order

n and rank k; there exist values of Parameters for which matrix Cn;k (Parameters) is

invertible (the former part deals with equations of rank k < n� 1 and the latter with
equations of rank n� 1). Part B.8 concludes the argument by showing that matrices
Cn;k (Parameters) are invertible for all n and k and generic values of parameters.

B.1. Notations and normalizations. In order to distinguish the �rst d � 1 and
the last coordinates of the characteristics, for each man m and woman w; we write

m = (x1; :::; xd�1; y) 2 Rd and w = (a1; :::; ad�1; b) 2 Rd:
Throughout the proof of Theorem 1, we make a generic assumption that matrix

Ŵ P =
�
M^

mw + �̂W^
mw

�P
, where �̂ is given by (5.2), is invertible. We make all the

normalization assumptions described in section 5.2. In particular, we assume that

the coordinates are chosen so that vectors Wm^ and Mw^ have the last coordinate

equal to 0 and all the other coordinates equal to 0,

W^
m =M^

w = (0; :::; 0; 1) :

Let Ŝ be the (d� 1)-dimensional matrix that is the unique symmetric and positive
solution to the matrix equation (5.7). Often, we work with the inverse image of Ŝ;
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Ŝ�1: We denote the elements of the inverse as Ŝ�1 =
�
s�jl
�
; where j corresponds to

rows and l corresponds to columns.

For each m;w; and each j = 1; :::; d � 1; let y�j (m;w) be de�ned as in (4.1).
Then, vector y�j (m;w) ed+ej is orthogonal to vectorWm (m;w) ;

�
y�j (m;w) ed + ej

�
�

Wm (m;w) = 0: Additionally, for each m;w; and each l = 1; :::; d� 1; let

a�l (m;w) =
(Mw (m;w))l
(Mw (m;w))d

:

Then, vector (a� (m;w) ; 1) lies in the same direction as vector Mw (m;w) : there

exists scalar c > 0 such that�
a�1 (m;w) ; :::; a

�
d�1 (m;w) ; 1

�
= cMw (m;w) .

Observe that for each j; l = 1; :::; d;

ŷ�j = â�l = 0: (B.1)

For each j; l = 1; :::; d� 1, denote derivatives3:

y�j;y =
@y�j

@y
; y�j;l =

@y�j

@xl
; y�jl =

@y�j

@al
; y�jb =

@y�j

@b
;

a�yl =
@a�l
@y

; a�jl =
@a�l
@xj

; a�l;j =
@a�l
@aj

; a�l;b =
@a�l
@b

:

Lemma 8. For each l; j = 1; :::; d; ŷ�j;l = ŷ�l;j and â�l;j = a�j;l: Moreover,�
ŷ�jl
�
= �WP^

mw;
�
â�jl
�
=MP^

mw,

which implies that Ŵ P =
�
â�jl
�
� �̂

�
ŷ�jl
�
: (Recall that matrix Ŵ is de�ned in (4.6).)

Proof. Notice that (Wm (m;w))j =
d
dxj
W (m;w) and, by normalization,

�
W^
m

�
j
=

(Wm (m̂; ŵ))j = 0 and (Wm (m̂; ŵ))d = 1. Hence,

@y�j

@xl
(m̂; ŵ) = �

@
@xl
(Wm (m̂; ŵ))j
(Wm (m̂; ŵ))d

+

�
W^
m

�
j

�
@
@xl
(Wm (m̂; ŵ))d

�
((Wm (m̂; ŵ))d)

2

= � @2

@xl@xj
W (m̂; ŵ) =

@y�l

@xj
(m̂; ŵ) ;

3For each function f : EM �EW ! R; we write f instead of f (m;w) when the variables are clear

from the context.
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where the last equality comes from the fact that the roles of l and j can be exchanged.

The argument for â�l;j = a�j;l is analogous.

For the second part, observe that

ŷ�jl =
@y�j

@al
(m̂; ŵ) = �

@
@al
(Wm (m̂; ŵ))j
kW^

mk
+

�
W^
m

�
j
@
@al
kWm (m̂; ŵ)k

kW^
mk

2 = � @2

@xj@al
W (m̂; ŵ) :

Similarly,

â�jl =
@a�l
@xj

(m̂; ŵ) =

@
@xj
(Mw (m̂; ŵ))l

kM^
wk

+

�
M^

w

�
l
@
@xj



M^
w




kM^

wk
2 =

@2

@xj@al
M (m̂; ŵ) ;

�

B.2. Matching. Let � : EM ! EW be a smooth stable matching. In order to

distinguish the �rst d� 1 and the last other coordinates of the matching function, we
write

� (x; y) =
�
�1 (x; y) ; :::; �d�1 (x; y) ; � (x; y)

�
= (� (x; y) ; � (x; y)) ;

where y 2 R is a number, x 2 Rd is a vector, �; �1; :::; �d�1 : Rd ! R and � =�
�1; :::; �d�1

�
: Rd ! Rd�1 are functions.

Section ?? derives the �rst-order derivatives of � at m̂ as functions of the parameters

of the model. In fact, we have the following result:

Lemma 9. The �rst-order derivatives are analytic functions of parameters
�
M^

mw;W^
mw;�;	; ĝ

�
:

�̂y = �̂; �̂j = 0 for each j = 1; ::; d� 1; (B.2)

�̂x =
�
Ŵ P

��1
Ŝ;

�̂0y =

"
(�̂x)

�1
�
ĝ2
det	

det�

� 1
d

�(y)0 � �̂y	
(y)0

# �
	(x)

��1
:

where we write �̂x =
�
�jl
�
for the (d� 1)-dimensional matrix of derivatives of �.

Proof. The formula for �̂y follows from equations (5.4), (5.3), and (5.6). The result

follows from Lemma 4 and equation (5.2). �
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B.3. Partial di¤erential equations. Smooth stable matching � satis�es the fol-

lowing functional equations: For each man m; we have

� matching equation: �����det
"
�x �y

�x �y

#������ g = 0: (M)

Section ?? determines matrix

"
�̂x �̂y

�̂x �̂y

#
of derivatives at the top match,

and it also determines the (non-zero) sign determinant of this matrix. In

particular, in some neighborhood of the top match, the determinant is always

negative or always positive. In order to focus attention, we assume that the

determinant is positive and we drop the absolute value from the above equation

(the alternative assumption would not a¤ect our analysis),

� stability equation: Equation 4.2 implies that for each j = 1; ::; d; vectors"
�x �y

�x �y

# �
y�jed + ej

�
are orthogonal to vector (1; a�). In other words,

"
�x �y

�x �y

# �
y�jed + ej

�
� (1; a�) (Sj)

= y�j�y + �j +
X

i
a�i�

i
j + y�j

X
i
a�i�

i
y = 0;

� boundary conditions: For each q > 0; and each x such that

0 = [x0; 1] �

"
x

1

#
= �(0) + 2x0�(y) + x0�(P )x (B0)

it must be that

0 = [� (qx; q) ; � (qx; q)] 	

"
� (qx; q)

� (qx; q)

#
(B(qx; x))

= (� (qx; q))2	(0) + 2� (qx; q)�0 (qx; q)	(y) + �0 (qx; q)	(P )� (qx; q) :

B.4. Order and rank of variables. For each n � 2; k � 0; and multi-index


 2 �n�k; let �
;k and �
;k be the derivatives of functions � and � (more precisely,
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�
;k is a d-vector of derivatives �
j

;k for j = 1; :::; d). Let �̂
;k and �̂
;k be the deriv-

atives computed at m̂: We say that derivatives �̂k;
 or �̂k;
 have order n = k + j
j :
Additionally, we use auxiliary variables:

fC
;k : 
 2 �n+1�k for k � ng and fD
;k : � 2 �n�1�k for k � n� 1g :

All the above variables have order n:

Apart from the order, each variable is equipped with a rank:

� variables �̂
;k for k < n and 
 2 �n�k have rank �1,
� variable �̂?;n has rank n� 1;
� variables �̂
;k for k � n and 
 2 �n�k have rank min (k; n� 1) ;
� variables C
;k for k � n and 
 2 �n+1�k have rank min (k; n� 1), and
� variables D
;k for k � n� 1 and � 2 �n�1�k have rank k:

B.5. Equations of order n. From now on, we assume that n � 2 is �xed. For

each k, we write "Terms(k) " to denote the terms that depend on variables that have

either order n0 < n; or order n and rank k0 < k: For example, equation (B.3) below

means that variable �̂
;k (i.e., a variable of order n and rank �1) can be presented as
a function of terms that include only variables of order n� 1 or lower.

Lemma 10. For each k < n and 
 2 �n�k;

�̂
;k = Terms (�1) : (B.3)

Proof. Take any j = 1; :::; d such that j� � 
 and consider the (k; 
 � j)th derivative

of equation Sj evaluated at the point of the top match. Because ŷ�j = 0 and â� = 0,

we get

0 =
dn

dx
dyk
Sjjm̂ = �̂k;
 + Terms (�1) .

�

Lemma 11. There exists fC
;k : 
 2 �n+1�k for k � ng such that for each k � n and


 2 �n�k;

Ŵ P �̂
;k = C
+:;k + �̂?;n

 X
j;l

1
=l��̂
j
l y
�:
j

!
+ Terms (min (k; n� 1)) ;
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where C
+: is a vector

C
+:;k =

2664
C
+1�;k

:::

C
+(d�1)�;k

3775 and y�:s =

2664
y�1s

:::

y�d�1s

3775 :
Proof. Fix k = 0; :::; n: We work with the stability equations Sj for j = 1; :::; d � 1:
The equation has four terms. For each 
 2 �n�k; and each j; we evaluate the (
; k)-
derivatives of each of the terms of equation Sj at m̂. First, notice that

dn

dx
dyk
�
y�j�y

�
jm̂

= �̂y

�
dn

dx
dyk
y�jjm̂

�
+ y�j�̂
;k+1

+ k

�
dy�j

dy
jm̂
�
�̂
;k +

X
l


l

�
dy�j

dxl
jm̂
�
�̂
�l�;k+1 + Terms (�1) ;

where all the remaining terms contain products of variables of order smaller than n:

Because of (B.1), the second term of the left-hand-side is equal to 0. Due to Lemma

10, the third term has rank �1 unless k = n and the fourth term has rank �1 unless
k = n� 1 (the fourth term is equal to 0 when k = n). Using Lemma 10 and the fact

�̂l = 0, we obtain

dn

dx
dyk
�
y�j�y

�
jm̂

= �̂y

�
ŷ�jb �̂
;k +

X
i
ŷ�ji �̂

i

;k

�
+ 1k=nn

�
ŷ�;j;y + ŷ�;jb �̂y +

X
l
ŷ�;jl �̂ly

�
�̂?;n

+
X

l
1
=l�

�
ŷ�j;l + ŷ�;jb �̂l +

X
i
ŷ�ji �̂

i
l

�
�̂?;n + Terms (0)

= �̂y
X

i
ŷ�ji �̂

i

;k + 1k=n

�
nŷ�;j;y + (n+ 1) ŷ�;jb �̂y + n

X
l
ŷ�;jl �̂ly

�
�̂?;n

+
X

l
1
=l�

�
ŷ�j;l +

X
i
ŷ�ji �̂

i
l

�
�̂?;n + Terms (0) (B.4)

Notice that �̂yŷ
�j
b �̂
;k is a term with rank �1 unlessk = n; in which case it has rank

n� 1:
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Similarly,

dn

dx
dyk

�X
i
a�i�

i
j

�
jm̂

=
X

i

�
dn

dx
dyk
a�i jm̂

�
�̂ij +

X
i
a�i �̂

i

+j�;k

+ k
X

i

�
da�i
dy
jm̂
�
�̂i
+j�;k�1 +

X
l


l
X

i

�
da�i
dxl
jm̂
�
�̂i
+j��l�;k + Terms (�1)

The second term disappears due to (B.1). Because �̂i
+j�;k�1 has rank k � 1 and �̂
;k
has rank �1 unless k = n; and because �̂l = 0; we get

dn

dx
dyk

�X
i
a�i�

i
j

�
jm̂

=
X

i;l
â�i;l�̂

i
j�̂
l

;k + 1k=n

X
i
â�i;b�̂

i
j�̂?;n

+ 1k=nn
X

i

�
â�yi + â�i;b�̂y +

X
l
â�i;l�̂

l
y

�
�̂ij�;n�1

+
X

i;l

l

�
â�li +

X
t
â�i;t�̂

t
l

�
�̂i
+j��l�;k + Terms (min (k; n� 1)) : (B.5)

Finally,
dn

dx
dyk

�
y�j
X

i
a�i�

i
y

�
jm̂ = Terms (�1) , (B.6)

because any term with a variable of nth order disappears since it also contains either

ŷ�j = 0 or â�i = 0:

Adding (B.4), (B.5), and (B.6) to �̂
+j�;k, we obtain the (
; k)-derivative of equation

Sj:

0 =
dn

dx
dyk
Sjjm̂

= �̂
+j�;k + �̂y
X

i
ŷ�ji �̂

i

;k +

X
i;l
â�i;l�̂

i
j�̂
l

;k +

X
i;l

l

�
â�li +

X
t
â�i;t�̂

t
l

�
�̂i
+j��l�;k

+
X

l
1
=l�

�
ŷ�j;l +

X
i
ŷ�ji �̂

i
l

�
�̂?;n

+ 1k=n

24 Pi â
�
i;b�̂

i
j�̂?;n + n

P
i

�
â�yi + â�i;b�̂y +

P
l â
�
i;l�̂

l
y

�
�̂ij�;n�1

+
�
nŷ�;j;y + (n+ 1) ŷ�;jb �̂y + n

P
l ŷ
�;j
l �̂ly

�
�̂?;n

35
+ Terms (min (k; n� 1)) :



SMOOTH STABLE MATCHING 41

After some rearranging of terms, we get

X
i

�
â�ji � �̂yŷ

�j
i

�
�̂i
;k �

X
l
1
=l�

X
i
ŷ�ji �̂

i
l�̂?;n

= �̂k;
+j� +
X

i;l

�

 + j�

�
l

�
â�li +

X
t
â�i;t�̂

t
l

�
�̂i
+j��l�;k

+
X

l
1
=l� ŷ

�j;l�̂?;n

+ 1k=n

24 Pi â
�
i;b�̂

i
j�̂?;n + n

P
i

�
â�yi + â�i;b�̂y +

P
l â
�
i;l�̂

l
y

�
�̂ij�;n�1

+
�
nŷ�;j;y + (n+ 1) ŷ�;jb �̂y + n

P
l ŷ
�;j
l �̂ly

�
�̂?;n

35
+ Terms (min (k; n� 1)) :

Because of Lemma 8, ŷ�j;l = ŷ�l;j: It follows that the right-hand side of the above

equality depends only on multi-index 
+j� (and not, like the left-hand side, separately

on 
 and j). We de�ne the right-hand side as C
+j�;k: From another part of Lemma

8, ŵj =
�
â�j � �̂yŷ

�j
a

�0
is the jth row of matrix Ŵ P : The result follows. �

Lemma 12. There exists fD
; 
 2 �n�1�kg such that

� for each k = 0; :::; n� 1 and � 2 �n+1�k; we have

X
l

�l�̂
0
l	

P �̂��l�;k =
X

j;l
�j
�
� � j�

�
l
�P;jl D��j��l�;k + Terms (k) ;

� for each l = 1; ::; d� 1; we get

�̂0l	
(y)�̂?;n + �̂

0
l	

P �̂?;n + n
�
�̂y	

(y)0 + �0y	
P
�
�̂l�;n�1 = �

(y)
l D?;n�1 +Terms (n� 1) ;

� �nally,

�̂y	
(0)�̂?;n + �̂0y	

(y)�̂?;n + �̂y	
(y)0�̂?;n + �̂0y	

P �̂?;n = �
(0)D?;n�1 + Terms (n� 1)

Proof. Let

B (qx; q) = (� (qx; q))2	(0) + 2� (qx; q)� (qx; q)	(y) + �0 (qx; q)	(P )� (qx; q) :
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For each x 2 Rd; we compute the (n+ 1)th derivative of B (qx; x) with respect to q
at q = 0 :

dn+1

dqn+1
B (qx; x) jq=0

= 2 (n+ 1)

 
�̂y +

X
l

�̂lxl

!
	(0)

0@ nX
k=0

X

2�n�k

n!

k!
!
�̂
;kx




1A
+ 2 (n+ 1)

 X
l

�̂lxl + �̂y

!0
	(y)

0@ nX
k=0

X

2�n�k

n!

k!
!
�̂
;kx




1A
+ 2 (n+ 1)

 
�̂y +

X
l

�̂lxl

!
	(y)0

nX
k=0

X

2�n�k

n!

k!
!
�̂
;kx




+ 2 (n+ 1)

 
�0y +

X
l

�̂0lxl

!
	P

nX
k=0

X

2�n�k

n!

k!
!
�̂
;kx




+ Terms (�1)

In particular, all other terms contain only variables of an order lower than n: Due to

Lemma 10 and the fact that �̂l = 0 for each l = 1; :::; d� 1; after some rearranging of
terms, we obtain:

dn+1

dqn+1
B (qx; x) jq=0

= 2 (n+ 1) �̂y	
(0)�̂?;n

+ 2 (n+ 1)

 X
l

�̂lxl + �̂y

!0
	(y)�̂?;n

+ 2 (n+ 1) �̂y	
(y)0

nX
k=0

X

2�n�k

n!

k!
!
�̂
;kx




+ 2 (n+ 1)

 
�0y +

X
l

�̂0lxl

!
	P

nX
k=0

X

2�n�k

n!

k!
!
�̂
;kx




+ Terms (0) :
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Further, due to equations (B.1), we obtain:

dn+1

dqn+1
B (qx; x) jq=0

= 2 (n+ 1)
h
�̂y	

(0)�̂?;n + �̂0y	
(y)�̂?;n + �̂y	

(y)0�̂?;n + �̂0y	
P �̂?;n

i
+ 2 (n+ 1)

X
l

h
�̂0l	

(y)�̂?;n + �̂0l	
P �̂?;n + n

�
�̂y	

(y)0 + �0y	
P
�
�̂l�;n�1

i
xl

+ 2 (n+ 1)
n�1X
k=0

X
�2�n+1�k

n!

k!� !

"X
l

�l�̂
0
l	

P �̂��l�;k + 1k>0 (k � 1)
�
�̂y	

(y)0 + �0y	
P
�
�̂�;k�1

#
x�

+ Terms (0) : (B.7)

The right-hand side of (B.7) is a polynomial of order n + 1 in x. Due to the

boundary conditions, (B.7) is equal to 0 for for each x such that (B0) holds. Because

the second-order polynomial de�ning (B0), �(0) + 2x0�(y) + x0�(P )x; is irreducible, it

must be that it divides polynomial (B.7). In other words, for each x (and not only

those x that satisfy (B0)), (B.7) is equal to

�
�(0) + 2x0�(y) + x0�Px

� n�1X
k=0

X

2�n+1�k

1


!
d
x




=
n�1X
k=0

X
�2�n+1�k

1

� !

�X
j;l
�j
�
� � j�

�
l
�P;jl d��j��l� +

X
j
�j�

(y)
j d��j� + �

(0)d�

�
x�

+
X
l

�
�
(y)
l d? + �

(0)dl

�
xl

+ �(0)d?:

for some real coe¢ cients fd
; 
 2 �0 [ ::: [ �n�1g.
Two polynomials are equal if and only if the coe¢ cients associated with each of

the monomials x� are equal. The result follows from substitution D?;n�1 =
1

2(n+1)
d?

and for each k = 1; :::; ; n� 1 and 
 2 �n�1�k,

D
;k =
k!

2 (n+ 1)!
d
:

�
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Lemma 13. For each k � n� 1 and 
 2 �n�1�k;

�̂y
X
l

�
Ŝ�1

�
lth row

Ŵ P�
+l�;k

= �1k=n�1
�X

l
(�1)d+l 1

(det �̂x)
�̂l�;n�1

�
D̂��d�l

�
+ �?;n

�
+ Terms (k) ;

Proof. We compute the (k; 
)-derivative of the matching equationM at the top match

for 
 2 �n�1�k: Notice �rst that

det

"
�x �y

�x �y

#
= �y det�x +

X
l
(�1)d+l �l

�
D̂��d�l

�
;

where D̂��d�l is the cofactor of matrix D̂�:

Using Jacobi�s formula for the derivative of a determinant, we obtain

dn�1

dx
dyk
(�y det�x)

= (det �̂x) �
;k+1 + (det �̂x) �̂y tr

�
�̂�1x

dn�1

dykdx

�x

�
= 1k=n�1 (det �̂x) �?;n + (det �̂x) �̂y tr

�
�̂�1x

dn�1

dykdx

�x

�
+ Terms (0) :

Using (5.4); we obtain

tr

�
�̂�1x

dn�1

dykdx

�x

�
=
X

l

�
�̂�1x
�
lth row

�
+l�;k

=
X

l

�
Ŝ�1

�
lth row

Ŵ P�
+l�;k:

Because �̂l = 0; we get

d

dx
yk

X
l
(�1)d+l �l

�
D̂��d�l

�
= 1k=n�1

X
l
(�1)d+l �̂l�;n�1

�
D̂��d�l

�
+ Terms (�1) ;

where
�
D̂��d�l

�
is the dl-cofactor of matrix D̂� obtained from

"
�x �y

�x �y

#
by crossing

out dth row and lth column.
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Finally,

0 =
dn�1

dx
dyk

 
det

"
�x �y

�x �y

#
� g

!
= (det �̂x) �̂y

X
l

�
Ŝ�1

�
lth row

Ŵ P�
+l�;k+

1k=n�1

h
(det �̂x) �?;n +

X
l
(�1)d+l �̂l�;n�1

�
D̂��d�l

�i
:

�

B.6. Equations of rank k < n�1. Fix k < n�1 and consider the following system
of equations:

Ŵ P �̂
;k = C
+:;k for each 
 2 �n�k; (B.8)X
l

�l�̂
0
l	

P �̂��l�;k =
X

j;l
�j
�
� � j�

�
l
�P;jl D��j��l�;k for each � 2 �n+1�k;

(B.9)

�̂y
X
l

�
Ŝ�1

�
lth row

Ŵ P�
+l� = 0 for each 
 2 �n�1�k: (B.10)

The variables of rank k are the unknowns. By Lemma 9, the linear coe¢ cients of the

equations are analytic functions of the parameters:

In this part of the Appendix, we show that there exist parameters such that the

above system of equations has a unique solution.

Lemma 14. Suppose thatM^
mw =W^

mw =
1
2
Id�1; ĝ = 1; and

	 = � =

26666666664

" 0 0 ::: 0 0

0 "2 0 ::: 0 0

0 0 "3 ::: 0 0

::: ::: ::: ::: ::: :::

0 0 0 ::: "d�1 0

0 0 0 ::: 0 �"

37777777775
:

Then, for su¢ ciently small " > 0; the system of equations (B.8)-(B.10) has a unique

solution with all the variables of rank k equal to 0.
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Proof. First, we compute the values of the �rst order derivatives. By equations (5.2),

and (5.7), �
ĝ2
det	

det�

�� 1
d

= �̂ = 1; Ŵ P =
�
Ŝ�
��1

= Id�1: (B.11)

Moreover, by Lemma 9

�̂y = 1; �̂x = Id�1; and �̂x = �̂0y = 0: (B.12)

Second, using the above computations, we can restate equations (B.8)-(B.10) as

�̂j
;k = C
+j�;k for each 
 2 �n�k and j;

C�;k =
�X

j
�j"

j
��1 X

j

�j (�j � 1) "jD��2�j�

!
for each � 2 �n+1�k;X

l

C
+2l�;k = 0 for each 
 2 �n�1�k:

The last two equations imply that, for each 
 2 �n�1�k;

X
l

(
l + 2) (
l + 1) "
lD
 +

P
j 6=l

j (
j � 1) "jD
+2l��2�j�

(
l + 2) "l +
X

j 6=l

j"j

= 0: (B.13)

For each 
 2 �n�1�k; let l� (
) = min fi : 
i > 0g : The left-hand side of equation
(B.13) is equal to

=
X
l�l�(
)

0B@ (
l + 2) (
l + 1)

(
l + 2) +
X

j>l

j"j�l

D
 +

P
j>l


j (
j � 1) "j�lD
+2l��2�j�

(
l + 2) +
X

j>l

j"j�l

1CA

+
X
l>l�(
)

0BBBB@

l�(
)(
l�(
)�1)


l�(
)+

X
j>l�(
)


j"j�l
�(
)+2"l�l�(
)

D
+2l��2�l�(
)�

+



P
j>l�(
)


j(
j�1)"j�l
�(
)D


+2l��2�j�


l�(
)+

X
j>l�(
)


j"j�l
�(
)+2"l�l�(
)

1CCCCA
!
�
l� (
) + 
l�(
)

�
D (
) +

�

l�(
) � 1

� X
l>l�(
)

D
+2l��2�l�(
)� ;

where the convergence holds for "! 0:
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Third, we claim that the system of equations�
l� (
) + 
l�(
)

�
D (
) +

�

l�(
) � 1

� X
l>l�(
)

D
+2l��2�l�(
)� = 0 (B.14)

for each 
 2 �n�1�k; has a unique solution. Indeed, de�ne an ordering on �n�1�k :

 < 
0 if and only if

lim
"!0

X

i"

iX

0i"

i
! 0:

Then, (B.14) implies that each D (
) can be represented as a function of D (
0) for


0 < 
: The claim follows.

By continuity, the system of equations (B.13) for each 
 2 �n�1�k has a unique
solution for su¢ ciently small " > 0: The result follows. �

B.7. Equations of order n and rank n � 1. Consider the following system of

equations:

Ŵ P �̂l;n�1 = Cl�+:;n�1 + �̂?;n

 X
j

�̂jl y
�:
j

!
for each l; (B.15a)

X
l

�l�̂
0
l	

P �̂��l�;k =
X

j;l
�j
�
� � j�

�
l
�P;jl D��j��l�;k for each � 2 �2; (B.15b)

�̂0l	
(y)�̂?;n + �̂0l	

P �̂?;n + n
�
�̂y	

(y)0 + �0y	
P
�
�̂l�;n�1 = �

(y)
l D?;n�1 for each l;

(B.15c)

�̂y	
(0)�̂?;n + �̂0y	

(y)�̂?;n + �̂y	
(y)0�̂?;n + �̂0y	

P �̂?;n = �
(0)D?;n�1; (B.15d)

�̂y
X
l

�
Ŝ�1

�
lth row

Ŵ P�l�;n�1 = �
�X

l
(�1)d+l 1

(det �̂x)
�̂l�;n�1

�
D̂��d�l

�
+ �?;n

�
+ Terms (k) :

(B.15e)

The variables of rank n � 1 are the unknowns. The linear coe¢ cients are analytic
functions of parameters

�
M^

mw;W^
mw;�;	; ĝ

�
.

Lemma 15. Suppose that M^
mw = W^

mw =
1
2
Id�1;	 = � = Id�1; and ĝ = 1: Then,

the system of equations (B.15a)-(B.15e) has a unique solution with all the variables

of rank n� 1 equal to 0.



48 MARCIN PESKI

Proof. Because of equations (5.2), and (5.7),�
ĝ2
det	

det�

�� 1
d

= �̂ = 1; Ŵ P =
�
Ŝ�
��1

= Id�1:

From Lemma 9,

�̂y = 1; �̂x = Id�1; and �̂x = �̂0y = 0:

Because �̂x = 0; D̂��d�l = 0 for each l = 1; ::; d � 1: Finally, by Lemma 8,
�
y�lj
�
=

�1
2
Id�1:

Thus, the system of equations (B.15a)-(B.15e) can be rewritten as

�̂jl;n�1 =

(
C2l�;n�1 � 1

2
�̂?;n if l = j

Cl�+j�;n�1 if l 6= j
for each l;

�̂lj�;n�1 + �̂j
l�;n�1 =

(
2D?;n�1; if l = j

0; if l 6= j
for each l; j;

�̂l?;n = 0 for each l;

�̂?;n = D?;n�1;X
l

�ll�;n�1 + �?;n = 0; for each l:

Substituting the �rst and the fourth equation to the second, we get

C2l�;n�1 =
3

2
D?;n�1 for each l; and Cl�+j�;n�1 = 0 for each l 6= j:

Together with the last equation, this implies that

0 =
X
l

�
C2l�;n�1 �

1

2
�̂?;n

�
+ �?;n = (d� 1)D?;n�1 +D?;n�1 = dD?;n�1;

Therefore, D?;n�1 = 0 and all other variables can be uniquely determined from the

above equations. This ends the proof. �

B.8. Proof of Theorem 1. Let P ^d be the space of linear mappings � : R
d ! Rd such

that (��1 (m))d < 0 for each non-apex element of the standard cone m 2 E�n f0g :
De�ne P^ = M2

d � P 2d � R+: Then, P^ is a convex subset of Euclidean space and
it can be equipped with a Lesbegue measure �^ 2 �P^: We show that there exists
subset P^0 � P^ such that �^

�
P^nP^0

�
= 0; and if (a)M^

mw =W^
mw = (0; :::0; 1) ; (b)�

M^
mw;W^

mw; �;  ; ĝ
�
2 P^0 ; and (c) EM and EW are cones generated by proper linear
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operators � and  ; then there is at most one smooth stable matching � : EM ! EW .

Theorem 1 follows as a straightforward corollary.

Let P^0;1 be a set of parameters such that the weighted average matrix of cross-
derivatives Ŵ P is invertible.

For each n � 2; for each k < n�1; let P^n�k;n � P^ denote the set of parameters such
that the system of equations (B.8)-(B.10) has a unique solution. By Lemma 14, P^n�k;n
is non-empty. By Lemma 7, �^

�
P^nP^n�k;n

�
= 0: Similarly, let P^n�1;n � P^ denote

the set of parameters such that the system of equations (B.15a)-(B.15e) has a unique

solution. By Lemma 15, P^n�1;n is non-empty. By Lemma 7, �^
�
P^nP^n�k;n

�
= 0:

Let

P^0 =
\
n�1

n�1\
k=0

P̂n�k;n:

Then, �^
�
P^nP^0

�
= 0: Moreover, for any vector of parameters in P^0 ; there exists a

unique collection of variables that solves equations (B.8)-(B.10) and (B.15a)-(B.15e).

By Lemmas 9, 10, 11, and 12, there exists at most one analytic function � that

satis�es equations M; Sj for each j = 1; :::; d � 1; and B (qx; q) = 0 for each q and
each x such that (B0) holds. It follows that there exists at most one smooth stable

matching � : EM ! EW :

Appendix C. Examples - calculations

C.1. Two-dimensional examples. In this section, we assume that d = 2:We com-

pute the Taylor expansion of the unique stable matching up to its second-order deriv-

atives.

C.1.1. Environment. We assume that the utility functions are equal to

M ((ms;mb) ; (ws; wb)) = Cws + wb +D (msws +mbwb) ;

W ((ms;mb) ; (ws; wb)) = ms +mb +msws +mbwb

for some C > 0 and D:
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We assume that the domains are equal to

EM = f(ms;mb) : ms;mb � 0g ,

EW = f(ws; wb) : ws; wb � 0g :

Finally, we assume that the density ratio is constant g (m;w) � 1:

C.1.2. Change of coordinates. As in section 5.2, we multiply the utility functions by

a positive scalar so that the normal vectors have unit length. Additionally, it is

convenient to choose the coordinates so that the normal vectors to the indi¤erence

curves computed at the top man m̂ and woman ŵ are equal to (0; 1) : For this purpose,

we de�ne rotation matrices

OM =

p
2

2

"
1 1

�1 1

#
and OW =

1p
C2 + 1

"
1 C

�C 1

#
;

and consider the following change of coordinates

OM

"
x

y

#
=

"
ms

mb

#
and OW

"
a

b

#
=

"
ws

wb

#
:

The old and normalized preferences expressed in the new coordinates are equal to

Mn ((x; y) ; (a; b)) =
1p

C2 + 1
M
 
OM

"
x

y

#
; OW

"
a

b

#!

=
1p

C2 + 1

h
C 1

i
OW

"
a

b

#
+ [x; y]

1p
C2 + 1

O0M

"
D 0

0 D

#
OW

"
a

b

#

= b+ [x; y]

"
m11 m12

m21 m22

#"
a

b

#
;

Wn ((x; y) ; (a; b)) =

p
2

2
W ((x; y) ; (a; b))

= y + [x; y]

"
w11 w12

w21 w22

#"
a

b

#
;



SMOOTH STABLE MATCHING 51

where "
m11 m12

m21 m22

#
= D

p
2

2 (C2 + 1)

"
C + 1 C � 1
1� C 1 + C

#
,"

w11 w12

w21 w22

#
=

1

2
p
C2 + 1

"
C + 1 C � 1
1� C 1 + C

#
:

Thus, consistent with the normalization,MO^
w =WO^

m = (0; 1) : From now on, we drop

the superscript "n" when we refer to the preferences expressed in the new coordinates.

We can express the domains in new coordinates. Let

�0 = 1 > �1 = �1; (C.1)

 0 =
1

C
>  1 = �C:

Then,

EM = fms (1; 0) +mb (0; 1) : ms;mb � 0g

=

(
msO

�1
M

"
1

0

#
+mbO

�1
M

"
0

1

#
: ms;mb � 0

)

=

(
ms

"
1

1

#
+mb

"
�1
1

#
: ms;mb � 0

)
=
�
(x; y) : y � 0 and �0y � x � �1y

	
,

EW =
�
(a; b) : b � 0 and  0b � a �  1b

	
:

The densities of the distribution of men and women is not a¤ected by the orthonormal

change of coordinates OM and OW .

In order to distinguish the �rst and the second coordinates of the matching function,

we write � (y; x) = (� (x; y) ; � (x; y)) :

De�ne functions y� and a� as

y� ((x; y) ; (a; b)) = �(Wm ((x; y) ; (a; b)))1
(Wm ((x; y) ; (a; b)))2

= � w11a+ w12b

1 + w21a+ w22b
;

a� ((x; y) ; (a; b)) =
(Mw ((x; y) ; (a; b)))1
(Mw ((x; y) ; (a; b)))2

=
m11x+m21y

1 +m12x+m22y
:
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Then, vector (1; y�) is tangent to woman w�s indi¤erence curves at the point of the

match, and vector (a�; 1) is a scalar multiple of the normal vectorMw: Notice that

the values and the derivatives of functions y� and a� computed that the top match

are equal to

ŷ� = 0; â� = 0;

ŷ�x = ŷ�y = â�a = â�b = 0;

ŷ�a = �w11; ŷ�b = �w12; â�x = m11; â
�
y = m21; (C.2)

C.1.3. Di¤erential equations. We denote the �rst-order derivative of � with respect

to the second coordinate by �x and the value of this derivative computed at the point

of top match m̂ = (0; 0) by �̂x: A similar notation is used for other derivatives. The

stable matching satis�es the following equations:

� the matching equation (3.2):

j�x�y � �y�xj = 1; (C.3)

� the stability equation (4.2):h
a� 1

i " �x �y

�x �y

#"
1

y�

#
= �x + y��y + a��x + y�x��y = 0; (C.4)

� the boundary conditions: By the discussion in section ??, the mapping of
boundaries depends on the orientation of the matching in the neighborhood

of the top match, which in turns depends on the sign of the weighted average

Ŵ P of the cross-derivativesM^P
mw andW^P

mw: Here, Ŵ
P = m11+ �̂w11; and we

assume that Ŵ P 6= 0: Let o 2 f0; 1g denote the orientation. There two cases:
(a) if Ŵ P > 0; then the orientation is preserved and o = 0 (b) if Ŵ P < 0;

then the orientation is reversed, and o = 1: Also, let

~ z =  z+omod 2 for each z = 0; 1

Then, the boundary conditions can be written as

~ z� (�zy; y) = � (�zy; y) for each z = 0; 1: (C.5)
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C.1.4. First-order derivatives. We compute the values of the �rst-order derivatives

of stable matching �. Because of (C.2), the stability equation (C.4) evaluated at the

top match implies that

�̂x = 0:

Di¤erentiating the boundary conditions (C.5) and using the fact that �̂x = 0, we

obtain

~ 0�̂y = �0�̂x + �̂y;

~ 1�̂y = �1�̂x + �̂y:

Together with (C.1); these equations imply that

�̂x =
1

2

�
~ 0 � ~ 1

�
�̂y = (�1)o

C + C�1

2
�̂y,

�̂y =
1

2

�
~ 0 + ~ 1

�
�̂y =

C�1 � C

2
�̂y;

Finally, the matching equation (C.3) implies that

�̂y =

r
2

C + C�1
:

(Note that �̂y > 0 by the �rst part of Lemma 1.) By equation (5.3), �̂y = �̂:

Using the de�nition of matrix Ŵ P as well as discussion in section ??, we can

determine the orientation of the matching:

o = 0 if D > �
r

2

C + C�1
;

o = 1 if D < �
r

2

C + C�1
:

C.1.5. Second-order derivatives."
m11 m12

m21 m22

#
=

D
p
2

2 (C2 + 1)

"
C + 1 C � 1
1� C 1 + C

#
,"

w11 w12

w21 w22

#
=

1

2
p
C2 + 1

"
C + 1 C � 1
1� C 1 + C

#
:
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Take two derivatives of the stability equation (with respect to x and y) and evaluate

them at the top match. Because of (C.2) and �̂x = 0, we have

x : �̂xx � w11�̂x�̂y +m11�x = 0

y : �̂xy � w11�̂y�̂y � w12

�
�̂y

�2
+m21�̂x = 0:

Using the derivation of the �rst-order derivatives, we obtain"
m11 m12

m21 m22

#
= D

p
2

2 (C2 + 1)

"
C + 1 C � 1
1� C 1 + C

#
,"

w11 w12

w21 w22

#
=

1

2
p
C2 + 1

"
C + 1 C � 1
1� C 1 + C

#
:

�̂xx = w11�̂x�̂y �m11�̂x

=
C + 1

2
p
C2 + 1

 
1� (�1)oD

p
2p

C2 + 1

r
1

2
(C + C�1)

!

�̂xy = w11�̂y�̂y + w12

�
�̂y

�2
�m21�̂x

=
1� C

2
p
C2 + 1

 
1� (�1)oD

p
2p

C2 + 1

r
1

2
(C + C�1)

!

Next, take the derivatives of the matching equation (notice that we can drop the

absolute value sign):

x : �̂xx�̂y + �̂x�̂xy � �̂y�̂xx = 0;

y : �̂xy�̂y + �̂x�̂yy � �̂y�̂xy = 0;

which implies that

�̂xx = � (�1)o
C + C�1

2
�̂xy +

C�1 � C

2
�̂xx; (C.6)

�̂xy = � (�1)o
C + C�1

2
�̂yy +

C�1 � C

2
�̂xy:



SMOOTH STABLE MATCHING 55

Finally, take the second derivative of the two boundary conditions:

~ 0�̂xx + 2 ~ 
0�̂xy + ~ 0�̂yy = �̂xx + 2�̂xy + �̂yy;

~ 1�̂xx � 2 ~ 1�̂xy + ~ 1�̂yy = �̂xx � 2�̂xy + �̂yy;

Substituting (C.6) and rearranging some terms, we obtain

�̂yy = �
1

3
�̂xx,

�̂yy = ~ 0�̂xx + 2 ~ 
0�̂xy + ~ 0�̂yy � 2�̂xy � �̂xx

=
3

2

�
~ 0 � ~ 1

�
�xy �

1

6

�
~ 0 + ~ 1

�
�xx

= (�1)o 3 (C + C�1)

2
�xy �

1

3

C�1 � C

2
�xx

C.1.6. Plots. Let

�2;n (x; y) =

"
�̂xx+ �̂yy +

1
2
�̂xxx

2 + �̂xyxy +
1
2
�̂yyy

2

�̂xx+ �̂yy +
1
2
�̂xxx

2 + �̂xyxy +
1
2
�̂yyy

2

#

be the second-order approximation of stable matching expressed in the new coordi-

nates. In the original coordinates, the matching function takes the form

�2 (ms;mb) = OW�
2;n

 
O�1M

"
ms

mb

#!

Figures 1 and 2 plot the di¤erence between the second order-approximation of the

matching function and the identity matching

�2 (ms;mb)�
"
ms

mb

#
:

Figure 3 plots the di¤erence between the second order-approximation of the matching

function and the reverse identity matching

�2 (mb;ms)�
"
ms

mb

#
:

C.2. Three-dimensional example. Next, we consider the case d = 3:
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C.2.1. Environment. Assume that preferences are given by

M ((ms;mb;mw) ; (ws; wb; ww)) = ws + wb + ww +mswb +mbww +mwws;

W ((ms;mb;mw) ; (ws; wb; ww)) = ms +mb +mw +msws +mbwb +mbwb

and that the domains of men and women are equal to

EM = EW =
�
(s; b; w) : 1

�
s2 + b2 + w2

�
� 2 (sb+ sw + bw) � 0

	
:

C.2.2. Normalization and change of coordinates. We normalize the utility and rotate

the coordinate system so that the normal vectors to the indi¤erence curve at the top

match are equal to (0; 0; 1) : De�ne the rotation matrix

O =

2664
p
2
2

p
6
6

p
3
3

�
p
2
2

p
6
6

p
3
3

0 �
p
6
3

p
3
3

3775

Because O is a rotation matrix, O0 = O�1: Consider new coordinates for men and

women, so that, respectively,

O

2664
x

y

z

3775 =
2664
ms

mb

mw

3775 and O

2664
a

b

c

3775 =
2664
ws

wb

ww

3775 :
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We can express preferences in the new coordinates:

Mn ((ms;mb;mw) ; (ws; wb; ww))

=M

0BB@O
2664
x

y

z

3775 ; O
2664
a

b

c

3775
1CCA

=

2664
x

y

z

3775
0

O�1

2664
1

1

1

3775+
2664
x

y

z

3775
0

O0

2664
0 1 0

0 0 1

1 0 0

3775O
2664
a

b

b

3775

=
p
3z +

2664
x

y

z

3775
0 2664

�1
2

1
2

p
3 0

�1
2

p
3 �1

2
0

0 0 1

3775
2664
a

b

b

3775 ;
and

Wn ((ms;mb;mw) ; (ws; wb; ww)) =
p
3z +

2664
x

y

z

3775
0 2664

a

b

b

3775
From now on, we will use only the preferences expressed in the new coordinates and

we drop the superscript "n":

Next, we can �nd the proper cone matrices expressed in the new coordinates:

� = 	 = OT

2664
1 �1 �1
�1 1 �1
�1 �1 1

3775O =
2664
2 0 0

0 2 0

0 0 �1

3775 :
C.2.3. First-order derivatives. We use the results from Section ?? to compute the

�rst-order derivative of the matching function �: By equation (5.2),

�̂ = 1:

We compute the average cross-derivative matrix W P at the top match:

Ŵ P =M^P
mw + �̂W^P

mw =

"
1
2

1
2

p
3

�1
2

p
3 1

2

#
:
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Let Ŝ = Ŵ P
�
D̂�
�P

: Then, Ŝ is a symmetric and positive-de�nite solution to the

matrix equation (5.7),

Ŝ

"
2 0

0 2

#
Ŝ = Ŝ

�
Ŵ P 0

��1
	
�
Ŵ P

��1
Ŝ =

�
ĝ2
det	

det�

� 1
d

�P =

"
2 0

0 2

#
:

The unique solution to the above equation is the identity matrix. Therefore,�
D̂�
�P
=
�
Ŵ P

��1
=

"
1
2

�1
2

p
3

1
2

p
3 1

2

#
:

Finally, we use equation (B.2) to deduce that
�
D̂�
�y
is a vector of 0s and

D̂� =

2664
1
2

�1
2

p
3 0

1
2

p
3 1

2
0

0 0 1

3775 :
C.2.4. Plot. Figure 4 plots the di¤erence between the �rst order approximation of

the unique stable matching (expressed in the original coordinates) and the identity

matching:

O
�
D̂�
�
OT

2664
ms

mb

mw

3775�
2664
ms

mb

mw

3775 :
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