SMOOTH STABLE MATCHING
MARCIN PESKI

ABSTRACT. We analyze a continuous version of the Gale-Shapley matching prob-
lem. Men and women are represented by a d-dimensional vector of characteristics
(such as intelligence, beauty, wealth, etc.) and their preferences over matches with
the opposite sex depend only on the respective characteristics. We assume that
preferences are monotonic. We show that each differentiable and pairwise stable
matching has to satisfy a system of partial differential equations. For generic values

of parameters, there exists at most one smooth (i.e., analytic) stable matching.

1. INTRODUCTION

In the traditional marriage problem, a finite set of men is to be matched with a
finite set of women so that the resulting matching is pairwise stable: there exists no
pair of a man and a woman that would prefer to marry each other rather than stay
with their current spouses (Gale and Shapley (1962))."* In this paper, we analyze a
continuous version of the traditional problem. We assume that men and women are
drawn from a smooth (i.e., analytic) distribution over subsets of finitely dimensional
space of characteristics. The dimensions correspond to various characteristics that
are relevant for a particular problem (for example, intelligence, beauty, wealth, etc.),
and each agent is represented by a vector of intensities of all characteristics. The

preferences over matching partners depend only on the respective characteristics of a
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man and a woman, and they are represented by smooth utility functions. A smooth
stable matching is an analytic, one-to-one function that preserves masses of matched
men and women and that satisfies the pairwise stability property.

We obtain two results. First, we provide a local characterization of stable match-
ings. A key observation is that any differentiable stable matching maps hyperplanes
that are tangent to indifference curves of the agents from one side of the market onto
hyperplanes that are tangent to the indifference curves of the agents from the other
side. The observation follows from a fact that in locally, up to first-order approxima-
tion, men and women have common preferences and the stable matching must match
them in an assortative fashion. Additionally, we show that the orientiation of stable
matching can be derived from second-order approximations. We introduce a notion
of local bargaining power of women that relates the matching with local preferences
and densities of men and women. We use the local characterization to argue that any
smooth stable matching must satisfy a system of partial differential equations.

The second result shows that if the preferences are monotonic, and the domains
have a conic shape, then for generic values of parameters, there is at most one smooth
stable matching. The immediate usefulness of the uniqueness result is limited because
(a) it is constrained only to smooth matchings and it does not say whether there ex-
ist (or not) non-analytical stable matchings, (b) it does not deliver the existence of
smooth stable matching. Nevertheless, we believe that the result is of interest to
economists for a number of reasons. First, although limited to analytical match-
ings, the uniqueness result is surprising because the stable matchings are typically
not unique in the finite settings. The matching literature discusses sufficient condi-
tions for the uniqueness but typically they are very strong, and, in particular, much
stronger than monotonicity. For example, if all men have the same common (and
strict) preferences over all women and all women have the same common (and strict)
preferences over all men, then unique stable matching assigns men and women assor-
tatively according to the common rankings. Clark (2006) shows that there exists a
unique stable matching in every submarket of a given problem if and only if the pref-
erences satisfy alpha-reducibility: for every subsets of men and women, there exists a

man and a woman who are the mutually most prefered choices from these subsets.
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(This property was introduced in Alcalde (1994), and it is also known as the top-top
match property. See also Eeckhout (1999), Clark (2006), Yariv and Niederle (2009),
or Pycia (2010)).

The issue of uniqueness of stable matching is important for both applied and the-
oretical reasons. The lack of uniqueness complicates prediction, empirical analysis,
or comparative statics. Second, it is closely related to the (lack of) incentives for
truthtelling. If there is only one stable matching, then both sides of the market have
incentives to correclty reveal their preferences (Roth (1982), and Dubins and Freed-
man (1981)). If there are more than one stable matching, some agents may lie about
their preferences, which may invalidate the stable prediction of the model. Arguably,
the first class of issues are not so important in markets in which a central algorithm
implements the designed solution (for example, residency allocation), but they are
important in decentralized markets (for example, such as those studied in Echenique
and Yariv (2012)). The last issue remains problematic in decentralized as well as
centralized markets. Our result suggests that both problems may disappear in the
large markets.

The uniqueness result is related to the recent literature on matching in large markets
that originated in Roth and Peranson (1999). When preferences are chosen randomly
from uniform distribution, Immorlica and Mahdian (2005) show that for all but a
diminishingly small (in the size of the market) number of agents, truthful reporting
of their preferences is e-best response, and € converges to 0 as the size of the market
grows. A similar result is presented by Kojima and Pathak (2009) regarding the
allocation of students to colleges. The current literature usually makes restrictive
assumptions about the preference domains: for example, Kojima and Pathak (2009)
assumes that there are finitely many (stochastic) preference types of students; Lee
(2012) studies the marriage problem with common dirstribution for each side of the
market. The finiteness of the preference domain is a strong assumption when the
number of agents converges to infinity. A recent paper by Azevedo and Leshno (2011)
analyzes stable matching in the college-student problem with finitely many colleges
and continuum of students. Similarly to here, the authors show that stable matching

is generically unique.
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Second, the continuum approach allows us to introduce and study local properties of
the stable matching, like the matching of the indifference curves, local assortativeness,
and local bargaining power that are probably relevant to large non-continuum markets
but would be difficult to capture using more traditional, discrete approach.

Third, our method allows to compute analytic approximations to stable matchings.
We can draw the approximations on 2- or 3-dimensional diagrams and use the graphics
to trace the effects of the changes in parameters of the model. This is a contribution
to a field that is typically focused on discrete models without any natural graphic
representations. We illustrate this application in section 2.

Finally, our results provide a motivation for the increased effort in searching for
the existence and stronger uniqueness results. We hope that these results can be
obtained. Our belief is based on historical paralel to the development of the closely-
related problem of optimal transportation (or, matching with transferable utility).
In that problem, the original analytic solution was obtained in XVIII century by
Monge, and the complete, non-analytic solution that includes both the existence and
uniqueness was not ready till the second half of XXth century.

There are many open questions resulting from the current paper. The most impor-
tant one concerns existence: Although we know that smooth stable matchings exist in
some cases (and whenever they exist, our result implies that they are unique), we do
not know whether they exist in general. The second question concerns convergence:
Arguably the continuum limit is interesting mostly if it is a limit of finite markets.
At this moment, we do not know whether the (possibly non-unique) stable matchings
of finite markets converge to the unique matching in the continuum limit. We discuss
these issues further in section 6.

The next section uses examples to illustrate some ideas of this paper. Section 3
describes the model. Section 4 presents a local characterization of a stable matching.
In section 5, we define the cone-shaped domains and state our main result, Theorem 1.
We also present the first step of the proof of Theorem 1 and explain how to determine
the first derivative of a stable matching around the top match from the fundamentals

of the model. Finally, section 6 comments on existence, convergence, and alternative
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domain assumptions. The appendix contains the rest of the proof of Theorem 1 and

computations for example of Section 2.

2. EXAMPLES

In this section, we use a series of examples of matching situations to illustrate
some of the properties of smooth stable matching. In each of the examples, we plot
an approximation to the unique smooth stable matching. The computations are
postponed untill Appendix C.

Ezxample 1. In all of the examples but the last one, we assume that men and women
are fully described by a two-dimensional vector (i, b). To focus attention, we refer to
the first dimension, 7, as intelligence, and the second one, b, as beauty. The men and

women belong to the same domain:
E ={(,b):1,b<0}.

and they are drawn from the same probability distribution with non-disappearing
Lesbegue density on E. For simplicity, we assume that the Lesbegue density is con-
stant in some neighborhood of (0, 0) . In particular, the choice of domains implies that
man m = (0,0) is (weakly) smarter and more beautiful than any other man in the
domain. Similarly, woman @ = (0,0) is the smartest and the most beautiful among
all women.

Each man m derives utility
M (my, my, w;, wy) = 2w; + wy, + maw; + mywy,
from the match with woman w. Likewise, each woman w derives utility
W (mi, my, wi, wy) = mi + my + miw; + myw,

from the match with man m.

We discuss important properties of the preferences. First, in this and all the ex-
amples below, the preferences of both men and women are strictly monotonic, i.e.,
all men and women would strictly prefer to marry smarter and/or more attractive

spouses. Because of monotonicity, man m and woman w are mutual top matches,
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and must be matched with each other by any stable matching. We use this starting
point to describe the matching in some neighborhood of the top match.

Second, up to first-order approximations, in a small neighborhood of the top man
m, men rank women according to the quality index equal to 2w; + wy. Similarly,
in a neighborhood of the top woman w, women rank men according to the quality
index equal to m; + my. Because the indices are common for all men and women in
some small neighborhood of the top match, one can think about them as common
preference rankings. The well-known results about common ranking suggests that
the unique stable matching will match the men and women assortatively by quality.

Sorting by qualities is closely related to the key property of stable matching: that
the tangent lines to the indifference curves at the point of the match are locally
mapped onto each other (see Lemma 1 below). Here, the tangent line to the women’s
indifference curve in the neighborhood of the top match is equal to m; + m; = const,
i.e., the set of men with the same quality. Similarly, the tangent line to the men’s
indifference curve is equal to 2w; + w;, = const, i.e., the set of women with the same
quality. Stable matching maps the former onto the latter.

Finally, the preferences contain the second-order component which implies that,
other things equal, smarter men prefer smarter women and smarter women prefer
smarter men. Because the preferences of men and women agree, one may expect that
stable matching to marry smart men (axis m; = 0) with smart women (axis w; = 0)
and beautiful men (axis m; = 0) with beautiful women (axis w, = 0). We say that
the matching preserves orientation.

We compute (the second-order) approximation of the unique smooth stable match-
ing 1 and plot it on Figure 1. As it is expected, the matching preserves orientation.
The figure plots the difference between p and the identity matching, i.e., matching
that assigns each man to the woman with identical characteristics. Each arrow orig-
inates at some m and points towards woman p (m) . For example, an arrow pointing
in the NE direction means that the man at the beginning of the arrow is matched
with a woman that is smarter and more attractive than he. The length of the arrow

is proportional to the distance between the man and his woman.
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FIGURE 1.

Notice that smart men (i.e., men that lie on the b-axis on the Figure) are matched
typically with women that are equally smart but less beautiful. At the same time,
beautiful men are married to women that are equally beautiful but smarter. This
observation follows from an asymmetry between the comparative value of being smart
among women and men. Men value smart women relatively more than they value
beautiful women, whereas women value both intelligence and beauty equally. Because
more men are attracted to smart women than the other way, smart women get better
matches than smart men.

Example 2. Assume that the domains and density of men and women are the same

as in the previous example and the preferences are given by the following functions:

M (my, my, wi, wy) = w; + wy + 2 (myw; + mywy) ,
W (my, my, w;, wy) = my; + My + Mw; + mpwy,.

The preferences are monotonic, which implies that man m and woman w must be
matched with each other. Figure 2 plots (the second-order approximation to) stable
matching.

At the first-order approximation, both men and women value rank their potential
partners according to the quality index equal to the sum of the two characteristics,
intelligence and beauty. In a small neighborhood of the top match, stable matching

should match man and women assortatively according to their quality ranking.
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FIGURE 2.

At the second-order approximation, the preferences include cross-derivative terms
that imply that smarter men prefer smarter women and smarter women prefer smarter
men. Similarly to the first example, this implies that stable matching preserves
orientation.

Finally, men’s preferences put relatively more weight on the cross-derivative term.
This means that, choosing among women of certain fixed quality, men typically value
women with more extreme characteristics (i.e., that are close to the i- and b-axes),
whereas women (as compared to men) prefer more balanced characteristics (i.e., men
that are located near the i = b axis). Thus, there is relatively more demand for
women with extreme characteristics and relatively less demand for women with bal-
anced characteristics. In the same vein, there is more demand for men with balanced
characteristics.

These differences between men and women are reflected by stable matching. Rel-
ative to the identity matching, men with balanced characteristics are matched with
women of higher quality. Additionally, men with extreme characteristics are matched
with women of lower quality and, more specifically, with a lower value of the fea-
ture about which the men care less. For example, very smart men are matched with

women who are somehow less beautiful then themselves.
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One can show that the preferences in the first two examples exhibit a continuous
version of alpha-reducibility introduced in Clark (2006) (also called top—top match
property): for every (compact) subset of men and women E', C Ey; and Ej, C Ey,
there exists m’ € E); and v’ € Ej;, such that m' is the most preferred man of woman
w’ among all men in set F, and w’ is the most preferred woman of man m’' among
all members of set Ej;,. Clark (2006) shows that this property is a sufficient condition
for the uniqueness of stable matching in the discrete markets. Next, we discuss two
examples without alpha-reducibility.
Example 3. Assume that the domains and density of men and women are the same

as in the first example and the preferences are given by the following functions:

M (g, my, wy, wy) = w; + wy, — 2 (Miw; + mpwy)

W (my, my, wi, wp) = my; + My + muw; + mpwy,.

Thus, at the first-order approximation, men and women rank each other with respect
to the quality index that is equal to the sum of intelligence and beauty. As in the
previous two examples, stable matching matches men and women assortatively by
quality.

Additionally, the second-order coefficients imply that smart women prefer to match
with smart men, but smart men prefer (relatively) beautiful women. Thus, women
would prefer a matching that preserves orientation and men would like a matching
that reverses the orientation (i.e., that matches the i-axis of men with the b-axis of
women).

In section 4, we show that the orientation depends on the weighted average of
the cross-derivative matrices of men and women. The weight depends, among other
things, on the relative densities of men and women around the top match. We in-
terpret this weight as a measure of a local bargaining power. In this example, the
absolute value of the cross-derivative coefficient in men’s preferences is larger than the
corresponding coefficient in women’s preferences, which implies that stable matching
should reverse orientation.

Figure 3 plots the difference between (the second-order approximation to) the

unique stable matching and the reverse matching, i.e., a matching that maps man
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FiGure 3.

(,b) to woman (b, 1) . So, for example an arrow that originates at (i, b) points towards
the direction of a match of man (b,7). Notice that Figure 3 resembles Figure 2. This
is not surprising: because of the reverse orientation, women prefer to match with rela-
tively balanced partners and men prefer relatively more extreme women. This creates
an excess demand for women with extreme characteristics and a lower demand for bal-
anced women. The difference in the relative demand pushes balanced men to matches
with higher quality women and extreme men to matches with relatively lower quality
partners.

Ezxample 4. In the last example, we assume that the space of characteristics has
three dimensions: intelligence, beauty, and wealth. We assume that distribution of

the characteristics of men and women are the same and the domains are equal to
Ey = Ew = {(i,b,w) : i* + 0° + w? = 2(sb + sw + bw) < 0} .

Thus, the domains have the shape of a symmetric cone with the apex at (0,0,0) and
the central axis equal to x =y = 2.

Preferences are given by

M (g, m, M) 5 (Wi, Why Wey)) = Wy + Wpy + Wy, + MW, + MpWey, + Myyw;,

W ((mi, my, M) 5 (Wi, Wy, W) = My + My, + My, + mw; + mpwy + mpwy.
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Thus, at the first-order approximation, both men and women rank their partners
according to the quality index equal to the sum of all three characteristics. Addition-
ally, the second-order component implies that smarter women would like to match
with smarter men, more beautiful women want more handsome men, and wealthier
women want wealthier men. At the same time, smart men would like to match with
beautiful women, handsome men would like wealthy women, and wealthy men would
like smart women.

As in the above examples, up to first-order approximation, stable matching sorts
men and women by their qualities. In particular, the hyperplanes that consist of men
with the same quality, m; + m; + m, = const, are mapped onto hyperplanes that
consist of women of the same quality, w; + wy, + w,, = const .

Sorting by qualities does not explain the orientation of the matching of the hy-
perplanes of the same qualities. In order to shed some light on the orientations, we
consider a couple of hypothetical alternatives. First, suppose that instead of M, the
second order terms of men’s preferences are equal to the second-order terms in women
preferences W. In such a case, both men and women want to match intelligence with
intelligence, beauty with beauty, and wealth with wealth. The unique stable match-
ing is the identity matching, or the women’s preferred matching. Second, if instead,
women’s utility function included the second-order terms from the men’ utility M,
then both men and women would want to match smart men with beautiful women,
beautiful men with wealthy women, and wealthy men with smart women. The unique
stable matching would be a rotation around the axis x = y = z that replaces coordi-
nate ¢ with b, b with w, and w with <. Such matching is the preferred matching for
men.

Given utility functions M and W, the unique stable matching is somewhere be-
tween two extreme cases. It is a rotation that goes in the same direction but not as far
as the rotation from the second case described above. The first-order approximation
to the unique smooth stable matching is shown in Figure 4. Each arrow originates at
some man m and its end (denoted with a big dot) points towards woman p (m) . The
arrows are arranged counter-clockwise around the central axis of the conic domain

x =y = z. For example, the beautiful and wealthy men (the i-axis, which corresponds
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FIGURE 4.

to line b = w = 0) are matched with slightly wealthier and smarter but somehow less

beautiful women.

3. MODEL

For any two vectors v and u, we write v-u or v'u to denote the scalar product. For
any vector v or matrix A, we denote the transpose as v' and A’. For any two vectors
v,u € R4, we write v < u (or v < u) if v; < ) (or v; < ) for each i. We write e’ for
the unit vector with 1 on its jth coordinate and 0 otherwise.

There are two types of agents, men and women. Men and women are represented
as a d-dimensional vector of characteristics, m, w € R?. Each of the dimensions corre-
sponds to a characteristic that is relevant in the particular problem (like intelligence,
beauty, wealth, etc.).

The mass of men is given by a distribution G, € AFE); with a closed support
Ey C R?. Similarly, the mass of women is given by a distribution G; € AFE), with a
closed support Ey; € R?. We assume that distributions G; and Gy have Lesbegue

densities, respectively, gy; and gy, that these densities are analytic, and that function

g(m,w):M for m € Ey,w € By

gw (ma w)
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can be extended as an analytic and strictly positive function to some neighborhood
of By X Ey.

Let M (m,w) denote the utility of man m from the match with woman w. Let
W (w, m) denote the match utility of woman w with man m. We assume that the
utility functions are analytic, i.e., locally, they have a representation by an infinite
Taylor series. We denote the first- and second-order derivatives at (mqg, wg) by, re-

spectively,
M (m07 'on) 7Mw (m07 wD) 7me (m07 wO) aMmm (m07 wO) ) and Mww (m0> 'LUo) .

For example, M., (mg,wp) is a normal vector to man my’s indifference curve at
his match with woman w,. We use similar notation for the derivatives of function
W. If man my and woman wg are clear from the context, we write M, instead of
M, (mg, wp) with a similar convention for other pieces of notation. All the results
and definitions depend only on the ordinal properties of the utility function and are
not affected by any (analytic) monotone transformation.

We assume that preferences are strictly monotonic: M., (mg, wo) , Wi, (mg, we) > 0
for each mg, wy.

A matching is a measurable function with a measurable inverse p : Fy; — Ey such
that for all measurable subsets £ C Ey; and E' C Eyy,

Fiv (1 (E)) =t (E) and Eyy (57 (E)) = ™" (). (3.)

Matching i is stable if for each m, m' € Ey;, either M (m, pu(m)) > M (m, p(m’)),
or W (m/, pu(m')) =W (m, pu(m')).

Matching p is differentiable (or continuously differentiable, smooth) if function pu

is differentiable (or continuously differentiable, analytical). For any differentiable

matching p (not necessarily smooth), equation (3.1) is equivalent to
|det D,, (myg)| = g (mo, pt (myg)) for each my, (3.2)

where D), (mg) = 2|mj is the derivative matrix of 1 computed at my.
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FicURE 5. Indifference curves under stable matching.

4. LOCAL CHARACTERIZATION

4.1. First-order approximations. We show that any stable matching must (lo-
cally) match hyperplanes that are tangent to the indifference curves for each matched
pair of man m and woman w = p (w) and the indifference curves increase in the direc-
tion for both men and women. For each man m, let M,, and W,, denote the normal
vectors to the indifference curves of man m and woman w = p (w) that are computed

at match (m, u (w)). Let Dy denote the derivative of the matching function at m.

Lemma 1. Suppose that p is twice differentiable stable matching. For each m,
M. (D) Wy, > 0 and for each vector v, if W) v =10, then M., (Du)v = 0.

Proof. The argument relies on the first-order approximations to the utility functions.
On the contrary, suppose that the Lemma is not true. There are two possible cases:
(a) either M/, (Du) Wi, < 0, in which case assume that v = 0, or (b) M/, (Dp) W, >
0 and there exists a small vector v such that M! (Du)v > 0 (see Figure 5 for case

(b)). In each case, we can find € > 0 sufficiently small, so that

M(m,p(m+v—eWy,)) — M (m,w)
= M, (Dp) v — e M, (D) W + O (J[v]|*) > 0,
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and man m prefers to match with woman w' = p(m+ v —eW,,), instead of his
current match w. At the same time, woman w’ strictly prefers to match with m

instead of her current match, m’ = m +v —eW,,,
W(m,p(m+v—eWp)) —Wm+v—eWn,u(m+v—eW,))
= W0+ e[ Wall® + O ([0l*) = & [Wal* + O (|lo]*) > 0.
The existence of blocking pair (m, u (m + v — eW,,)) violates stability. O

The Lemma has two important implications. The first implication is formal. For

each j < d, let
(Wm (m7 w))d
W (m, w));

be the (minus) ratio of dth and jth coordinate of the normal vector W,, (m,w) . Then,

y* (m,w) = — (4.1)

vector y* (m,w) e’ + e? is tangent to woman w’s indifference curve at the point of
her match with man m, (y* (m,w)e’ + e?) - W,, (m,w) = 0. Lemma 1 implies that

any smooth stable matching must satisfy
My, (m, g (m)) - (Dp (m)) (y* (m, pu(m)) e; + eq) = 0, for each m. (4.2)

This system of differential equationsplays a central role in the characterization of the
unique stable matching.

The second implication is that, locally, any stable matching looks like an assortative
matching. To explain this claim, imagine that the space of men’s characteristics
around man m is sliced by hyperplanes that are orthogonal to the normal vector W,,
to woman w’s indifference curve. These hyperplanes are approximately tangent to
the indifference curves of women in a neighborhood of woman w. It is natural to think
about the hyperplanes as collections of men with (approximately) the same quality,
where the quality is measured by the distance from m with respect to vector W,,.
Locally, all women in the neighborhood of w have the same preferences and they rank
men in a neighborhood of m in approximately the same way, by their quality. In the
same way, imagine that the space of women’s characteristics is sliced by hyperplanes
that are orthogonal to the normal vector M, to man m’s indifference curves. Locally,
all men in the neighborhood of man m rank women in the neighborhood of w in

approximately the same way, by their quality. The second part of Lemma 1 implies
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that slices from the space of characteristics of men are matched with slices of the space
of characteristics of women. The first part of Lemma 1 implies that the matching is

assortative: higher quality slices are matched with slices of lower quality.

4.2. Second-order approximations when d = 2. Additional information about
the orientation of the matching can be obtained from the second-order approxima-
tions. In order to illustrate the main issues, we discuss first the two-dimensional case,
d = 2. Figure 6 illustrates the local trade-off between the two characteristics along
the tangent lines to the indifference curves. To fix attention, we refer to the first
coordinate as intelligence and the second as beauty. Then, women to the right of
woman w are smarter and less pretty than w, and the women to the left of w are
prettier and less smart than woman w. Similarly, men to the right of m are smarter
and less pretty than m.

We say that the matching preserves orientation if smarter men are matched with
smarter women and vice versa (see the top part of Figure 6). Formally, let v be a
vector tangent to the indifference curve of woman w = p(m) at the point at her
match with man m, and let u be a vector tangent to the indifference curve of man m.
Both vectors point towards increasing intelligence. Then, the orientation is preserved
if w' (Dp)v > 0. Analogously, the matching reverses the orientation if smarter men
are matched with prettier women (see the bottom part of Figure 6).

We argue that the orientation of the stable matching depends on the way that the
preferences change along the tangent lines, or more precisely, on the second-derivative
matrices W,,,, and M,,,,. Consider the following cases:

(a) Smarter men like smarter women (i.e., v'M,,,u > 0) and smarter women like
smarter men (i.e., v'W,,u > 0). This case is illustrated on the top part of Figure
6. We claim that the stable matching must preserve the orientation. Indeed, if man
m -+ v were to be matched with less smart woman w — u, and woman w + u were to
be matched with less smart man m’, then m + v and w + u would form a blocking
pair.

(b) Smarter men like prettier women, and smarter women like prettier men (i.e.,
V' Mppu < 0 and v'Wp,u < 0). In such a case, the stable matching must reverse

orientation. Indeed, man m 4 v and woman w — u on the top part of Figure 6
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w
m
o m m+y /
- w+u
‘Prettier people Smarter people >
Wm
W, (wru)=ig +W, u M,
m * mw Mw(m')zMw_V,MmW
mr:m—v.gwm
.o
w'=w-u-e6M
Men .

FicUurRE 6. The top part shows stable matching in case of alligned
preferences; the bottom one corresponds to the case of misalligned pref-

erences.

prefer to marry each other rather than any spouses that equate each of them with
intelligence and beauty.

In cases (a) and (b), the preferences of men and women are aligned in a sense that
they change in analogous ways. In the last case that we consider, the preferences are
misaligned.

(c) Smarter men prefer smarter women and smarter women prefer prettier men
(i.e., v Myu > 0 and v'W,,,u < 0). This case is illustrated on the bottom part of
Figure 6. In this case, men prefer to match in a way that preserves the orientation,
whereas women would prefer the reverse matching. We argue that the orientation

depends on the derivative of the matching in the direction of the normal vectors to
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the indifference curves. We need the following definition: Let

M )4
6 = Y _ (D m_
) =12l PP Tl

(4.3)

Parameter 6 (m) is always positive. We refer to 6 (m) as a measure of local bargaining
power of woman w = p(m). To see why, suppose that the utilities are normalized
so that the normal vectors have unit length, ||[M,| = |[[Wal| = 1. Consider a
hypothetical scenario in which woman w gives up her current match m and marries
man m — eW,, instead. This leads to her first-order utility loss of & [|W,|* = e.
At the same time, her new partner, man m — eW,,, experiences the utility gain of
eMy - (Dp) Wy, = 0e. Thus, 6 is equal to the ratio of the first order utility gain of
the man relative to the first-order utility loss of the woman. If # is large, woman
w has an opportunity to provide a substantial first-order utility gain to her partner
with a relatively little cost to herself. She can leverage this opportunity to gain the
second-order improvement in the orientation of the match.
We will show that if the local bargaining power of woman is high enough,

V' Mt

g (m) > (4.4)

— 0 Wt
then the orientation of the stable matching is reversed, as it is wished by women.
On the contrary, suppose that the stable matching preserves the orientation as it is
illustrated on the bottom part of Figure 6. Here, smart man m + v is matched with
smart woman w — u. In particular, the orientation is determined by the preferences of
men rather than women. We argue that it must be that the local bargaining power of
women is not too high, To see why, find ¢ > 0, such that woman w + u is indifferent
between her current match with m 4 v and a match with a pretty (but of slightly less
overall quality) man m —v —&W,,. Simple calculations show that, up to second-order

approximation,
1

9 -
2

Wl
If the matching is stable, it should be that man m — v — eW,, prefers to match with

(='Wt - (4.5)

ER

wolnan

pw(m—v—eWy,) ~w—u—e(Dp) Wy,
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rather than w + w. Thus, using (4.5), up to second-order approximations,

OSMm—v—eWp,u(m—v—eWp)) —M(m—v—eW,,w—u)
~ (M'w - 'U,me) ) (_Zu —¢ (DM) Wm)
~ 20 Myt — eMy, - (D) Wiy,

1
~ QUImeu - QW (_U/meu) Mw : (D:u) Wm
HMwH) ,
=|20—— |V (M + 0 (M) Wi u,
(2t ) v (7} Vo)

which contradicts (4.4).

4.3. Second-order approximations - general case. Here, we describe how to
extract information about the orientation of the stable matching along the tangent

hyperplanes in the general case d > 2. Let 6 (m) be defined as in (4.3). Also, let

W (m) = .
) =t O

(4.6)

The values of parameter § and matrix W depend on the stable matching p and the
matched man m. We suppress the reference to man m whenever his identity is clear
from the context. Matrix W, defined in (4.6), is a weighted average of cross-derivative
matrices M,,,,, and W,,,,,. As we explain above, the cross-derivative matrices describe
how the change in the preferences in the neighborhood of matched pair (m, u(m)) .
The larger local bargaining power of women 6, the more W depends on the women’s

preferences. We have two results:

Lemma 2. Suppose that p is a twice continuously differentiable stable matching.

Then, for each man m, any vector v such that v- W, =0, o'W (Du)v > 0.

Proof. Take any vector v that is tangent to woman w’s indifference curve. Choose

¢ so that woman p (m + v) is indifferent between her current match and man m’ =
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m — v — eW,,. Due to the second-order approximations, we have
0= W (', 1 (m + v)) = W (m 4+ v, 1 (m + v))
B W (m,w) — Wy, — € [[Whl® + W, (Dp) v
~0Winw (D) v+ 0 Winmv + (D) v) Wi (D) v)
W (m,w) +v'W,, + Wy, (Dp) v
AU Wi (D) v+ 0Wiav + ((Dpt) 0) Wa (D) v)
+O (ol €% e lv]l)
= =20 Wiy (D) v = & [[Wan|[* + O ([[of|* €%, [[o]]) -

In the last equality, we used the fact that v'W,, = 0 by the choice of vector v. It

follows that

1
€= —qu’wmw (Dp)v+ O (||v]%) . (4.7)

If the matching is stable, then man m’ (weakly) prefers his current match to woman

p(m+v),
0 < M (m',p(m')) = M(m', pu(m + v))
= 20' My (D) v — e My (Dpp) Wy, + O (||0]* €%, £ |Jv]]) - (4.8)

In the last equality, we use the fact that, by Lemma 1, M/ (Du)v = 0. After
substituting (4.7) into (4.8) and dropping the higher-order terms, we obtain

0 < 20" Moy + (M3, (D) Win) Winw] (Dp) v
=2 [My|| ('W (D) v) .

O

Lemma 3. Suppose that p is a twice continuously differentiable stable matching.

Then, for each m, any two vectors v and u such that v -W,, = u-W,, =0,
VW (Dp)u = u'W (Du) v. (4.9)

Proof. Take any two vectors v and u that are tangent to woman w’s indifference

curve and such that the length of vector u is small relative to v, ||ul] = [Jv]/*?.
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Choose € so that woman u (m + v) is indifferent between her current match and man

m' =m + v+ u—eW,,. Due to the second-order approximations, we have

0= W ('t (m + ) = W (m + v, t (m + v))
— U Wt + 6 Wi (Dp) 0 — £ [ Wil + 20 ([[0])) + O (Joll® . &% e Joll) . (4.10)

In the last equality, we used the fact that v'W,, = v'W,, = 0 and the choice of vectors
u and v and that «/Au is of order ||v||® for any matrix A.
At the same time, if the matching is stable, then man m' (weakly) prefers his

current match to woman u (m + v),

0 < M(m/,p(m)) = M (m', pp(m +v))
= (D) 1) My (D) v + 0 Moy (Dp) u = eMi, (D) W + O ([[ol] €%, 2 o) -

(4.11)
After substituting the solution of € from (4.10) into (4.11), we obtain
Mww Wmm
0 < ((Dp)w) = (Dp) v — Ou' 5o (Dp) v
[ Ml Wl
M W,
+ ' =" (Dp)u — Ou'—" (Dp) v. (4.12)
[ M| Wil

Inequality (4.12) holds for all vectors uw and v that are tangent to woman w’s
indifference curve. In particular, it holds when w is replaced by —u. Together with
(4.12), the latter implies that the inequality sign in (4.12) can be replaced by equality.
Additionally, (4.12) holds when the roles of u and v are replaced. Because matrices

My and Wy, are symmetric, we obtain,

M W, M 4%
V' —" (Dp)u — Ou'—"= (Dp) v = v'-—"= (Dp) v — Ov' =" (D) u, (4.13)
M| Wl [ M| [Wanl
After some rearrangement of terms, we get (4.9). U

Lemma 3 holds trivially when d = 2. In such a case, any two vectors v and u that
are tangent to woman w’s indifference curve are colinear. The result is non-trivial
when d > 3.
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Notice that the theses of the above results imply that for each man m, any vectors

v and u,
VP W (Du) Pwo > 0 and o' Py, W (Du) Pwu = u' Py, W (D) Pwo."

It follows that matrix Py, W (Du) Py is symmetric and positive-definite. We use this

observation in the sequel.

5. UNIQUENESS
In this section, we state the main result of this paper.
5.1. Conic domains. Define a standard cone with apex at 0 as
E*={m:mi+..+mj_, —m;<0and my <0}
= {m :m'I*m < 0 and my < 0},

where [* is a d-dimensional matrix obtained from the identity matrix but with the
last cell in the diagonal switched from 1 to —1.

We focus on domains that are cones obtained as linear transformations of standard
cones and with an apex that lies above any other element of the domain. Say that
linear operator ¢ : R* — R is proper if ¢=! (m) < 0 for each m € E*\ {0}. Define
symmetric d-dimensional matrix

= ¢'I"9,
where ¢’ is a transpose of matrix ¢. We say that ® is a proper cone matriz. We
say that cone E = ¢~ (E*) = {m : m/®&m < 0 and myq < 0} is generated by ¢ (or,
equivalently, by ®).

We assume that Fj; and Ey are generated by proper cone matrices, respectively, ®

and ¥. Because continuous matching p maps the boundary of E); onto the boundary

of Ey, the boundary conditions imply that
m'®m =0 = p(m') Uu (m) = 0 for each m. (5.1)

Domain F); contains the top man m = 0 € E;;: any other man in the domain
m € FE); has strictly worse characteristics than m. Similarly, domain Ey, contains

the top woman w = 0. The monotonicity assumption implies that m is the top match
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of woman w and vice versa. It follows that each stable matching matches them with

each other, u (m) = w.

5.2. Normalization and change of coordinates. From now on, we write f instead
of f(m) for any function f of men’s characteristics evaluated at m and instead of
f (7, ) for any function of men’ and women’s characteristics. For example, M, is
the cross-derivative matrix evaluated at the point of top matching (7, W) .

From now on, we assume that preferences are normalized so that the normal vectors
at the top match have unit length, HMwH = HWmH = 1. The assumption is without
loss of generality, because we can always multiply the utility function by a constant
without changing any of its properties.

It is convenient to rotate the coordinate systems in the space of both men’s and
women’s characteristics, so that the normal vectors at the top match have 0 on all
coordinates except for the last, M, = W, = (0,...,0,1). We use this convention
because it is easier to express all the relevant objects in the rotated coordinates. In
order to go back to the original coordinates that correspond to features like intelligence
or beauty, we need an inverse rotation.

For any d-dimensional matrix A, we write A” to denote the d-dimensional matrix
obtained by crossing out the last column and the last row. It is easy to check that if

® is a proper cone matrix, then ® is symmetric and positive-definite.

5.3. Main result. For each d, let M, = R% be the space of d-dimensional matrices,
and let P; C My be the subspace of proper linear operators. Let P = (Rd)2 X M2 x
P? x R, be the space of parameters (M;U,Wv;L,M,;Lw,W;nw, qﬁ,w,g) € P. Space P
is a convex subset of a Euclidean space; hence it can be equipped with a Lesbegue
measure A\p € AP. We say that a claim holds for the generic values of the parameters
if there exists subset Py C P such that A\p (P\Py) = 0, and that the claim holds
whenever (M, W,., M Wi @1, G) € Po.

Theorem 1. For the generic values of the parameters, there exists at most one smooth

stable matching.

The proof relies on two observations. First, the discussion above implies that each

smooth stable matching must be a solution to a system of differential equations (3.2)
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A Tangent plane to A Tangent plane to
m indifference curve of w* indifference curve of m*

» I

> O
N

Men Women

F1cURE 7. Local bargaining power at the top match.

and (4.2) subject to boundary conditions (5.1). Second, any smooth (i.e., analytical)
function over an open connected domain is determined by its first- and higher-order
derivatives computed at a single point. Thus, it is enough to show that all the m-
derivatives of a solution to the system of differential equations p are determined by
the fundamentals of the model. The idea is to differentiate equations (3.2), (4.2), and
(5.1) and evaluate the differentials at the top match. We proceed by induction on the
order of derivatives. At each step, we obtain a system of finitely many linear equations
with unknowns being equal to the derivatives of 1 computed at the top match. At
each step, the number of equations is the same as the number of unknowns. We show
that, for the generic values of the parameters, the equations have unique solutions.

In the rest of this section, we show how to derive the first-order derivatives. We
show that the local bargaining power at the apex is determined by the density of
men and women at the top match together with the shapes of men’s and women’s
cones. We use this information to find all the first-order derivatives. In the end of
the section, we illustrate some of the issues in two separate examples for case d = 2
and d > 3.

The higher-order derivatives are determined in Appendix B (with some mathemat-

ical preliminaries contained in Appendix A).

5.4. Local bargaining power 6. We compute the local bargaining power f at the

top match. Notice that any continuous matching ;» maps the boundary of set £, onto



SMOOTH STABLE MATCHING 25
the boundary of set Ey,. Moreover, Lemma 1 implies that hyperplanes orthogonal to
W, are approximately mapped with hyperplanes that are orthogonal to M,,. Because
of the choice of coordinates, it means that hyperplane my = —¢ is (approximately)

mapped onto plane myg = — M., - (D,u) W, e = —fe. Tt also means that cone
EM(E) :{mEEM:de —8}

is mapped onto cone

~

Eyw (95) = {w € Bw :wg > —éa}.

(See Figure 7.)
The matching equation (3.1) implies that the mass of cone F); (¢) must be (ap-
proximately) equal to the mass of cone Eyy, <</\/lw . (ﬁu) Wm> 5) . The two masses

can easily be computed using standard geometric methods (see Appendix A.4):

9 o g\ HOD
(det \Il) ’

where det ®'is a determinant of (d — 1)-dimensional matrix ®* obtained by crossing

[SIE

mass of Eyy <é5> gw volg By (éa) B 1,§d (det q,P)

mass of Ej (¢) ~ guvolgEy (e) g det ®F

out the last row and the last column from matrix ®, det ¥¥ is obtained in a similar
way from matrix ¥, and vol; is the volume in R?. The above equation leads to
formula that expresses 6 in terms of matrices ®, U, and the ratio of density functions

g computed at m,
d—2 d—1

1 1
1 (det ®PN\2 T [detW\2 ¢
- . 2
a (det\lfp) <detCI>) (5:2)

Local bargaining power 0 has natural comparative statics. The smaller mass of the

D>

women in the neighborhood of the top match, i.e., the smaller value of gy, the larger

density ratio g and the larger woman w’s bargaining power.

5.5. First-order derivative ﬁu. We are ready to compute the first-order derivative
matrix ﬁ,u of the matching function at the top match. We begin with three prelimi-
nary observations about ﬁu. First, together with the choice of coordinates, Lemma, 1
implies that for any vector ((Du) v)d = 0 for any vector v with the last coordinate

equal to vy = 0. Moreover, the definition of bargaining power and the unit length
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of normal vectors implies that ((f),u) (0,...,0, 1)) = 6. Thus, the derivative matrix
d

by | (D) (D)’

0 0

can be written as

, (5.3)

where (f?,u)P is a (d — 1)-dimensional matrix and (ﬁ,u)y is a (d — 1)-vector. The
last row of matrix ﬁu consists of Os in all places but the last column.

Second, Lemmas 2 and 3 imply that for each pair of vectors v and u with the
last coordinate 0, v'W (ﬁu) w=uW (ﬁu) v and v'W (ﬁu) v > 0, where W is the
matrix defined (4.6) as the weighted sum of cross-derivative matrices and evaluated

at m.Therefore, matrix

. . /A P . \P

= (W (bu)) =Ww"(Du) (5.4)
is symmetric and non-negatively definite (the second equality follows from represen-

tation (5.3)). We make a generic assumptions that matrix W7 is invertible.
Third, notice that equation (3.2) implies that

det ‘Du’ ~3. (5.5)

Next, we consider a first-order approximation to the boundary conditions equation
(5.1) using a first-order approximation to matching p, p (m') = (ﬁu) m—+0 (Hm\|2) :
After dropping the higher-order terms, it follows that

A I A
m'®dm = 0= m' (D,u) U (Du) m = 0 for each m.
The two equations on both sides of the above equality are irreducible polynomials of
the same order. The above implication is satisfied if and only if the former polynomial

is equal to the latter polynomial multiplied by a constant, or if and only if the two

polynomials have the same coefficients. Therefore,
Y .
(D,u> U (Du) = ¢® for some c. (5.6)

Because the determinants of the matrices on both sides of (5.6) must be equal, it

1
“ 2 d 1
must be that ¢ = ((det Du) Sitg) = (9?922)?, with the last equality due to
(5.5).
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(5.4), equation (5.6) implies that

) and
((0w)") v (54)" 51)

By (WP')_1 wP (WP>_1 S = (gZdeN> "o

Because of (5.3

det ®

Equation (5.7) is a quadratic matrix equation with unknown square matrix S, By the
discussion above, matrix S is symmetric and non-negatively definite. It is well-known
that equation (5.7) has a unique symmetric and non-negatively definite solution.
(For the sake of completeness, we present the argument in Lemma 4 Appendix A.3).

A

Together with (5.4), this determines (ﬁ,u)P = <WP) - S.
Finally, vector (D,u)y is determined from equation (5.6) after substituting all the
other elements of matrix (5.3). This completes the derivation of matrix D.
We illustrate the above derivations and the role of preferences and local bargaining
power in determining the matching around m and w. In order to focus attention,
we assume that, given the choice of coordinates described earlier in this section, the

boundary conditions are given by the standard cones. In other words,
d=0=7T" (5.8)

which implies that ® = ¥P = [, ;, where I; ; is (d — 1)-dimensional identity

matrix. We consider two cases: d = 2 and d > 2 separately.

6. COMMENTS

In this section, we discuss some generalizations of Theorem 1 as well as some open

questions.

6.1. Domain assumptions. We can mildly relax the assumptions on the domains
from section 5 so that the domains look like cones only locally, at some neighborhood
of 0. Assume that £y = ¢ (E*) and Ey = ¢ (£*) for some analytical mappings
¢,¢ : R? — R? such that ¢ (0) = ¢ (0) = 0 and such that their derivatives at
0, D¢, Dy : R* — R?, are a proper linear mapping. Define proper cone matrices
o — (D¢>' I (Dqs) and W = ([w)lf* (Dw) . Then, Theorem 1 holds without any

modification of its proof.
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What about non-cone shape domains? For example, one can imagine that Fj; and
By are compact subsets with smooth boundaries. If the preferences are monotonic,
one can still show that there exists man m € E;; and w € Ey such that w is the most
preferred match of man m and vice versa. One can approach the uniqueness question
with such domains along the same lines as in the proof of Theorem 1. Specifically, it is
enough to show that all of the higher-order m-derivatives of solution u to the system
of partial differential equations (3.2) and (4.2) with boundary conditions x (bd Ey/) =
bd Ey are uniquely determined by the fundamentals of the model. Because of the
different nature of the domain around the top match m, the higher-order equations
are different than the equations derived in the proof of Theorem 1. Nevertheless, one
can still show that the number of equations is equal to the number of unknowns and

we expect that an analog of Theorem 1 holds.

6.2. Existence. Theorem 1 is concerned with uniqueness and does not comment on
existence. In many cases, we know that smooth stable matching exists. For example,
one can show that for any strictly monotonic smooth function p : Ey; — FEy that
preserves masses, any men’s utility function M, one can find women’s utilty function
W such that p is stable matching.

The question is whether smooth stable matching exists for a a given utility functions
M, W, domains F); and Ey, and densities gy; and gyy. Our results suggest to look
for the existence of a solution to a particular type of partial differential equations. In
general, the issue of the existence of a solution to a system of differential equations is
difficult. In the Cauchy problem, one looks for solution f : R? — R to the system of
equations of form A (f, Df, ..., D" f) = 0 with boundary condition f (y1,...,%4-1,0) =
fo (Y1, ...;yq—1) for some functions A and fy. Under some regularity conditions on A
and fy, the standard off-the-shelf result, the Cauchy-Kovalevskaya Theorem proves
the existence and uniqueness of a smooth solution in some neighborhood of (0,0, ..., 0).
Unfortunately, the Cauchy-Kovalevskaya Theorem cannot be applied to the existence
of stable matching because the boundary conditions (5.1) are different than in the

Cauchy problem.



SMOOTH STABLE MATCHING 29
6.3. Convergence. Arguably, smooth stable matching and its uniqueness is inter-
esting mainly if it is a limit of matching in finite population models. Specifically,
fix N and consider a random matching market with N men and women drawn from
distributions, respectively, F); and Fy . For each realization of the random market,
there exists at least one stable matching (that can be found, for example, by Gale-
Shapley algorithm). The stable matching generally is not unique. Let u}]j) and ug,v )
denote, respectively, the men- and the women-optimal matching given the realization
of preferences of N men and women. Then, all stable matchings are contained be-

tween M(A?) and ug,v ) (see Roth and Sotomayor (1992)). We can consider sequences of

) as N converges to infinite. The question is: do these

random variables ,ug\]}) and ,ug,f,v
sequences converge to some well-defined object? Is the limit a smooth matching? We

leave these questions for future research.

APPENDIX A. MATHEMATICAL PRELIMINARIES

A.1. Multi-indices. We are going to use a multi-index notation. A multi-index
v = (7,72 — 1) is a (d — 1)-tuple of positive integers, 7, > 0. For any two multi-
indices v and ' we write v > 4/ if 7, > 7] for each [. Moreover, define 7 + 7' =
(’yl + Y1y ey Va1 + 7:1—1) for each 7, and v — 4 for each v > +/. Finally, let |y| =
Y1+ ... +v4-1 and Y =yl

Let I" be the space of all multi-indices and let I',, be the space of all multi-indices
v such that |y| = n. Let @ € I'y denote the multi-index with 0 at all positions. For
each [ =1,....d, let I' € T'; denote the multi-index that has 1 at the /th position and
0 at all other positions.

We use the multi-indices in two ways. First, they denote the powers of vectors: For
each x € R¥! and v €T, let

Yo 1 Yd—1
xr = SCl "'xd—l .

Second, they denote the derivatives of functions. For each f : R — R, each k > 0
and v € I', we write

A1k Akt

k= dxdy* - dzi*...dz)* ) dyk /
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A.2. Matrix notation and terminology. Let A be an n-dimensional square matrix
forn =dor d—1. We write A = [a{ } , Where j corresponds to rows and [ corresponds
to columns. Let a_J be the jl—cofactor of matrix A, i.e., a_) = (—1)"*'m], where m/
is the determinant of a matrix that is obtained from A by crossing out jth row and

Ith column. Let C = [a:{ } be the matrix of cofactors. Then, if A is invertible,

Moreover, for each row j,

It is sometimes convenient to divide matrix A into four parts that correspond to
the first n — 1 and the last coordinates: We write
AP AW

A= AWy 4O

where A is a number, A® and A®) are (n — 1)-vectors, and A" is a (n — 1)-
dimensional matrix. If A is symmetric, then A® = AWY If A ig invertible, we use

the following formula for the determinant of matrix A :
det A = det A” det (A©® — AOY (47)7" AW (A1)
A.3. Quadratic matrix equation.

Lemma 4. Suppose that d-dimensional matrices A and Bare symmetric and posi-
tively definite. Then there exists a unique symmetric and positively definite matriz S
that solves

SAS = B.

Moreover, the unique solution is an analytic function of A and B.

First, notice that for each d-dimensional symmetric and positive-definite matrix A,

there exists a unique symmetric and positive-definite matrix A'/? such that
AVZAY? = 4, (A.2)

Indeed, the spectral theorem and equation (A.2) imply that A2 and A each have

d independent eigenvectors, that A'/? must have the same eigenvectors as A, and
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that for each eigenvector v, if Av = Av, then AY?v = A2y. The eigenvalues and
eigenvectors determine symmetric A'/2.

Notice also that A'/2 is an analytic function of A for all (symmetric and positively
definite) A.

Observe that
A1/2SASA1/2 _ (A1/2SA1/2) (A1/2SA1/2) _ AI/QBAI/Q,

which implies that

1/2
)

AV2SAY? = (AY2BAM?) T and

G A2 (A1/2BA1/2)1/2 A-V/2
A.4. Cone masses. Consider a cone F generated by a proper cone matrix @,
E={m:m'®m <0,my <0}.

Because ® is a proper cone matrix, for each vector m such that m,; = 0, we have
m/,®mgy > 0, and matrix ®% is positively definite. Let E; be a part of this cone that

lies between plane y = —1 and apex 0. The next lemma finds the volume of Fj.
Lemma 5. There exists constant cg that depends only on d such that
1 lig—
voly (E1) = ¢4 (— det @) 27 (det @7) 20472

We need a preliminary observation.

Lemma 6. There exists constant cq_1 that depends only on d such that for each

positively definite and symmetric (d — 1)-dimensional matriz A, for each b € R4,
voly 1 {y € R4V e (y —b) Ay —b) <1} = cgq (det A) /2

Proof. Let c¢4_1 be the volume of (d — 1)-dimensional ball B;_; = {y € R qyfy < 1} )

For each square and positive Let A = AY2A'2 for some matrix A'/? (such a matrix
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exists due to assumptions about A). Then,
{y e Ry Ay < 1}
_ {y c Ri-1. (A1/2y)/A1/2y < 1}
— Jpr2 -1 d—1 . 1 — (A2 -1
=A%) Ty e R iyy <1p = (AY%) By,
Thus,
volg_1 {y € R /Ay < 1} = g1 (det A)_1/2.
The result follows. ]

We can move to the proof of Lemma 5. First, compute the (d — 1)-dimensional

Lesbegue measure of the ellipse {m : my = —1, m'®m < 0} . Notice that for each y €
Rdfl

(y,> _1) o (y, _1)
— yl@P/y o y/¢(d) . @(d)/y + @(0)
= (y' — @ (@P)_l) o (y — (7)™ q>(d>> L 0O @ ($7) 7 ()

= (-2 @) ") o (4- (@) o) - 0D

= % [<y' _ @y (@P)—l) (:Zt—j;;@P) (y . (q)P)—l q)(d)) _ 1] )

where we used formula (A.1). It follows from the definition of the proper cone matrix
that det ® < 0. By Lemma 6,

voly_1 {m :my = —1,m'®dm < 0}

= voly_; {y c Rd—l : (y/ . cI)(d)’ ((I)P)fl> <_d(§t§;q)p) (y _ ((I)P)fl (I)(d)> < 1}

— ¢4y (—det @) 720D (det )2

Finally,

voly By = volg_ 1 {m :myg=—1,m'®dm <0}

d+1

= ¢4 (— det CD)*%(d*l) (det ") 2(4-2)
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for some constant c .

A.5. Generic solvability of a system of equations. Take any open and convex
U C R". Let \y be the Lesbegue measure on Wy;. Then, Ay (U) > 0.

Square matrix-valued function A : R" — R™ ™ is analytic if A;; : R" — R is
analytic for each i, j = 1,...,m. Let Z4, C R™ denote the set of elements of its domain

z € RN such that the system of linear equations
A(z)y =0, (A.3)
has a non-zero solution. In other words,
Za={z:det A(z) =0}.

Lemma 7. For any open and convexr U C R", any analytic function A : R" —
RUE=DX=Y) “either U C Zy or A\(Z4NU) =0, where \ is a Lesbegue measure on R™.

Proof. Note that det A (2) is an analytic function on open and convex domain. More-
over, Z 4 is a closed set. If Z4NU has a non-empty interior, then there exists an open
set W C Z4NU such that det A (z) = 0 for each z € W. The properties of analytic
functions imply that det A (z) = 0 for each z € R". d

By the above lemma, if function A (.) is analytic, and if there exists at least one
z € U such that the system of equations (A.3) has a unique solution, then A.3 has a

unique solution for generic parameters z € U.

APPENDIX B. PROOF OF THEOREM 1

As we explain in Section 5, smooth (i.e., analytical) matching over an open con-
nected domain is determined by its first- and higher-order derivatives computed at
the top match m. We are going to show that, for the generic values of the parameters
M W M W b1, g, all higher-order derivatives of smooth stable matching
at m can be uniquely determined as functions of the parameters. In section 77, we
establish our claim for the first-order derivatives. Here, we show that the claim holds

for all higher orders.
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We describe the plan of the proof. Parts B.1 and B.2 develop the notation. The
smooth stable matching must satisfy partial differential equations that are restated
in part B.3.

We are going to interpret the higher-order derivatives as unknown variables in a
system of linear equations. In part B.4, we classify all of the variables by their order
n=2,3,... and rank k = —1,0,...,n — 1. Let Var,; be the vector of all variables of
order n and rank k. In part B.5, we show that for each n and £k < n — 1, variables

Var, , must satisfy a system of linear equations:
Ch.x. (Parameters) Var,, = Terms,, j (Vs p st. 0’ <norn’=nand k' <k),

where the matrix of coefficients C,, j, (Parameters) is an analytic function of the pa-
rameters of the model, and Terms,, ;. is a function of variables of lower order or rank.
The number of equations is equal to the number of variables Var, (or, in other
words, C,, ; is a square matrix). In parts B.6 and B.7, we show that for each order
n and rank k, there exist values of Parameters for which matrix C,, , (Parameters) is
invertible (the former part deals with equations of rank & < n — 1 and the latter with
equations of rank n — 1). Part B.8 concludes the argument by showing that matrices

Ch i (Parameters) are invertible for all n and k and generic values of parameters.

B.1. Notations and normalizations. In order to distinguish the first d — 1 and
the last coordinates of the characteristics, for each man m and woman w, we write
m = (z1,...,74_1,y) € R* and w = (ay, ...,aq_1,b) € R%.

Throughout the proof of Theorem 1, we make a generic assumption that matrix
WP = (me + éW;nw>P, where 6 is given by (5.2), is invertible. We make all the
normalization assumptions described in section 5.2. In particular, we assume that
the coordinates are chosen so that vectors W,,” and M,,"~ have the last coordinate

equal to 0 and all the other coordinates equal to 0,
W, =M, = (0,...,0,1).

Let S be the (d — 1)-dimensional matrix that is the unique symmetric and positive

solution to the matrix equation (5.7). Often, we work with the inverse image of S,
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S~1. We denote the elements of the inverse as S~ = [s}kj } , Where j corresponds to
rows and [ corresponds to columns.

For each m,w, and each j = 1,....,d — 1, let y* (m,w) be defined as in (4.1).
Then, vector y*/ (m, w) e?+el is orthogonal to vector W, (m, w) , (y* (m,w) e* + €7)-
Wi, (m,w) = 0. Additionally, for each m,w, and each [ = 1,...,d — 1, let
(M, (m, w)),

(M (m, w)),

Then, vector (a* (m,w),1) lies in the same direction as vector M, (m,w) : there

a; (m,w) =

exists scalar ¢ > 0 such that
(af (m,w),...,al_y (myw), 1) = My, (m,w).
Observe that for each j,1 =1, ....d,
77 =a; = 0. (B.1)

For each j,l =1,...,d — 1, denote derivatives®:

y*j,yzay*j y*j,lzai*j y*j:ai*j y*j:ai*j
oy’ oz, ! da; " 7° ob’
v _ 00 g Oap . Oaf . Oap

a;” = aj ; a .
l s M » g O PLb
dy Ox; da; ob
Lemma 8. For each l,j = 1,....d, ' = ¢ and aj; = a;,;. Moreover,

(5] = =W [07] = My,

mw?’

which implies that WF = [a;7] — 0 [9,7] . (Recall that matriz W is defined in (4.6).)

Proof. Notice that (W,, (m,w))

i = %W (m,w) and, by normalization, (Wm)j =

O B OV ), OV, (i O ),
m,w) = — —
o Wi G, ), (W (0, ),
82 o ay*l o
_axlaxjwm’m Ox; (),

3For each function f : Ey x Ew — R, we write f instead of f (m,w) when the variables are clear

from the context.
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where the last equality comes from the fact that the roles of [ and j can be exchanged.
The argument for a;; = aj, is analogous.

For the second part, observe that

. %] D (OW,, (I, ), (W) 22 Wi (102, 2
Al*J _ y (T?L,ID _ _ O ( ( ))J ( )J Oay H — ( )H _ d W (ﬁ’L, 12))
6al ||Wm|| ||Wm|| 8xj8al
Similarly,
oy 0ar o ae M (@) (M) a Ml e
l]:_(m7w): - B + A] 2 = ,’UJ),
O Ml | Ml 0z ;0a

B.2. Matching. Let u : Ey — Ew be a smooth stable matching. In order to
distinguish the first d — 1 and the last other coordinates of the matching function, we

write
p(zy) = (o' (2,y),...,a"  (2,9),8(x,y) = (a(z,y),8(z,y)),

where y € R is a number, z € R? is a vector, 8,a!,...,a% ' : R? - R and o =
(o, ...,a®!) : R* — R are functions.
Section ?7? derives the first-order derivatives of p at m as functions of the parameters

of the model. In fact, we have the following result:

Lemma 9. The first-order derivatives are analytic functions of parameters (/\/l w. .,

muw) muw?

By:é,Bj:Ofor each j =1,..,d—1, (B.2)
A -1 4
&, = (WP) 3
det U ¢ - —1
~ ~ —1 ~2 x
= [ (72 ]

where we write &, = [a{ ] for the (d — 1)-dimensional matrix of derivatives of .

Proof. The formula for &, follows from equations (5.4), (5.3), and (5.6). The result

follows from Lemma 4 and equation (5.2). O

A

g

) :
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B.3. Partial differential equations. Smooth stable matching j satisfies the fol-

lowing functional equations: For each man m, we have

e matching equation:

oy«
det[ﬁ By”—g:o. (M)
z Py
: : | Gy .
Section 7?7 determines matrix | . 5 of derivatives at the top match,
z Py

and it also determines the (non-zero) sign determinant of this matrix. In
particular, in some neighborhood of the top match, the determinant is always
negative or always positive. In order to focus attention, we assume that the
determinant is positive and we drop the absolute value from the above equation
(the alternative assumption would not affect our analysis),

o stability equation: Equation 4.2 implies that for each j = 1,..,d, vectors

a; A A
[ Y ] (ye? + ¢7) are orthogonal to vector (1,a*). In other words,

Ba By

=y8, + B; +Z,af0¢; —I—y*jzla;‘a; =0,

e boundary conditions: For each ¢ > 0, and each x such that
0=[2,1]® [ f ] = 0O 1 2070 4 2/dP)y (BY)
it must be that

0=[a(qr,q),B (qv,q)] ¥ (B(qz,))

a(qz,q) ]

B (g, q)
= (B(qz,9))> ¥ + 28 (gz,q) &/ (g, q) TW + o' (gz,q) VP (g, q) .

B.4. Order and rank of variables. For each n > 2, £ > 0, and multi-index

v € L'y, let 5, and a, be the derivatives of functions § and a (more precisely,
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oy i is a d-vector of derivatives ozfﬁk for j =1,...,d). Let B%k and &, ; be the deriv-
atives computed at m. We say that derivatives (. or dy. have order n =k + |7].

Additionally, we use auxiliary variables:
{Cyp:velppygfor k<n} and {D,,:7€l,_1_ for k <n—1}.

All the above variables have order n.

Apart from the order, each variable is equipped with a rank:

variables B%k for k <n and v € I',,_; have rank —1,

variable B@m has rank n — 1,

variables &, for K <n and v € I',,_; have rank min (k,n — 1),

variables C, j, for £ <n and v € I';,11_; have rank min (k,n — 1), and

variables D, ; for k <n —1 and 7 € I',,_1_; have rank k.

B.5. Equations of order n. From now on, we assume that n > 2 is fixed. For
each k, we write "Terms(k)” to denote the terms that depend on variables that have
either order n’ < n, or order n and rank &’ < k. For example, equation (B.3) below
means that variable B%k (i.e., a variable of order n and rank —1) can be presented as

a function of terms that include only variables of order n — 1 or lower.

Lemma 10. For each k <n and v € T';,_,
B, = Terms(—1). (B.3)

Proof. Take any j = 1, ..., d such that j* < v and consider the (k,~ — j)th derivative
of equation S7 evaluated at the point of the top match. Because §* = 0 and a* = 0,

we get
dTL
0=
dx dy*

S| = Brny + Terms (—1) .
U

Lemma 11. There exists {Cy, : v € I y1-k for k < n} such that for each k < n and
Y€ anka

WPa = Cop i+ Bon (Z 17:lr@{y;~> + Terms (min (k,n — 1)),

j7l
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where C,,1. 18 a vector

*1
C’y+1r,k Ys
*.
Cop k= and y; =
*d—1
O -1 Us

Proof. Fix k = 0, ...,n. We work with the stability equations S’ for j = 1,...,d — 1.
The equation has four terms. For each v € I',,_, and each j, we evaluate the (v, k)-

derivatives of each of the terms of equation S’ at /. First, notice that

dn
dx dyF

A dar i i 5
= By (daﬁdyky ]|m> + Y By k1

dy* R dy* 5
+k (d—y!m> Bk + ;% <d_xl|m) By—ir g1 + Terms (—1)

(y*jﬁy) |m

where all the remaining terms contain products of variables of order smaller than n.
Because of (B.1), the second term of the left-hand-side is equal to 0. Due to Lemma
10, the third term has rank —1 unless £ = n and the fourth term has rank —1 unless
k =mn —1 (the fourth term is equal to 0 when & = n). Using Lemma 10 and the fact

Bl = 0, we obtain

dn
dz dy*

= By (z)?;”ﬁy,k +y @;‘J@;’k) + Lyt (g*vﬂ‘vy 0B g;‘ﬂaé) Bom
D0 e (591 4657 B 3 9777) B+ Terms (0)
=6y 070k + Lica (n@*vj’y + (1) g8,y g aé) Bom

#30 (9043 5768) o + Terms (0 (B.4)

(y*j6y> ’m

Notice that Bygng B%k is a term with rank —1 unlessk = n, in which case it has rank

n — 1.
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Similarly,

dr .
dm'ydyk (Z azag) |m
_Z <dm7dk @i ) +Z *A?erjF,k
—I—kz (dy ’m) ’Y+]Fk 1"’2%2 (dm |m) 17_,_]1“ lrk—i-Terms( 1)

The second term disappears due to (B.1). Because &' has rank k£ — 1 and B%k

y+iT k-1
has rank —1 unless & = n, and because ﬁl =0, we get

d" -
* 1
_— a;olt ) s
T (22,0505 |
A* ~q oAl

= g ”ozoz +1knE azbaﬁgn
+1)_nn Q¥ +a B, + anael )&

k=n . i 1,017y By jrn—1

. Z " (a*l + Z A;“tdf) & vy + Terms (min (k,n — 1)). (B.5)
Finally,
dn *7 * 1
T dy (y J ZZ a; ay> |l = Terms (—1), (B.6)

because any term with a variable of nth order disappears since it also contains either
9% =0ora; =0.
Adding (B.4), (B.5), and (B.6) to B,er’k, we obtain the (v, k)-derivative of equation
S
d?’l

0= S\,
dxdy* |

= Brera By Y 0700, + Z 071000 5 + Z " (a*l 2, A:té‘f) A A
5 e (594 X )
St +n 5, (@Y + ag B+ Xyanal) d,

o+ (ng* 99+ (0 4+ 1) G378, + 3,576 ) o

+ Terms (min (k,n — 1)).

+ ]-k::n
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After some rearranging of terms, we get

ZZ (A*j By ) Z 1,- lFZ 377606
= Brr + D, (v 3" (a*l +y &;jtaf) & e
+ Zl LYZZFQ il Bz,n

> 50 5@ nt N, (d:y + di,bBy +> %%) déf,nfl
+ <ny I+ (n+1) QZ’jBy +n), ?j;’jdé> B@m

+ Terms (min (k,n — 1)).

+ ]-k:n

Because of Lemma 8, §*' = §*J. It follows that the right-hand side of the above
equality depends only on multi-index v+ ;% (and not, like the left-hand side, separately
on 7 and j). We define the right-hand side as C., ;r . From another part of Lemma

8, w = ( ﬁyy ) is the jth row of matrix WP, The result follows. O

Lemma 12. There exists {D.,v € I',_1_;} such that

o foreachk=0,...,n—1 and 7 € I';11_1, we have
> na e, g = Z,lrj (r=4"), 2" D,_jo_ir s, + Terms (k)
l ]7
e foreachl=1,...,d—1, we get
\Il(y)ﬁz n+ Oél\I/ Qg n+n <ﬁy "+ a, ' ) Qr 1 = @l(y)Dg,n,l + Terms(n — 1),
o finally,

BV OB, 4+ &0 By, + 8,8 Ay, + &,V by, = @O Dy g + Terms(n — 1)

Proof. Let

B(qz,q) = (B (qz, )" ¥ + 28 (g2, q) a (qz, q) ¥¥ + o (qz, q) ¥ (qz, q) -
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For each € R?, we compute the (n + 1)th derivative of B (qz, ) with respect to ¢
at ¢ =0:

dn+1
dqn+1 B (qx7 'T) |q:0

=2(n+1) (By + Bm) v
l

n

k=0 vel'y,

kll
=0

/ n
+2(n+1) Zd,a:l+dy) gl 5%
!
+2 (n + 1) By + ;BZIZ> \I/(y)/ Z Z k'v'a%

k= O’YGFn k

+2(n+1) a;—kZd;xZ)\PPZ Z B
l

k=0 ~vel',, 1

77
»yl

+ Terms (—1)

In particular, all other terms contain only variables of an order lower than n. Due to
Lemma 10 and the fact that Bl =0 foreach [ =1,...,d — 1, after some rearranging of

terms, we obtain:

dn+1
WB (g, 2) [g=0

2(n+1) (Zalxl+ay> w4, ,
+2(n+ Z Z Ky lo‘%’fx

k=0 ~el',,_k

+2(n+1) (a +Zala:l)\lf Z Z R 'éz%kx'y

k=0 vel'y,_k

+ Terms (0) .
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Further, due to equations (B.1), we obtain:

dnJrl
dqn+1 B (q.f(:, I‘) |q=0

=2(n+1) [6 VO3, +a, W5, , + 8,84, , + 4, \pr%n}

+2(n+1)Y [dg\If@)B@,n + &0 g, + 0 (By\p(y)’ + a;\I/P) dlrvn_l] .
l

2(n+1)i > k;w

k=0 Tern+1 k

Z 6 a, k+ 1o (k—1) (By‘lf(y)/ + oz;\lfp) &T’k_ll x”
+ Terms (0) . (B.7)

The right-hand side of (B.7) is a polynomial of order n + 1 in x. Due to the
boundary conditions, (B.7) is equal to 0 for for each z such that (B") holds. Because
the second-order polynomial defining (B°), ®© 4 22/®® + '®P)z is irreducible, it
must be that it divides polynomial (B.7). In other words, for each x (and not only
those z that satisfy (B°)), (B.7) is equal to

(¢()+2x<b +x¢P Z Z —dm7

k= O"/EF7,+1 k

1

= Z =] (Zj,l (T — jr) dy_jr_r + Z ;@ d_jr + ‘P(O)dT) x’

for some real coefficients {d,,y € [y U...UT,,_1}.

Two polynomials are equal if and only if the coefficients associated with each of
the monomials x” are equal. The result follows from substitution Dy ,,—1 = dy

1
2(n+1)
and foreach k =1,....,n—1land y € I',,_1 4,

k!

Doy=—4d.,.
T o+ 1)1
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Lemma 13. For each k <n—1and~vy €T, 1 4,

ﬁy E <S_1> WPOé,Y+lF7k
lth row

l

1 R R
_ _1\d+l - —d
=—1;_,1 ( E l( 1) (et @m)ﬁl n—1 (D/L_l) + Bg,n> + Terms (k)

Proof. We compute the (k, v)-derivative of the matching equation M at the top match
for v € I',,_1_. Notice first that

Qy « .
det [ 5 5:’ ] = B, det a, +Zl (—1)* g, (Du_;l>,

where ﬁ/[f is the cofactor of matrix Dp.

Using Jacobi’s formula for the derivative of a determinant, we obtain

a1
doayr rdetas)
) A R a dn—l
= (det &) By ki1 + (det &) By tr (% ldy’“d:m %>

m—1

dykdxy

= 13,1 (det &) Bon + (det Gy) ﬁAy tr (d;l ax> + Terms (0) .

Using (5.4), we obtain
1 dn—l .
tr (Oéx dykdx’y Oég;) - Zl [Oéx }lth row a'Y‘HFJC

= E Sil) WPOC T k-
l ( Ith row TS

Because Bl =0, we get

d .
" Zl (1) 8, (Du:?)

= lp—pn1 Zz (—=1)4 qun,l (ﬁu:f) + Terms (—1),

where (ﬁu:?) is the dl-cofactor of matrix ﬁu obtained from [ Qo Y ] by crossing
x Py

out dth row and [th column.



SMOOTH STABLE MATCHING 45

a1 Oy o
0= I R
dSEAYdyk < € [ 5$ ﬁy ] g)
= (det dx) By Zl <S’_1>lth o WPOCV_HF,].C—F

11— [(det Gy) Bon + Zl (_1)d+l Blr‘7n_1 (Du:f)] .

Finally,

O

B.6. Equations of rank k£ < n—1. Fix k£ < n—1 and consider the following system

of equations:
VAVP&%;C = C,y. i for each vy € ')y, (B.8)
ZT[@;\I/P@T,ZFJC = Zﬂ i (t—j"), & D,_jr_r, for each 7 € Ty 4,
l (B.9)

B, 5 (g_1>z ) WPO@YHF =0 for each v € I';,_1 4. (B.10)
th row
!

The variables of rank k are the unknowns. By Lemma 9, the linear coefficients of the
equations are analytic functions of the parameters.
In this part of the Appendix, we show that there exist parameters such that the

above system of equations has a unique solution.

Lemma 14. Suppose that M., = Wy, = 3141, g =1, and

0 0
e2 0
0 3
U= — €
0 gd=1 0

Then, for sufficiently small € > 0, the system of equations (B.8)-(B.10) has a unique

solution with all the variables of rank k equal to 0.
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Proof. First, we compute the values of the first order derivatives. By equations (5.2),
and (5.7),

det & i A A\ 1
T —0=1W" = ($") =1L, B.11
( det <I>) ’ -1 ( )
Moreover, by Lemma 9
By=1,6, =I;,, and 3, = &, = 0. (B.12)

Second, using the above computations, we can restate equations (B.8)-(B.10) as

%k = (4 r for each v € I',,_ and j,

Crr= (Z Tjgj) (Z T (tj—1)e D, 9.4T ) foreach 7 € T',, 11 4,
Z C.yory, = 0 for each v € 'y 4.
1

The last two equations imply that, for each v € T',, 1 4,

(M+2)(n+1)e'Dy+ 37 (v — 1) €7Dy oy

i
, — 0. (B.13)
- BECERS =

For each v € I',,_; 4, let I* (y) = min{i:~; > 0}. The left-hand side of equation

(B.13) is equal to

S (v — 1) &7 D gr_g.ir

S A IR VN = o

_ — D, + .
oy \ (i +2) + Zj>ﬂj5]_l (m+2)+ Zj>l%5]_l

Y () (x () —1)

* g] () 42l =% ()
M* () § :>l*

Do ()F

" Z X*: ’Yj(vj_l)e] "D N2l —2.5T
>0 () + J>l ()
7l"("r)'*'z J )wjaj*l*('v)_kgelfz*(,y)
- (l* (v) + %*(7)) D () + VZ* - Z D o s (s
>0 (7)

where the convergence holds for ¢ — 0.
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Third, we claim that the system of equations

) +96) D)+ (e — 1) Z D o gy =0 (B.14)
>1%(7)
for each v € I',,_1_j, has a unique solution. Indeed, define an ordering on I',, 1 _ :
~v < ~"if and only if

i

Z%’g

lim :
e—0 E ,yl/ et

—

Then, (B.14) implies that each D (y) can be represented as a function of D (') for
v' < 7. The claim follows.
By continuity, the system of equations (B.13) for each v € I';,_;_; has a unique

solution for sufficiently small € > 0. The result follows. 0

B.7. Equations of order n and rank n — 1. Consider the following system of

equations:
Wpdl,n_l =Crry 1+ B@JL (Z d{y}‘) for each [, (B.15a)
J
> na e, iy = Zjlfj (r—4"), 9D, _jo_ir ) for each r €T3,  (B.15b)
l bl

AT By + &)U b, + 1 (By\IJ(y)’ + o/y\p”) Gy s = YDy, for each I,
(B.15c¢)

ByW OBy + &, OBy, + B0 W Gy, + &0 by, = @ ODp g, (B.15d)
~ A ~ 1 ~ ~
~1 P _ d+l —d
By zl: <S )lth o w Ozll“yn_l = — (Zl (—1) mﬁlrm_l (D,ufl> + 6@,71) + Terms (kf) .
(B.15e)

The variables of rank n — 1 are the unknowns. The linear coefficients are analytic
functions of parameters (./\/l W U, g).

muw? muw?

Lemma 15. Suppose that M, =W, = %Id_l, UV =>&=1;1, and g = 1. Then,
the system of equations (B.15a)-(B.15¢) has a unique solution with all the variables
of rank n — 1 equal to 0.
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Proof. Because of equations (5.2), and (5.7),

1
det @\ % . . N1
~92 - o P __ * _
(g detq)) —)=1W _<s) — Iy

By = 1,@55 = [dfl, and B:}: = OAé; =0.

Because (3, = 0, Du~! = 0 for each [ = 1,..,d — 1. Finally, by Lemma 8, '] =

From Lemma 9,

—3141.
Thus, the system of equations (B.15a)-(B.15¢) can be rewritten as

: Corny — 2By ifl=j

&= w1 = 5, _ J for each [,
’ Crr o n—1 ifl#j

. 2Dy o1, ifl=3 4

dé.p no1 T O, = ol _ j for each [, j,
’ ’ 0, ifl #j
dlgm = 0 for each [,
Bg,n = D@,n—lv

Z aépmfl + Ban =0, for each [.
!

Substituting the first and the fourth equation to the second, we get

3
Cor g = §Dg7n_]_ for each [, and Cjry;r,_1 = 0 for each | # j.

Together with the last equation, this implies that

1~
0= Z (C2lr,n—l - iﬁg,n) + B@,n = (d - 1) D(Z,nfl + D@,nfl = dD@,nfla
l

Therefore, Dy ,_1 = 0 and all other variables can be uniquely determined from the

above equations. This ends the proof. O

B.8. Proof of Theorem 1. Let P, be the space of linear mappings ¢ : R¢ — R? such
that (¢~!(m)), < 0 for each non-apex element of the standard cone m € E*\ {0}.
Define P = M2 x P? x R,. Then, P is a convex subset of Euclidean space and
it can be equipped with a Lesbegue measure A € AP . We show that there exists
subset Py C P’ such that A (P \P,) =0, and if (a) M,,,, = W,,,, = (0,...0,1), (b)
(Mis Wi .9, G) € Py, and (c) Eyy and Ey are cones generated by proper linear

muw

mw
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operators ¢ and 1, then there is at most one smooth stable matching u : Eyy — Ey.
Theorem 1 follows as a straightforward corollary.

Let 73(;71 be a set of parameters such that the weighted average matrix of cross-
derivatives WF is invertible.

For eachn > 2, foreach k < n—1,let P,_, , C P denote the set of parameters such
that the system of equations (B.8)-(B.10) has a unique solution. By Lemma 14, P, kon
is non-empty. By Lemma 7, A (P \P,_, ) = 0. Similarly, let P, , . € P denote
the set of parameters such that the system of equations (B.15a)-(B.15¢) has a unique
solution. By Lemma 15, P,_, ,, is non-empty. By Lemma 7, A" (P \P,_;,) = 0.

Let

n—1

Po = [ [ Prbn-

n>1k=0
Then, A (77\73(;) = 0. Moreover, for any vector of parameters in P, there exists a
unique collection of variables that solves equations (B.8)-(B.10) and (B.15a)-(B.15¢).
By Lemmas 9, 10, 11, and 12, there exists at most one analytic function p that
satisfies equations M, S7 for each j = 1,...,d — 1, and B (qx,q) = 0 for each ¢ and
each x such that (B") holds. It follows that there exists at most one smooth stable

matching p : By — Ey.

APPENDIX C. EXAMPLES - CALCULATIONS

C.1. Two-dimensional examples. In this section, we assume that d = 2. We com-
pute the Taylor expansion of the unique stable matching up to its second-order deriv-

atives.

C.1.1. Environment. We assume that the utility functions are equal to

M ((mg, mp) , (ws, wp)) = Cws + wp + D (msws + mpwy) ,

W ((ms, mp) , (ws, wp)) = M + my, + msws + mpw,

for some C' > 0 and D.
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We assume that the domains are equal to

Ey = {(ms,myp) : mg, my, <0},

Ew = {(ws, wp) : ws, wp < 0}.

Finally, we assume that the density ratio is constant g (m,w) = 1.

C.1.2. Change of coordinates. As in section 5.2, we multiply the utility functions by
a positive scalar so that the normal vectors have unit length. Additionally, it is
convenient to choose the coordinates so that the normal vectors to the indifference
curves computed at the top man m and woman w are equal to (0, 1) . For this purpose,

we define rotation matrices

V2l 1 1 1 1 C
Oy = — dOy = —— ,
MER g | YT R | =

and consider the following change of coordinates

=L [3]-[2]

The old and normalized preferences expressed in the new coordinates are equal to

Oum

M ((z,y) . (a,b)) = CQ;HM (OM :; O Z D
) 1 , | D 0 a
=Vl o *”’”WOMIO D]Owlb]

Sotat| e |,
W (2. (0.5) = LW ((@.1)  (0.8)

=y+[$,y}[wn w12] [a]
Wo1 Wa2 b
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where
mi m12__D V2 C+1 C-1
Mao1 My | 2C?2+1) | 1—-C 1+C |’
W11 w12_ . 1 C+1 C—l
Wa1 w22_ 2\/02+1 1-C 1+C .

Thus, consistent with the normalization, M9 = W9 = (0,1) . From now on, we drop
the superscript "n" when we refer to the preferences expressed in the new coordinates.

We can express the domains in new coordinates. Let
P =1>¢" =—1, (C.1)
1
0 1
=—=>¢ =-C.
Then,

Eyn = {ms (1,0) + my (0,1) : mg, mp <0}

0
= {msO;/ll 1 ] P, My < 0}
1 -1
o] o)

={(z,y) :y <0and ¢°y <z < 'y},
EW:{(a,b):bﬁOandeobgagwlb}.

+ mbO;j

+my

The densities of the distribution of men and women is not affected by the orthonormal
change of coordinates Oy, and Oyy.
In order to distinguish the first and the second coordinates of the matching function,

we write 1 (y, 2) = (o (z,9), 8 (2,y)) .
Define functions y* and a* as

* _ _(Wm ((a:,y) ) (aa b)))l _ wi1a + wigb

y (@ y), (e ) = W (2,9) (0,0)))y L+ wara + wagh’
* _ (Mw ((a:,y),(a, b)))l _ mux + mo1y

@ (29) (@0 0) = f (@) (@8)y ~ 1+ miraz + sy
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Then, vector (1,4*) is tangent to woman w’s indifference curves at the point of the
match, and vector (a*,1) is a scalar multiple of the normal vector M,,. Notice that
the values and the derivatives of functions y* and a* computed that the top match

are equal to

= Mo, (02)

C.1.3. Differential equations. We denote the first-order derivative of a with respect
to the second coordinate by a, and the value of this derivative computed at the point
of top match m = (0,0) by &,. A similar notation is used for other derivatives. The

stable matching satisfies the following equations:

e the matching equation (3.2):
|Oéxﬁy - ay6m| =1, (C3)

e the stability equation (4.2):
1
y*

]|

=B +y'Byta‘o, +y e, =0, (C.4)

e the boundary conditions: By the discussion in section 7?7, the mapping of
boundaries depends on the orientation of the matching in the neighborhood
of the top match, which in turns depends on the sign of the weighted average
WP of the cross-derivatives M, and W, I . Here, WP = my; + 6wy, and we
assume that W7 # 0. Let o € {0,1} denote the orientation. There two cases:
(a) if WP > 0, then the orientation is preserved and o = 0 (b) if W* < 0,

then the orientation is reversed, and o = 1. Also, let
% = 1?92 for each 2 = 0, 1
Then, the boundary conditions can be written as

V7B (67y,y) = a (¢*y, y) for each z = 0, 1. (C.5)
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C.1.4. First-order derivatives. We compute the values of the first-order derivatives
of stable matching p. Because of (C.2), the stability equation (C.4) evaluated at the
top match implies that

B, = 0.

Differentiating the boundary conditions (C.5) and using the fact that B, = 0, we

obtain
QZOBy = Qboééx + OAéya
DBy = ¢'as + .

Together with (C.1), these equations imply that

ao= g (00— B, = (0 1,
t=5 (P9 A= S5

Finally, the matching equation (C.3) implies that

A 2
=\ere

(Note that By > 0 by the first part of Lemma 1.) By equation (5.3), By = 4.

Using the definition of matrix W as well as discussion in section ??, we can
[ 2
C+C-V
2
=1if D < —/ =——F—.
o= Verc

C.1.5. Second-order derivatives.

determine the orientation of the matching:

o=0if D >

mi1 mlg__ D\/§ O"'l -1
Ma1 Moz | 2(C2+1) | 1-C 14C |’
w11 w12__ 1 CcC+1 C-1
Wo21 W29 ] 2\/CQ+1 1-C 1+O .
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Take two derivatives of the stability equation (with respect to x and y) and evaluate

them at the top match. Because of (C.2) and B, = 0, we have

T Prn — W10y + My, =0

. . N2
Y 1 Pay — W10y By — Wiz <5y) + moyé, = 0.

Using the derivation of the first-order derivatives, we obtain

mi1 m12-_D V2 c+1 C-1
Ma1 Mag | 2(C2+1) | 1-C 14C
w11 w12__ 1 c+1 C-1
W1 W2 i 2\/C2+1 1-C 1+C

Bxx = wll@xBy - mll@:p
. C+1 (1D »ﬁ
2vC? + 1 Vi C’2
. R N2
Bay = w116y By + wig (ﬁy) — M1y

. 1-C 1— ( 1)0 \/§
PN ES V211

@+C)>

@+C)>

Next, take the derivatives of the matching equation (notice that we can drop the

absolute value sign):

Mo &xxﬁy + &xﬁwy - é‘yﬁmz = 07

Yy C/\Vacyﬁy + dwﬁyy - dyﬁxy = 07

which implies that

dw:p = ( ) 9 Bazy 9 ﬂm:a
. C+Cl ct-C,
Gy = — (—1)° ﬁyy Bey-

(C.6)
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Finally, take the second derivative of the two boundary conditions:
0B+ 20 By + 0By = Gia + 28y + Gy,
O Baw = 20" Bay + ' By = Gy — 20y + Gy,
Substituting (C.6) and rearranging some terms, we obtain
By =~
Gy = U Bre + 20° By + 0By — 200y — Aua
=2 (B =) By — 5 (B +9) e

,3(CHCY, 107 -C
2 3 2

Baa

~—~

_1) Bxy

C.1.6. Plots. Let

r,y) = Az + Gyy + %dmﬁ + Qayry + %dyyy2 ]

B + Byy + %59@552 + Bryxy + %ﬁyyyz

be the second-order approximation of stable matching expressed in the new coordi-

nates. In the original coordinates, the matching function takes the form

)

Figures 1 and 2 plot the difference between the second order-approximation of the

w2 (mg, my) = Owp" (0;}

matching function and the identity matching

2 (my,my) — [ms ] .

my

Figure 3 plots the difference between the second order-approximation of the matching

function and the reverse identity matching

:U'Q (mbams) - [ " ] :

my

C.2. Three-dimensional example. Next, we consider the case d = 3.
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C.2.1. Environment. Assume that preferences are given by

M ((msy my, mw) ) (w57 Wy, ww)) = Ws + Wy + Wy + msWy + MpWy, + MyWs,

W (Mg, M, May) 5 (Ws, W, Wy )) = Mg + My + My + MWy + mpwy + mpwy

and that the domains of men and women are equal to

Ey = Ew = {(s,b,w) : 1 (s* + 0> + w?) — 2 (sb+ sw + bw) < 0} .

C.2.2. Normalization and change of coordinates. We normalize the utility and rotate
the coordinate system so that the normal vectors to the indifference curve at the top

match are equal to (0,0,1). Define the rotation matrix

V2 V6 V3
RN

_ 2 6
O=|-% % %
0 Y6 3
3 3

Because O is a rotation matrix, O’ = O~!. Consider new coordinates for men and

women, so that, respectively,
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We can express preferences in the new coordinates:

Mn <<m57 my, mw) ) (U)S, Wy, ww))

T a
=M]\|0O Y Ol b
z C
! B /
T 1 z 010 a
=ly| O 1]+ Oloo1]|0]|b
z 1 1 00 b
97
x —3 V3 0| |a
:\/§Z+ Yy _%\/g _% 0 )
0 0 1
and
/
X a
wr ((m57mb’mw) ) (wsvwbaww)) = \/gz + Yy b
b

From now on, we will use only the preferences expressed in the new coordinates and
we drop the superscript "n".

Next, we can find the proper cone matrices expressed in the new coordinates:
1 -1 -1 2

P=0v=0"| -1 1 -1[0=]0

-1 -1 1 0

0
0
-1

S N O

C.2.3. First-order derivatives. We use the results from Section 7?7 to compute the

first-order derivative of the matching function p. By equation (5.2),

0=1.
We compute the average cross-derivative matrix W7 at the top match:
1 1
1 5\/§ ] |

WF = ME 4 oWE = [ 2
—1./3 1

2 2
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N o A~ P N
Let S =W7F <Du> . Then, S is a symmetric and positive-definite solution to the

matrix equation (5.7),
T2 0] 0 o/t (o det U 7 2 0
S §=28 (WP') v <WP> §= (g2 oF = .
0 2 det @ 0 2
The unique solution to the above equation is the identity matrix. Therefore,

A \T 2P\t % _%\/_
(o) [3s 47

L \Y
Finally, we use equation (B.2) to deduce that (Du) is a vector of Os and

_%\/g 0
0

Dy =

N[

1
2
V3
0

O N

C.2.4. Plot. Figure 4 plots the difference between the first order approximation of

the unique stable matching (expressed in the original coordinates) and the identity

matching:
mg mg
0 (f?u> O | my | = | my
My My
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