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Abstract. We develop a tractable, dynamic, and strategic model of many-to-many
matching with payoff externalities across links. The joint dynamic surplus or certain
second properties of individual utilities, like payoff externalities, can typically be
identified. We characterize a class of interior equilibria as solutions to an optimization
problem with an objective function that consists of welfare minus an inefficiency loss
term. In equilibrium, too few matches are formed. We compare transferable and non-
transferable versions of the model; the equilibria of the two versions are equivalent
up to a re-scaling of parameters. We describe the asymptotic limits of disappearing
frictions.

1. Introduction

This paper develops a tractable, search-based, dynamic model of many-to many
matching, with simple identification and welfare analysis. Our model is very general
and it allows for a wide variety of applications including marriage search, job search
with multiple jobs per worker and multiple workers per firm, co-authorship or friend-
ship networks. The main difficulty is that the decisions to form a match typically
confound many considerations: the current and future direct payoff consequences of
the two matched partners, the payoff consequences from other past and future matches,
the equilibrium conditions that determine the likelihood of future matches, etc. To give
a very simple example, consider a (small) clinic that hires two types of workers: doctors
and nurses. The workers care only about whether they are employed or not. Hospital
payoffs depend on the size and composition of its labor force, including the possibility
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of externalities between doctors and nurses. When hiring a doctor, the hospital needs
to consider not only doctor quality, but also her compatibility with its current labor
force, andthe likelihood of hiring a complementary nurse.In our model, all these con-
siderations can be disentangled. Closed-form formulas are derived to identify various
parameters of the model. Among others, we give an explicit formula to identify the
level and the sign of complementarity in the hospital example.

In the model, decisions to form matches are made sequentially, as best responses to
the strategies of the other players. Agents meet each other randomly, and they simul-
taneously decide whether to accept the match. Each agent is characterized by a type,
which may contain information about permanent characteristics of the agent, and/or
the agent’s history. The type can stochastically change between periods, possibly de-
pending on the type of the matching partner. The agents can simultaneously hold
multiple matches. Each decision balances both present payoffs and expected future
utility consequences (including the potential for future matches).

As in the discrete choice literature, we assume that the payoffs include both system-
atic utility and a random idiosyncratic payoff shock. The systematic utility depends
on the agent’s own type, whether the match is formed and, if so, the partner’s type.
The utility may depend on the entire history of past matches through the type, and we
allow for general payoff externalities between matches formed in different periods. In
particular, we allow for positive complementarities between the workers in the hospital
example. The payoff shocks are exponentially distributed. This assumption ensures
tractability of the model and it plays the same role as the extreme value type I errors
in the discrete choice literature.

The first class of results concerns identification. Contrary to the dynamic discrete
choice (DDC) literature on dynamic games (Aguirregabiria and Mira (2007) and Bajari
et al. (2007)), the individual systematic utility is typically not identified. The main
reason is that, as is typical in the matching literature, we assume that individual
decisions about whether to form a match are not observed, and data contain only
information about outcomes, i.e., whether the match is formed. As in the rest of the
matching literature (Dagsvik (2000), Choo and Siow (2006), and Choo (2015)), we can
only hope to identify joint surplus of the match. Additionally, we cannot identify the
respective utility levels, but only match surpluses: differences between the matched
and unmatched payoffs. We define a reduced form parameter - joint dynamic surplus -
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as the sum of the match surpluses and their dynamic consequences experienced by two
matching partners. The joint dynamic surplus can be identified from data on the mass
of current and future matches through an explicit formula. Our tool for identification,
the matching function, generalizes the result from Choo (2015) to models of strategic
and/or many-to-many matching.

A new result that is specific to the many-to-many matching aspect of the model is
that certain second-order properties of individual utilities can be identified even without
observing individual match decisions. These properties are discrete counterparts of
second-order cross-derivatives of the utility function and they measure the degree of
payoff externalities between matches. For instance, in the hospital example, the payoff
complementarity between doctors and nurses can be identified from the differential
hiring rates across hospitals with different employment composition. We present a
general theory for the identification of second-order properties. The idea is to use the
above identification of the joint dynamic surplus and the fact the utility of the current
matching partner does not depend on the agent’s past matches; by taking the difference
of the matching function, we can identify the impact of past matches on the individual
surplus from the current match.

The next class of results concerns welfare comparisons. We show that average wel-
fare can be represented as a function of the distributions over outcomes, i.e., formed
matches and unmatched agents. The function consists of easy to interpret terms: aver-
age systematic utility, a measure of the selectivity of individual acceptance strategies,
a measure of search externalities present in the model, and an impact of market fric-
tions. Further, if equilibrium strategies are interior (i.e., matches can be rejected with
a positive probability) and market frictions have separable form, we show that equi-
librium distribution can be found as a critical point of an optimization problem. The
objective function is equal to average welfare minus an efficiency loss term. The effi-
ciency loss is due to the fact that the agents do not internalize the positive externality
of forming a match on their partner’s utility. In effect, too few matches are formed in
equilibrium. Welfare can be improved by an easy-to-calculate match subsidy. Apart
from welfare analysis, the result proposes a method of finding an equilibrium that is
less computationally demanding that solving for a fixed point.

We compare our basic non-transferable utility (NTU) model with two transferable
utility (TU) version, where transfers are negotiated through either take-it-or-leave-it or
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Nash bargaining. We show that the TU versions are equivalent to the original model
with modified parameters. In particular, all the above results (including identification)
carry over to the TU model. Also, it is impossible to use choice data to distinguish
between the NTU and TU models. (This latter fact coincides with the characterization
of testable implications of stability in Echenique et al. (2013). A similar relation holds
between the static cooperative NTU model of Dagsvik (2000) and the TU model of
Choo and Siow (2006)).

Finally, we illustrate some applications of the general model to the special case of a
dynamic model of marriage. We show that if search frictions disappear and the weight
of the payoff shocks is reduced relative to the systematic utility, the stationary equilib-
rium converges to the distribution of outcomes under stable matching with transferable
utility. We compare this result to Lauermann and Nöldeke (2014) which consider a
model without payoff shocks and show that, under disappearing search frictions, stable
NTU matching is an equilibrium. We also show that, if the types are one-dimensional,
the supermodularity of the payoff function is sufficient to guarantee assortative match-
ing. The last property distinguishes our model from Shimer and Smith (2000). We
explain that the difference is due to the role played by exponential payoff shocks.

1.1. Literature. Single-agent dynamic discrete choice models were first introduced
in Wolpin (1984) and Rust (1987) (for a recent survey, see Aguirregabiria and Mira
(2010)). Aguirregabiria and Mira (2007) and Bajari et al. (2007) extend the DDC
literature to games. Our approach differs in a few ways. Most importantly, we as-
sume that only the match outcome (formation of lack thereof) is observed, and not
individual decisions. Thus, we can identify the joint surplus, but not the individual
payoffs. Further, we assume that the payoff shocks are distributed exponentially. This
assumption is analogous to the extreme value type I error distributions in logit models
in that it allows for explicit computations and model tractability. We also assume that
the choice is always binary: accept or reject the match. Despite these differences, our
single-agent results are related. The single-agent’s identification is related to results
from Hotz and Miller (1993) and Arcidiacono and Miller (2011).

A typical empirical work on matching relies on static models with cooperative so-
lution concepts from classic matching theory (for the NTU case, see Dagsvik (2000),
Menzel (2015a); for TU, see Choo and Siow (2006), Galichon and Salanie (2012), Fox
(2010) among others. Also, see Graham (2011) for a review). In the NTU case, the
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cooperative matching literature based on stable matching that originated in Gale and
Shapley (1962) has developed powerful tools to study social and economic relationships.
Nevertheless, the existence of stable matching is not guaranteed beyond the marriage
market. To avoid this problem, the literature typically either makes studies approxi-
mate solutions (for instance, Tan (1991), Kojima et al. (2013), Che et al. (2015)) or it
makes restrictive payoff assumptions (see Kelso and Crawford (1982), Chung (2000),
Hatfield and Milgrom (2005), Echenique and Oviedo (2006) and Ostrovsky (2008),
among others). For example, Hatfield and Milgrom (2005) assume that workers are
substitutes, which precludes the possibility of complementarity between doctors and
nurses as in our example.

Choo (2015) considers a dynamic marriage search model. In each period, an agent
decides whether to marry or stay single in the next period. There are two main differ-
ences with our paper. First, Choo (2015) clears the markets through the cooperative
TU model of Choo and Siow (2006), while we are consistently strategic and our paper
allows for both NTU and TU interpretations. Second, we allow for multiple matches
for each agent, whereas Choo (2015) focuses on (monogamous) marriage. A main re-
sult in Choo (2015) shows that the “joint marriage utility” is identified. Despite the
differences, we show that that a single-match version of our model has a remarkably
similar identification result.

A main contribution of our paper is that it allows for simple and explicit identification
in search-based network formation applications with non-trivial payoff externalities
between connections. Such models are recognized as being very important for studying
various social phenomena (Jackson (2010), Jackson et al. (2017)). At the same time, the
econometric analysis of such models is typically very complex (see, for instance Menzel
(2015b)). Mele (2017) considers a non-equilibrium model of network formation. While
the utility allows for some dependence on network properties beyond the composition
of individual links, the linear payoff assumption does not allow for payoff externalities
between links that play an important role in many situations.

Our model is related to a substantial literature on search models in macroeconomics,
labor, and theory (for instance, Burdett and Coles (1997), Wright and Burdett (1998);
for search with transferable utility, see Shimer and Smith (2000) and Atakan (2006)).
In particular, we assume random meeting of candidates for a match. Additionally, the
TU model of take-it-or-leave-it bargaining is very similar to an unemployment search
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literature where firms “post” wages, but search remains undirected (for instance, Bur-
dett and Judd (1983), Albrecht and Axell (1984), or Burdett and Mortensen (1998)).
An important difference is that, unlike the above papers, we are not restricted to
the one-dimensional case, and our analysis does not rely on the assortativeness of the
matching.

There are few search papers with multi-dimensional preferences. Lauermann and
Nöldeke (2014) considers a search model of marriage and frictions due to discounting.
They show that, even if frictions disappear, the distributions over matches in some
equilibria are not necessarily stable. Another exception is Coles and Francesconi (2016)
which studies search with multidimensional types and random shocks. The authors
prove the existence of equilibrium and use computational methods and calibration to
estimate the differential impact of female features on match incentives.

1.2. Overview. Section 2 describes the model. Section 3 derives the matching func-
tion and other identification results. Section 4 derives the welfare formula and provides
a characterization of an equilibrium. Section 5 describes an extension to the TU bar-
gaining model. Section 6 discusses the application to the special case of dynamic
marriage matching. All proofs can be found in the Appendix.

2. Model

A continuum population of agents lives in discrete time t = 1, 2, ..... In each period,
each agent is characterized by type x ∈ X, where X is a finite set. Agent type is
typically not permanent and may change depending on agent behavior. In each period,
a mass Qt (x) of agents are born.

In each period, any two agents may meet at random. The mass of meetings between
agents of type x and y is given by meeting function qt

(
x, y;µX

)
and depend on the

agent types as well as the mass distribution µX ∈ RX+ of agents in the population. (We
discuss the meeting rates in more detail below.) Each agent observes the type of the
other agent as well as an i.i.d. exponentially distributed payoff shock ε. The shocks are
independent across agents, matches, and periods. Each agent simultaneously decides
whether to accept the match. The match is formed only if it is accepted by both agents.

If a type x agent forms a match with a type y agent, agent x receives payoff equal to
the systematic utility term υt (x, y) plus the payoff shock. The agent’s type in the next
period becomes x′ with probability Pt (x′|x, y) that may depend on her own current
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type as well as the type of her match partner. If the match is not formed, agent
x receives a payoff υt (x, ∅) (and no payoff shock) and her new type is drawn with
probability Pt (x′|x, ∅). The agent x dies with probability 1 − ∑x′ Pt (x′|x, a), where
a ∈ X ∪ {∅}. Agents discount the future with a factor β < 1.

The model is completely characterized by the systematic utility υ, birth rates Q,
transition probabilities P , and meeting function qt. In general, the parameters of the
model may depend on time.

2.1. Discussion. The model is quite general. We illustrate its scope with a few ap-
plications.

Example 1. (Marriage matching.) The set of types is a disjoint union X = M ∪F of
male types M and female types F . The types contain information about the personal
characteristics, education level, or economic situation of an agent. The types do not
change. Each unmatched agent receives utility υ (x, ∅) = 0 and dies (i.e., leaves from
the market) at exogenous rate 1 − δ > 0. An agent x matched with agent y receives
utility υ (x, y) and leaves the market.

Example 2. (1-to-1 matching with age.) In a version of the above example, each agent
has type x ∈ {0, ..., T}, interpreted as her age. In each period that an agent x < T

does not find a match, her type increases by 1. If an agent finds a match, or the type
is equal to T , the agent exits the market.

The identification for situations as in Example 2 has been studied in Dagsvik (2000),
Choo and Siow (2006), and Menzel (2015a). Example 2 is a non-cooperative version of
the model analyzed in Choo (2015). As far as we know, our paper is the first to study
identification in many-to-one matchings or network formation cases described in the
next three examples.

Example 3. (Hospitals with doctors and nurses.) Hospitals search to hire doctors and
nurses. Each worker is one of two types x ∈ {d, n}. The worker type does not change.
In each period, a mass Q (x) of workers is born. The workers die (i.e., leave the market)
at rate δ < 1 in each period. There is a continuum (mass 1) of infinitely-lived hospitals.
At any period, the type of a hospital is defined as its employment size and composition
m = (md,mn), where mx is the number of type x workers. To respect the finiteness
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constraint, we assume that no hospital can hire more thanmd+mn ≤ m0 <∞ workers.
The hospital type evolves with the hiring decisions and with the workers’ death events.
The worker’s systematic payoff from a job is υx and it may depend on her type. The
hospital’s systematic payoff depends on its labor size and composition as follows

υ (md,mn) =
∑

mxπx + θmdmn,

where πx is the worker’s systematic productivity, and parameter θ measures the increase
in marginal productivity of a worker in one occupation due to the hiring of another
worker in a different occupation. Workers remain employed with the hospital until
their death. In particular, as long as the worker are alive, their employment affects the
payoffs from integrating future workers. Workers and firms discount the future with
factor β < 1.

Example 4. (Co-authorship network.) There is a continuum population of agents
with (permanent) characteristics x0 ∈ X0 representing their research area, ability, etc.
In each period, a mass Q (x0) of x0 agents are born. The agents die after T > 0 periods.
When two agents meet, they decide whether they want to co-author a paper together.
We define agent type x = (x0, s, c) ∈ X = X0 × {0, ...T} × {0, ...T}X0 as a tuple of
the agent’s own permanent characteristics x0, age s ≤ T , and the count variable c,
where for each ξ ∈ X0, c (ξ) is the number of past papers co-authored with agents of
characteristics ξ. Agent age increases by 1 in each period, and the agent dies after age
T . Whenever an agent of (x0, s, c) matches with a type (y0, u, d) ∈ X, the next period
count c is replaced by c + 1y0 . (Similarly, for the co-author, her count variable d is
replaced by d + 1x0 .) The utility from the match depends on the agent’s permanent
characteristics and the characteristics of all his match partners (but on their own past

co-authorships) υ ((x0, s, c) , a) = υ∗ (x0, c+ 1a), where 1a (ξ) =

1, if ξ = a

0 otherwise.

Example 5. (Friendship network.) There is a continuum population of agents. Agent
type consists of a tuple (x0, s) where x0 is the agent’s permanent characteristics, and
s : X0 → {0, 1, 2, ...} is the count variable of the number s (y0) of friends with charac-
teristics y0 that the agent has. The agents meet each other at random, at rates that
depend on their population sizes; a friendship is formed only if both agents agree on
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it. Agents are born with no friends at rate Q (x0, ∅), sever friendships at rate s, and
they die at rate δ < s. The utility of each agent depends on her own type as well as
the structure of friendship sets υt (x0, s). 1

Our model has some limitations. First, we assume that the only possible decisions
are to accept or to reject a match with another agent.The scope of decisions can be
expanded by including, for instance, the possibility of matchings between more than
two agents (three-authored papers in Example 4), or allowing for single-agent decisions.
Second, the current model does not allow for post-match interactions or decisions.
Such decisions are clearly important in some cases (for example, fertility choice in the
context of marriage). At some cost of extra notation, it is possible to add post-match
decisions to the model without a loss of tractability, or the main results. We discuss
such extensions in the online Appendix (Peski (2019)).

Another limitation is that the model does not allow for a separation of previously
formed matches. An important difficulty with separation in many-to-many matching
model is that the decision to form a match has to take into account the likelihood
that the current partner may want to separate, and because her future decisions will
typically depend on her future type, my own decision will depend on the expected
evolution of the partner type. In turn, the latter depends on her partners, and, by
extension, by her partners’ partners, etc. In short, each decision depends on the entire
network of matches. For any practical application, one would have to localize the
network somehow, and we leave the question of how to do it for future research.

A simpler case is to consider separation in the many-to-one matching model (as in
Example 3). In such a case, there is a natural local network that consists of one large
agent with multiple small agents connected to her. We show in the online Appendix
(Peski (2019)) that separations can be added in a way that is analogous to the one
proposed in Goussé et al. (2017) for dynamic marriage matching.

1Currarini et al. (2009) build a search-based model of the formation of friendships to study the
qualitative patterns of homophily and heterophily among high school students. Their continuous-time
model does not have stochastic shocks and allows for the decision to exit from the market and stop
searching. Only the latter difference is substantive. (The individual decisions like the decision to drop
out from the market can be easily added to our model - see below and the the online Appendix (Peski
(2019)).)
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Finally, we describe two limitations in the applications to the network formation (as
described in Example 4). First, the finiteness of X eliminates the possibility that the
utility of an agent can depend on past matches of the partner, the past matches of the
past matches, etc. Also, we do not allow for meetings between past co-authors (in our
model such matches happen with probability 0). Both restrictions can be important
for some applications.

2.2. Single-agent behavior. A (threshold) strategy is a mapping σ : N×X×X → R+,
with the interpretation that agent x accepts the match with y iff ε ≥ σt (x, y). The
restriction to threshold strategies is w.l.o.g.

Let rt (x, y) denote the probability that an agent x meets an agent y who wants
to form a match in period t. This probability is endogenous and it is determined in
equilibrium. Let Ut (x;σ) denote the present value of an agent who begins period t in
state x and uses strategy σ. Let

Ut (x, a;σ) := υt (x, a) + β
∑
x′
Pt (x′|x, a)Ut+1 (x′;σ) (1)

be the expected continuation of an agent who forms a match a (or stays unmatched,
if a = ∅). Then,

Ut (x;σ) :=
∑
y∈X

rt (x, y) e−σt(x,y) [Ut (x, y;σ) + E (ε|ε ≥ σt (x, y))] (2)

+
1−

∑
y∈X

rt (x, y) e−σt(x,y)

Ut (x, ∅;σ)

=Ut (x, ∅;σ) +
∑
y∈X

rt (x, y) e−σt(x,y) [Ut (x, y;σ)− Ut (x, ∅;σ) + 1 + σt (x, y)] .

The second equality comes from the key property of the exponential distribution: for
any q ≥ 0,

E (ε|ε ≥ q) = q + 1. (3)

Let Ut (x) = maxσ Ut (x;σ) and Ut (x, a) = maxσ Ut (x, a;σ) denote the continuation
values. Optimization over t-period thresholds in the last line of (2) yields best response
strategy

σt (x, y) = max (0, Ut (x, ∅)− Ut (x, y)) . (4)

The hiring threshold is equal to either the lowest value of payoff shock, or to the loss in
the continuation utility following a match, whichever one is higher. (Strictly speaking,
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the best response threshold is unique only if rt (x, y) > 0. Equation (4) will hold in
any equilibrium that satisfies a trembling hand refinement.)

2.3. Population. Let µt (x, y) denote the equilibrium mass of matches by agents x
with agents y in period t, and let µt (x, ∅) denote the mass of type x agents who are
unmatched in period t. Let µXt (x) = ∑

a∈X∪{∅} µt (x, a) be the mass of all agents type
x.

Potential match partners are randomly chosen from a continuum population. In each
period, the mass of meetings between agents x and y depends on the mass of agents
of each type and is described by function qt

(
x, y;µXt

)
= qt

(
x, y;µXt

)
. The meeting

rate can be used to vary match frequencies, or even prohibit matches between agents
of particular types. A natural example is when the mass of meetings between types x
and y is proportional to the masses of agents x and y:

qt
(
x, y;µXt

)
= q0

t (x, y)µXt (x)µXt (y) , (5)

where q0
t (x, y) > 0 is a constant.

Because the best responses are unique in our model, we assume that all agents in the
population use the same strategy σ. The probability that an agent x meets another
agent y who wants to match with her is equal to

rt (x, y) = 1
µXt (x)qt

(
x, y;µXt

)
e−σt(y,x), (6)

and it is equal to the mass of meetings between xs and ys divided by the mass of x
and multiplied by the probability that a y accepts the match with an x. The masses
of formed matches as well as the agents who remain unmatched in period t satisfy the
following equations:

µt (x, y) = µXt (x) rt (x, y) e−σt(x,y) (7a)

= qt
(
x, y;µXt

)
e−σt(x,y)e−σt(y,x), for each x, y ∈ X,

µt (x, ∅) = µXt (x)−
∑
y

µt (x, y) for each x ∈ X. (7b)

The population dynamics are given by

µXt (x′) = Qt (x′) +
∑

x∈X,a∈X∪{∅}
µt−1 (x, a)Pt−1 (x′|x, a) for each x′ and t. (7c)
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2.4. Equilibrium. We employ the following standard equilibrium concept.

Definition 1. A tuple (µt, σt, Ut (.))t is an equilibrium if the continuation values are
determined through equations (1) and (2), the strategies satisfy (4) and if the masses
evolve according to (7a)-(7c) for some initial distribution µ0. The equilibrium is sta-
tionary if the equilibrium variables do not depend on time, with µ0 = µt determined
in equilibrium.

Assumption 1. We assume that

sup
t,x,a
|υt (x, a)| , sup

t,x
Qt (x) <∞,

and for each x, y,
qt
(
x, y;µXt

)
µXt (x) ≤ 1,

and the right-hand side is continuous in µXt .

Theorem 1. Given Assumption 1 , there exists an equilibrium for each initial state
distribution µ0. If the parameters of the model (i.e., υ, q,Q, P ) do not depend on time,
there is a stationary equilibrium.

We say that µ are equilibrium masses if there is a strategy σ and continuation values
Ut (.) such that (µ, σ, U) is an equilibrium. In empirical applications, typically only
the masses are observed. As we explain later, the masses provide a partial information
about the strategy.

2.5. Interior equilibrium. A strategy σ is interior if σt (x, y) > 0 for all x, y ∈ X
and t ≥ 0. An equilibrium is interior if σ is interior. By (4), the equilibrium strategies
are interior if

σt (x, y) = Ut (x, ∅)− Ut (x, y) > 0, (8)

i.e., if each match is costly and the lowest quality matches are always rejected. The
cost can be exogenous, in the form of reduced systematic utility. At the end of Section
4, we establish a simple sufficient condition for the existence of an interior equilibrium
that relies on such cost. The cost can also be endogenous, as a foregone opportunity
of future matches. The latter kind of cost plays an important role in the one-to-one
matching model analyzed in Section 6.
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In the interior equilibrium, equation (2) implies that

Ut (x) =Ut (x, ∅) +
∑
y∈X

rt (x, y) e−σt(x,y)

=Ut (x, ∅) +
∑
y∈X µt (x, y)
µXt (x) = Ut (x, ∅) + µ̃t (x) , (9)

where we denote µ̃t (x) = ∑
y∈X

µt(x,y)
µXt (x) = 1− µt(x,∅)

µXt (x) as the conditional probability that
type x forms a match in period t. The above equation suggests that µ̃t (x) can be
interpreted as the (equilibrium) option value of being able to form a match in period
t.

A recursive application of (1) and the above equation leads to the following formula
for the continuation values given realized match a ∈ X ∪ {∅}:

Ut (x, a) =υt (x, a) + β
∑
xt+1

Pt (xt+1|x, a) (Ut+1 (xt+1, ∅) + µ̃t+1 (xt+1)) (10)

=υt (x, a) + β
∑
xt+1

Pt (xt+1|x, a) (υt+1 (xt+1, ∅) + µ̃t+1 (xt+1))

+ β2 ∑
xt+1,xt+2

Pt (xt+1|xt, a)Pt (xt+2|xt+1, ∅) (Ut+2 (xt+2, ∅) + µ̃t+2 (x′))

=...

=V 0
t (x, a) +

∑
s>t

βs−t
∑
x′
P s
t (x′|x, a) µ̃s (x′) ,

where P t+1
t = Pt and, for each s > t + 1, we recursively define (a) the s-period

probability distribution of agents that are type x in period t, form a realized match a,
and remain unmatched in any subsequent period before period s as

P s
t (xs|x, a) :=

∑
xs−1

P s−1
t (xs−1|x, a)Ps (xs|xs−1, ∅)

and (b) the present expected value of the stream of systematic utility generated by the
strategy of never forming a match as

V 0
t (x, a) := υt (x, a) +

∑
s>t

βs−t
∑
x′
P s
t (x′|x, a) υs (x′, ∅) (11)
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In other words, the continuation value of an agent x with match a is equal to the
present value of a strategy of never forming a match and the option value of being able
to form matches in the future. 2

2.6. Reduced-form parameters. For each x ∈ X and a ∈ X∪{∅}, define individual
dynamic surplus as

Vt (x, a) := V 0
t (x, a)− V 0

t (x, ∅) . (12)

The dynamic surplus is equal to the increase in the present value of never forming
a match caused by match a. The above expression appears in the characterization
of continuation values (10) and shall play an important role in the remainder of the
paper. Importantly, Vt (.) are defined using only the exogenous parameters. Moreover,
it turns out that, in a well-defined sense, it is impossible to distinguish between an
agent with systematic utilities υt (., .) and an agent with utilities Vt (., .). To make this
claim precise, let Ut (x, a;σ, υ) denote the present values defined above but where we
explicitly refer to the utility function.

Lemma 1. For each t, x, y, each strategy σ (and each r),

Ut (x, y;σ, υ)− Ut (x, ∅;σ, υ) = Ut (x, y;σ, V )− Ut (x, ∅;σ, V ) .

Recall that the best response behavior depends only on the difference between the
continuation values if the match is formed and if in there is no match (see (8)). The
Lemma implies that the best response behaviors of agents with utilities υ and V are
identical. In other words, Vt play the role of structural parameters.

Henceforth, we shall assume that agents act as if they have utility Vt (., .). The
Lemma holds for all strategies, including non-interior ones.

3. Identification

This section contains the identification results. The first result shows that the joint
dynamic surplus of two match partners can be identified from the matching function.
We illustrate with an application to Example 3. In the example, a certain second-order

2Formula (10) is closely related to Theorem 1 from Arcidiacono and Miller (2011), which is stated
for an arbitrary benchmark strategy and an arbitrary distribution of payoff shocks with continuous
density. Here, the natural benchmark strategy is to always reject the match, the distribution of payoff
shocks is exponential for a 6= ∅, and it is equal to 0 for a = ∅.
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property of the individual utility can be identified from data that without information
on individual decisions. We present a general theory of such identification in the last
part of this section.

For the identification results, we assume that the masses of matched agents µt (x, y)
as well as unmatched agents µt (x, ∅) in each period are observed. Such data are typi-
cally available in the marriage or labor search context (if there is sufficient information
about hirings and unemployment). Similarly, such data seem to be easily available in
the co-authorship case. Additionally, to keep the results focused, we assume that the
econometrician knows the non-utility parameters of the model: discount factor, tran-
sition probabilities, and meeting rate. Typically, these are not observed directly and
must be identified from data. (Identification methods are discussed in the literature.
For example, Mourifie (2017) discusses the identification of meeting rates; similarly,
Goussé et al. (2017) describe the identification of meeting and death rates.)

3.1. Matching function. Substituting (8) and (10) into the evolution equations (7a)
yields the matching function:

Theorem 2. If µ are masses in the interior equilibrium, then

log µt (x, y) = log qt
(
x, y;µXt

)
+ Vt (x, y) + Vt (y, x)

+
∑
s>t

βs−t
∑
x′

[P s
t (x′|x, y)− P s

t (x′|x, ∅)] µ̃s (x′)

+
∑
s>t

βs−t
∑
y′

[P s
t (y′|y, x)− P s

t (y′|y, ∅)] µ̃s (y′) . (13)

Equation (13) expresses the logarithm of the number of matches between types x
and y in terms of the logarithm of the meeting rate, the surplus generated by the
match, and the impact on the expected discounted probabilities of future matches.
The last two terms measure the improvement in future matching prospects induced
by the match. The larger the surplus generated by the match, and the larger the
improvement in future matching prospects, the more matches are formed.

Matching function (13) is closely related to the dynamic marriage function in equa-
tion (3.1) of Choo (2015) (a great overview of different approaches to the matching func-
tion in the econometric and demographic literature can be found in Mourifie (2017)).
Choo (2015) focuses on a one-to-one model of marriage with agents distinguished by
age, whereas we look at many-to-many matching with general types. Additionally,
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our model includes the meeting function qt that plays no role in demand-supply TU
model of Choo (2015). The meeting function is an important component of search
models, and it adds extra flexibility to modeling the impact of the masses of agents
on the number of matches. Finally, as in Choo (2015), the future match probabilities
can be used to compute the continuation payoffs. The details differ due to different
assumptions on the payoff shock distribution, and a more general type dynamic in our
paper.

3.2. Joint surplus. As in the above literature, the matching function is a basis for
identification. Suppose that an econometrician has period-by-period data on the num-
bers of matches formed between different agent types (i.e., µt (x, y)) as well as the
number of agents who remain unmatched (i.e., µt (x, ∅)). If the other parameters of
the matching model: transition probabilities Pt, and meeting rate function qt (.) are
observed as well, then the joint dynamic surplus

Vt (x, y) + Vt (y, x)

can be identified from observable data. We emphasize that Vt (x, y) is an exogenous,
reduced-form parameter of the model (see Lemma 1 and the following discussion).
Identification of the joint dynamic surplus is a common feature of empirical matching
models like (Dagsvik (2000), Choo and Siow (2006), and others).

Typically, individual utilities cannot be separately identified, in contrast to the lit-
erature that extends single-agent discrete choice models to dynamic games like Aguir-
regabiria and Mira (2007) and Bajari et al. (2007). In that literature, the actions of
agents are typically observable. Here, we do not observe individual agent decisions,
but only outcomes of their joint decisions. Thus, we cannot determine whether the
lack of a match between x and y is due to lack of interest of one or the other or both
agents. On the other hand, the lack of match is an unambiguous signal that the joint
surplus is low.

As we explain below, given additional assumptions, certain properties of individual
payoffs can be identified.

3.3. Example: Payoff externalities. We illustrate the identification using the spe-
cial model from Example 3. We assume that the meeting function is equal to

qt
(
x, (md,mn) ;µX

)
= µX (x)µX (md,mn) .
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The increase in the worker’s present value due to being hired is equal to

V (x, (md,mn)) = 1
1− βδυx,

or the present value of the utility stream vx received before the worker dies. For a
hospital with employment composition (md,mn), the present value from a strategy of
never hiring anyone else is equal to

1
1− βδ

∑
x

nxπx + θ
1

1− βδ2mdmn.

The increase in the present value due to hiring a doctor is equal to

V ((md,mn) , d) 1
1− βδπd + θ

1
1− βδ2mn.

The joint surplus is equal to

V (x, (md,mn)) + V ((md,mn) , x) = 1
1− βδ (πx + υx) + θ

1
1− βδ2m−x.

The joint surplus is identified through the matching function (13):

1
1− βδ (πx + υx) + θ

1
1− βδ2m−x

= log µt (x, (md,mn))−
∑
s>t

(βδ)s−t µ̃s (x′) +
∑
s>t

βs−t (µ̃s (mx + 1,m−x)− µ̃s (mx,m−x)) .

The matching function holds for each x and each firm (md,mn). In particular, one
cannot separately identify the systematic productivity of a worker at the hospital πx
and her utility from employment υx.

On the other hand, we can separately identify the sum of job utilities versus pa-
rameter θ. Computing the difference of the above formula applied to two hospitals
m = (mx,m−x) and m′ = (mx,m−x − 1) leads to

θ
1

1− βδ2 = log µt (x, (mx,m−x))
µt (x, (mx,m−x − 1))

+
∑
s>t

βs−t

 (µ̃s (mx + 1,m−x)− µ̃s (mx,m−x))
− (µ̃s (mx + 1,m−x − 1)− µ̃s (mx,m−x − 1))

 .
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3.4. Second-order properties. In the above example, we are able to identify the
complementarity parameter of the hospital’s production function due to an implicit
feature of the example: the fact that worker utility does not depend on the labor com-
position of the hospital. By taking the difference of the matching functions for hospitals
with different composition, we can eliminate the worker utility from the equations.

We can generalize this observation. Suppose that agent type consists of two com-
ponents x = (x1, x2) ∈ X1 × X2 = X. Suppose both components affect the agent’s
own match utilities and transition probabilities; but only the first component affects
the systematic match utility or transition probabilities of the partner in the match.

Corollary 1. Suppose that for each x = (x1, x2), each y1 ∈ Y1, and each y2, y
′
2 ∈ X2,

Vt ((x1, x2) , (y1, y2)) = Vt ((x1, x2) , (y1, y
′
2)) ,

Pt (.| (x1, x2) , (y1, y2)) = Pt (.| (x1, x2) , (y1, y
′
2)) .

Then, for each x = (x1, x2) , x′ = (x1, x
′
2), and y = (y1, y2),

Vt (x, y1)− Vt (x′, y1) (14)

= log µt (x, y)
µt (x′, y) − log qt (x, y;µ)

qt (x′, y;µ)
−
∑
s>t

βs−t
∑
ξ

[P s
t (ξ|x, y1)− P s

t (ξ|x, ∅)− (P s
t (ξ|x′, y1)− P s

t (ξ|x′, ∅))] µ̃s (ξ) .

Proof. The proof comes from taking the difference between equation (13) for x and the
analogous equation for x′. �

The LHS of (14) is a difference (in the second component) of the difference of the
individual match surplus with y between two types x and x′. Because the match
surplus is defined as the difference between the (dynamic) systematic utility under
match and remaining unmatched, the formula identifies a difference of differences, or
a second-order property of individual utility.

Example 6. (Continuation of Example 4). In the co-authorship network, neither the
preferences nor the transition probabilities depend on the partner’s past history of
matches. We collect the latter in the second component of the type. The dynamic
utility (11) can be written as a function V ∗0 (x0, s, c

′) of own characteristics x0, age s,
and count c′ = c + 1a of current and past match partners characteristics. Because
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Vt (x, a) = V ∗0 (x0, s, c+ 1a) − V ∗0 (x0, s, c), Corollary 1 implies that the second-order
property

Vt (x0, s, c+ 1b, a)− Vt (x0, s, c, a)

= [V ∗0 (x0, s, c+ 1a + 1b)− V ∗0 (x0, s, c+ 1b)]

− [V ∗0 (x0, s, c+ 1a)− V ∗0 (x0, s, c)]

is identified for each a, b ∈ X0 and each x0 ∈ X0, s ≤ T, c ∈ {0, ..., T}X0 .

4. Welfare

In this section, we discuss equilibrium payoffs. We derive a formula for average
welfare as a sum of easy-to-interpret terms. We also show that if the meeting rate has
the form given in equation (5), the equilibrium masses maximize a functional that is
the sum of welfare and an inefficiency loss term. We use it to discuss the (in)efficiency
of the equilibrium.

4.1. Single-agent payoffs. We start with the payoffs of a single-agent. Let Ut (x0;σ, r)
denote the expected continuation payoff of an agent with type x0 in period t who uses
strategy σ given the environment acceptance rates r. Such a strategy induces a distri-
bution probability over future states. Let πs (x, a) be the induced probability that the
agent is alive in period s, with type x and realizes match a. We have

πs (x, y)
πs (x) = e−σt(x,y)rt (x, y) , and (15)

πs (x) =
∑

x∈X,a∈X∪{∅}
πt−1 (x, a)Pt−1 (x′|x, a) .

The single-agent expected payoffs are equal to

Ut (x0;σ, r) =
∑
s≥t

∑
x∈X,a∈X∪{0}

βs−t (V (x, a) + 1a∈XE (ε|ε ≥ σs (x, a)))πs (x, a)

=
∑
s≥t

∑
x,y∈X

βs−t (Vs (x, y) + σs (x, y) + 1) πs (x, y)

=
∑
s≥t

∑
x,y∈X

βs−t
(
Vs (x, y) + 1− log πs (x, y)

πs (x) + log rs (x, y)
)
πs (x, y) .

(16)
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(Recall that, following the discussion in Section 2.6, we assume that the agent’s utilities
are given by Vt (x, a).) The second equality comes from the fact that V (x, ∅) = 0 and
equation (3). The third equality comes from equation (15).

Formula (16) is closely related to well-known results from static discrete choice mod-
els (for instance, McFadden (1978)). It expresses the expected payoffs of an agent as
a function of the distribution over types. The payoffs are equal to the sum of easy-to-
interpret and compute terms. The first two terms in the brackets of the last line are
equal to the systematic utility plus the average value of the payoff shock from accepted
matches. The third term measures the selectiveness of the agent strategy. If the agent
uses a higher acceptance threshold, this raises the conditional expected value of payoff
shock (conditional on forming the match) and decreases the number of matches. The
last term measures the impact of environmental acceptance rate r on payoffs. Keeping
the numbers of formed matches µ constant, the higher acceptance rate r means that
the agent can be more selective when making its own acceptance decision. That means
higher thresholds, which raises payoffs.

One can show that formula (16) is strictly concave in π. That would imply that the
expected payoffs can be maximized by a unique distribution π. Of course, we have
already known that the best response strategy is unique from (4).

4.2. Welfare. The payoff formula aggregates well:

Theorem 3. Given a strategy σ, masses µ that satisfy (7a)-(7c), and acceptance rates
r, the aggregate welfare is equal to

W (µ) =
∑
t,x

βtQt (x)Ut (x;σ, r) (17)

=
∑
t

∑
x,y∈X

βt
(
Vt (x, y) + 1− 1

2 log µt (x, y) + 1
2 log qt

(
x, y;µXt

))
µt (x, y) .

The proof of the Theorem can be found in the Appendix. The Theorem expresses
population welfare as a function of the masses of types and matches. The welfare
is decomposed into terms that are analogous to terms from the the single-agent case
(equation (16)). In particular, the last term,1

2
∑
t

∑
x,y∈X β

t log qt
(
x, y;µXt

)
µt (x, y),

comes from averaging the impact of the acceptance rates on payoffs. In the population,
the last term is a measure of the externality that agents impose on others. We say that
µ is constrained efficient if it maximizes the right-hand side of (17). Such µ would be
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chosen by a social planner whose goal is to maximize welfare, but who is constrained
by the frictions of the matching process.

4.3. Interior equilibrium. The next result provides a characterization of interior
equilibrium masses for a special case of the separable meeting function.

Theorem 4. Suppose that the meeting function is given by (5). If µ∗ are interior
equilibrium masses, then they are a (constrained) critical point of the extremal problem:

” max
µ

” W (µ)− 1
2
∑
t

∑
x,y∈X

βtµt (x, y) st.eq. (7b), (7c) and (18)

µt (x, y) = µt (y, x) for each x, y ∈ X, (19)

where W (µ) is defined in (17). Conversely, if µ is a (constrained) critical point of the
above optimization problem such that for each t, and each x, y ∈ X,

V 0
t (x, ∅)− V 0

t (x, y) >
∑
s>t

βs−t
∑
x′

[P s
t (x′|x, y)− P s

t (x′|x, ∅)] µ̃s (x′) , (20)

then µ are interior equilibrium masses.

Each interior equilibrium mass is a critical point of the extremal problem (18). The
constraints come from the definition of equilibrium, with (7a) being replaced by its
weaker version (19). The latter is a simple balance identity which says that the mass
of x agents who match with ys is equal to the mass of y agents who match with xs.
Formally, it is a consequence of the fact that the second line of (7a) is symmetric in x
and y.

The objective function in (18) can be rewritten as
∑
t

∑
x,y∈X

βt
(
Vt (x, y) + 1

2 + 1
2 log q0

t (x, y)
)
µt (x, y)−1

2
∑
t

∑
x,y∈X

βtµt (x, y) log µt (x, y)
µXt (x)µXt (y) .

Because of the last term, the function is not necessarily concave in µ and it may have
multiple optima that correspond to different equilibria. The multiplicity of equilibria is
due to search complementarities represented by the last term inside the brackets of (17).
At the same time, representation (18) simplifies the problem of finding an equilibrium.
Instead of looking for a dynamic fixed point, it is sufficient to find solutions to a
constrained optimization problem. Computationally, this can be done either directly
(for instance, using gradient methods), or by solving for the first-order conditions.
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Theorems 3 and 4 lead to an intuitive welfare analysis. The equilibrium masses are
not constrained efficient. There are two reasons for this. First, an equilibrium mass
is a critical point, and not necessarily a maximizer of the functional (18). Second,
even if the equilibrium mass is a maximizer, the value of the objective is smaller than
welfare (17) by the second term of (18). For any equilibrium, welfare would increase
if more matches were formed. The exact value of the welfare loss is due to the fact
that individual best responses do not internalize the payoff shocks of the other agents.
Indeed, notice that an agent with payoff shock equal to σt (x, y) is indifferent between
accepting or rejecting y. At the same time, conditional on the agent being pivotal, her
partner expects a payoff increase of 1. The total welfare loss if the agent rejects the
action is equal to −1, or −1

2 per agent.
Some welfare can be restored if shared actions are subsidized. Suppose that agent x

receives a transfer τt (x, y) if she forms a match with agent y in period t. For any given µ,
the subsidy increases the individual systematic utility to V ′t (x, y) = Vt (x, y)+ τt (x, y),
or the population welfare by τ · µ. (Of course, total welfare, inclusive of the social
planner, is not affected by transfers.) The two theorems imply that if τ = 1

2 , then,
there exists an equilibrium with subsidies that is constrained efficient.

The objective function has three components: the average individual utility, average
market friction, and a term that resembles Shannon’s entropy. The “utility plus en-
tropy” formulas appear at the intersection of different economic literatures. First, such
a representation is a well-known result in static logit models (see McFadden (1978)).
Second, a connection between “utility plus entropy” and discrete choice (with a reverse
direction of the argument) has been established in the literature on rational inattention
(Sims (1998), Sims (2003)). Matejka and McKay (2015) show that the solution of the
rational inattention problem is similar in form to the random outcome of the static
discrete choice model of McFadden (1978) (this has been extended to dynamic choice
in Steiner et al. (2015)). Third, the same formula appears in various static cooperative
matching models. Choo and Siow (2006) employ a transferable utility model with ex-
treme value type I errors. (Their error term is not entirely idiosyncratic as it is equal
across all partners of the same type.) They show that the distribution of matches in
stable outcome must satisfy a system of equations - it turns out that the equations are
first order conditions to the “welfare plus entropy” maximization problem. An analo-
gous result for the NTU model of Dagsvik (2000) is established in Menzel (2015a) under
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the assumption that the random utility terms satisfy a certain tail property. (Peski
(2017) extends the result further to the roommate problem). Galichon and Salanie
(2012) generalize the TU insight of Choo and Siow (2006) to arbitrary random term
distributions. In order to obtain their characterization, they replace Shannon entropy
by its generalized version. The common thread among all these papers is that the
individual preferences are formed in a version of the static discrete choice model.

The characterization of an equilibrium as a solution to an extremal problem bears
resemblance to a basic property of potential games (Monderer and Shapley (1996)). In
such games, there exists a function of action profiles, called potential, with the property
that each equilibrium is a local maximizer of the potential. The potential function, if it
exists, has multiple applications beyond finding equilibrium (for instance, in learning
and evolutionary theory, global games, etc.) Although our model is not a potential
game, functional (18) may play a role of the potential in other applications.

The converse part of Theorem 4 leads to a simple sufficient condition that guarantees
the existence of an interior equilibrium:

(1− β)V 0
t (x, ∅) > 1 + (1− β)V 0

t (x, y) , for each t and x, y ∈ X. (21)

Here, (1− β)V 0
t (x, a) is a normalized present value of the stream of systematic util-

ities obtained from strategies of never forming a match. In other words, an interior
equilibrium exists if each new match has sufficient systematic cost. If condition (21) is
satisfied, any constrained critical point of (18) is an interior equilibrium.

5. Transferable utility

In this section, we discuss two modifications (take-it-or-leave-it or Nash bargaining)
of the original model of Section 2 to allow for transfers between players. In both
cases, we show that the interior density µ is an equilibrium of the strategic model
with transfers (TU) if and only if it is an equilibrium of the original NTU model with
appropriately modified parameters.

5.1. Take-it-or-leave-it bargaining. We modify the model in Section 2 in the fol-
lowing ways. First, when agents x and y meet, one of them becomes an employer and
the other becomes an employee. To fix attention, we assume that agent x becomes
an employer with probability pt (x, y) = 1 − pt (y, x), but none of the results nor the
identification formula depends on the value of pt. Second, only the employer observes a
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single payoff shock ε, which is independently and exponentially distributed. Third, the
employee agent y submits a demand d ∈ R to the employer, upon which the employer
decides whether to accept or reject the match.3 If the match is accepted, it is formed,
the employer receives ε − d for herself, and the employee receives d. If it is rejected,
the match is not formed and the agents go their separate ways. Otherwise, the two
models are the same.

Let dt (x, y) be the demand submitted by employee y in a meeting with employer
x and let σt (x, y, d) be the threshold such that employer x accepts the match with
employee y who demands d if ε > σt (x, y, d).

Definition 2. A tuple (µt, (σt, dt) , Ut) is a TUTorL-equilibrium if Ut describes the con-
tinuation payoffs, if demand d and acceptance strategies σ are best responses given the
same strategies used by the others, and if masses satisfy equations (7b)-(7c), and for
each x, y ∈ X,

µt (x, y) = qt
(
x, y;µXt

) (
pt (x, y) e−σt(x,y,dt(x,y)) + pt (y, x) e−σt(y,x,dt(y,x))

)
. (22)

(The details of the definition can be found in Appendix C.) A TU-equilibrium is
interior if actions are accepted only if the net transfers to all agents are strictly positive.
(This corresponds to the property of an interior NTU equilibrium, where actions are
accepted only if the payoff shock is strictly positive.) In Appendix C, we prove the
following result.

Theorem 5. Masses (µt) are interior TUTorL-equilibrium masses of the model with
meeting function q. (.) if and only if they are an interior (NTU) equilibrium of the
model with parameters qNTU , where for each t, each x, y ∈ X and each µt,

qNTUt

(
x, y;µXt

)
= 1

eqt
(
x, y;µXt

)
. (23)

3For an example, consider a meeting between a candidate worker and a firm. The firm makes an
offer that may depend on its own history as well as whatever the firm learns about the worker. The
worker observes privately an idiosyncratic payoff shock and decides whether to accept the offer. The
payoff shock may include factors like goodness of fit with unobserved worker abilities, convenience of
commute, etc. Such a model of bargaining is very similar to the macro-labor literature, where firms
“post” wages, but search is undirected (for instance, Burdett and Judd (1983), Albrecht and Axell
(1984), or Burdett and Mortensen (1998)).
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The Theorem establishes an equivalence between the two models. All the equilibrium
results (the equilibrium characterization of Theorem 4) as well as the the identification
from the next section apply to the TU model with modified parameters. An important
consequence is that there is no way to distinguish the two models from choice data.

The proof makes clear that the expected payoffs in the two models are identical. For
example, if the meeting rate has form (5), the equilibrium welfare of the TU model
is given by formula (17) with q replaced by qNTU . Because the equilibrium density is
a critical point of (18), we obtain the result that the TU equilibrium density is not
efficient. There are two reasons for this inefficiency. As in the NTU case, some of the
inefficiency is due to coordination problems in search and the resulting multiplicity
of equilibria. But there is a second source of inefficiency due to take-it-or-leave-it
bargaining. Because demands are submitted without knowing the value of the payoff
shock, the employer is forced to reject some efficient matches. A subsidy of 1 given
to either the employer or the employee upon successful formation of the match could
push the behavior towards removing the second source of inefficiency.

5.2. Nash bargaining. Instead of the above, suppose that an exponential match-
specific shock is observed by two agents who, if the match is formed, divide the match
surplus through a Nash bargaining with possibly type-dependent bargaining power.
The match is formed if the payoff shock exceeds the sum of the utility losses from the
match, or when

ε ≥ Ut (x, ∅)− Ut (x, y) + Ut (y, ∅)− Ut (y, x) =: σt (x, y) + σt (y, x) . (24)

In an interior equilibrium, σt (x, y) > 0, and the probability of the match is equal to

µt (x, y) = qt
(
x, y;µXt

)
e−(σt(x,y)+σt(y,x)). (25)

The match surplus is equal to ε−(σt (x, y) + σt (y, x)). The fraction of the payoff shock
that goes to agent x is equal to

τt (x, y, ε) = Ut (x, ∅)− Ut (x, y) + γt (x, y) (ε− (σt (x, y) + σt (y, x))) , (26)

where parameter γt (x, y) measures the bargaining power of agent x in matching with
y; we have γt (x, y) + γt (y, x) = 1.
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Equation (2) is replaced by

Ut (x) :=
∑
y∈X

µt (x, y)
µXt (x) [Ut (x, y) + E (τt (x, y, ε) |ε ≥ σt (x, y) + σt (y, x))] (27)

+
1−

∑
y∈X

µt (x, y)
µXt (x)

Ut (x, ∅)

=
∑
y∈X

µt (x, y)
µXt (x) [Ut (x, y) + Ut (x, ∅)− Ut (x, y) + γt (x, y)] +

1−
∑
y∈X

µt (x, y)
µXt (x)

Ut (x, ∅)

=Ut (x, ∅;σ) +
∑
y∈X

γt (x, y)µt (x, y)
µXt (x) = Ut (x, ∅;σ) + µ̃NBt (x) ,

where µ̃NBt (x) = ∑
y∈X

γt(x,y)µt(x,y)
µXt (x) replaces the probability of forming a match from

equation (9).

Definition 3. A tuple (µt, σt, Ut) is an interior TUNB-equilibrium if the continuation
values are determined through equations (1) and (2), if the thresholds σt (x, y) satisfy
(8), and if the masses evolve according to (25) and (7b)-(7c) for some initial distribution
µ0.

As in the previous case, we show that a TUNB-equilibrium is equivalent to the NTU-
equilibrium of a model with modified parameters. The proof can be found in Appendix
C.

Theorem 6. Masses (µt) are interior TUNB-equilibrium masses of the model with
systematic utilities υt if and only if they are an interior (NTU) equilibrium of the
model with utilities υNTUt , where for each t, each x ∈ X, a ∈ X ∪ {∅}, and each µt,

υNTUt (x, a) = υt (x, a) + µ̃NBt (x)− µ̃t (x) . (28)

All the equilibrium results from the original NTU model, including identification
and the equilibrium characterization of Theorem 4, apply to a TU model with modified
parameters.

5.3. Observed transfers. In some situations, an econometrician may observe addi-
tional data on transfers, like wages in the labor setting or individual profit shares in a
partnership4. These additional data can be used to improve the scope of identification.

4I am grateful to an anonymous referee for this comment.
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In the context of take-it-or-leave-it bargaining, suppose that the demands of the
employee are observed. In Appendix C, we derive that, in equilibrium, if x is an
employee, he demands

dt (x, y) = Ut (x, ∅)− Ut (x, y) + 1.

Hence, using (10), we obtain an explicit identification equation for employee x individ-
ual dynamic surplus (12):

Vt (x, y) = 1− dt (x, y)−
∑
s>t

βs−t
∑
x′

[P s
t (x′|x, y)− P s

t (x′|x, ∅)] µ̃s (x′) .

Next, identification of the employer’s individual dynamic surplus can be obtained the
matching function (13).

A similar exercise can be conducted in the context of Nash bargaining. Suppose
that the transfers (say, profit shares) to each party are observed. Assume also that
the bargaining shares γt are known or separately identified. Then, one can use (26) to
compute the difference in continuation values Ut (x, ∅) − Ut (x, y), which leads to the
identification of the individual dynamic surpluses.

6. Dynamic marriage matching

We illustrate the application of our model for the special case of stationary dynamic
marriage matching with non-transferable utility. We show that if search frictions are
small, all stationary equilibria are interior. In the limit of the model where both
search and payoff shock frictions disappear, the equilibrium distribution converges to
the distribution of outcomes under stable matching with transferable utility. Finally,
we consider a special case of one-dimensional types and we show that, in such a case,
interior matching is assortative.

We work with Example 1. Thus, P (x|x, ∅) = δ and Pt (x|x, y) = 0 for each x and y
who are two types of opposite sex.5 We assume that male agents m and female agents
f meet at rate

qt (m, f ;µ) = q0 (m, f)µX (f)µX (m) ,

where q0 (m, f) > 0.

5To focus our exposition, we assume that agents of the same sex do not meet. Allowing for smae-sex
marriage leads to a consideration of additional cases, but it does not change the results.
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Let QF = ∑
f∈F Q (f) and QM = ∑

m∈M Q (m). W.l.o.g., we assume that QF ≤ QM .
If QF = QM , we say that the markets are balanced.

6.1. Search frictions. Because of search frictions (discounting and probability of
death), the agents may accept a match with a low payoff shock rather than con-
tinue searching. Under suitable conditions, if search frictions disappear, all stationary
equilibria of the dynamic marriage matching model are interior.

Proposition 1. Suppose that either (a) QF = QM or (b) V (m, f) < 0 for each f,m.
Then, there exists ε > 0 such that, if βδ > 1 − ε, then each stationary equilibrium is
interior. Moreover, as 1− βδ → 0, then for each f ∈ F ,∑

m∈F
µ (m, f)→ Q (f) .

If markets are balanced and search frictions are low, we show that each agent can
expect a relatively large number of offers before he or she finds a match. As a best
response, she waits until she meets a match with a sufficiently high payoff shock.
Asymptotically, all agents find their match.

When markets are not balanced, the above remains true for the agents on the short
side of the market. Thus, all female equilibrium strategies are interior when search
frictions are sufficiently low. On the other hand, only a fraction QF

QM
< 1 of males are

able to find a match before dying single. At each point in time, each male expects with
a non-negligible probability to not receive any more offers. If the systematic utility is
sufficiently high, the male is going to accept a match regardless of the payoff shock.
To ensure that males use interior strategies, we assume that all systematic utilities are
negative. (Note that this assumption has a simple interpretation: each agent on the
long-side prefers to remain single rather than to marry the least attractive agent on
the short side. That does not seem to be an unreasonable assumption for the marriage
market.)

6.2. Noiseless limit. The second friction in the model is due to payoff shocks. We
can consider reducing this friction by increasing the value of systematic utility relative
to the payoff shock, or by replacing utilities with VΛ (x, y) := ΛV (x, y) and taking
Λ→∞.

The effect of eliminating payoff friction depends on what happens to search frictions.
If we directly take Λ→∞, then the model converges to the search NTU model without
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payoff shocks. Such a model was analyzed in Lauermann and Nöldeke (2014) who show
that, as search frictions disappear, stable matches of the NTU cooperative model can
be supported by the equilibria of the search model, but that the search model also has
other equilibria (some of which can be interpreted as fractional matching).

That observation is not longer true if the order of limits is reversed. Let W ∗be
defined as the value of the following maximization problem

W ∗ := max
µ:M×F→R+

∑
m,f

V (m, f)µ (m, f) (29)

s.t.
∑
m

µ (m, f) st. = Q (f) for each f ∈ F,∑
f

µ (m, f) ≤ Q (m) for each m ∈M.

W ∗ is the maximum average welfare that can be obtained from the systematic utility
only if all agents on the short-side of the market are matched. As is well-known in
the matching literature, solutions to problem (29) are match distributions in stable
matchings with transferable utility and payoffs V (x, y), and all females are matched.

Proposition 2. Suppose that either (a) QF = QM or (b) V (m, f) < 0 for each f,m.
Then, for each ε > 0, there exists Λε such that if Λ ≥ Λε, and 1 − βδ are sufficiently
small (relative to Λ), then for each mass of matches µ (., .) in a stationary equilibrium
of the dynamic marriage matching model with payoffs ΛV (x, y), we have∑

x,y

W (x, y)µ (x, y) ≥ W ∗ − ε.

The proof can be found in Appendix D.3.
The Proposition says that the frictionless limits of the equilibria in the dynamic

search matching model with non-transferable utility are also cooperative outcomes
of the frictionless model with non-transferable utility. The exact statement of the
Proposition 2 heavily depends on the exponential assumption about the payoff shock.
However, the intuition behind the connection between the NTU model with payoff
shocks and the TU model is more general. The idea is that the acceptance thresholds
in the search model play a role of the utility transfers. To see it, suppose that type f
women reduce their acceptance threshold from σ (f,m) to σ′ (f,m) < σ (f,m). This
has two effects. On one hand, accepting less attractive males, reduces typef women
expected utility from their formed matches with men m. On the other hand, there
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are more women f accepting offers of type m men. This increases the chances that
an m man finds an f woman above their acceptance threshold, which increases the m
men expected payoff from search. In general, the utility transfer does not have to be 1
to 1. However, if the payoff frictions disappear (and the payoff shocks are distributed
exponentially), the equilibrium strategies balance each other in exactly the right way
to push the outcome towards fully transferable utility. A similar observation about the
frictionless limit of the cooperative NTU model with payoff shocks was made in Peski
(2017).

6.3. Assortative one-to-one matching. Finally, we consider a version of the model
with 1-dimensional types, M,F ⊆ R and that the meetings are uniform ρ ≡ 1. Let µ
be an equilibrium mass, and, for agents of two opposite sexes x and y, define

µ̂ (y|x) = 1
µ (x)− µ (x, ∅)µ (x, y)

Then, µ̂ (.|x) is the conditional probability distribution over agent x’s partner types,
conditional on x form a matching in period t. The proof of the next result can be
found in Appendix D.4.

Proposition 3. Suppose that the joint surplus function W (m, f) is supermodular. Let
µ be an interior equilibrium mass. For each x < x′ and each t, µ̂ (.|x) is first-order
stochastically dominated by µ̂ (.|x′).

Shimer and Smith (2000) consider a model without payoff shocks (and with trans-
ferable utility, but this latter difference is not important here) and argue that super-
modularity is not sufficient to ensure assortativeness when the search cost is driven by
discounting. (If the search cost is constant in each period and there is no discount-
ing, Atakan (2006) shows that supermodularity is sufficient.) In order to explain the
issue, we describe a simple example with two types, l and h (Table 1). Suppose first
that, as in Shimer and Smith (2000), there are no payoff shocks and all the payoffs
are as described above. In equilibrium, l-types will never say no to h-types. If there
are very few h-types on the market, then an h-type will sometimes accept an l-type
because it takes too long time to find another h-type. On the other hand, an l-type
will always prefer to wait to meet an h-type instead of matching with another l-type.
That is because the continuation value of waiting is higher than the value of the match
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W (x, y) l h

l 0 1
h 1 3

Table 1.

W (l, l) = 0. The resulting matching is not assortative, as l-types always match with a
higher type, and h-types sometimes match with a lower type.

The above argument does not apply in our model with payoff shocks. In an interior
equilibrium, the marginal type who decides to accept the match has exactly the same
continuation payoff regardless of whether she matches with a type l or type h. The
difference is in the acceptance probabilities. The relative likelihood of accepting type
y = h vs type y = l by type x = h is equal to e3

e1 = e2 which is greater than the
analogous likelihood ratio for type x = l of e1

e0 = e1. This implies that type x = h

is more likely than type x = l to be matched with type y = h, and the matching is
(stochastically) assortative.

7. Conclusion

We developed a tractable and dynamic model of many-to-many matching. In the
model, agents search for match partners, form matches taking into account both the
instantaneous and future dynamic payoff consequences of each decision. We established
the existence of equilibrium, showed sharp identification results, and analyzed welfare,
the effect of disappearing frictions, and the relations between the NTU and TU versions
of the model.

Some natural extensions require no more than cosmetic changes. For instance, as
is standard in the matching literature, we assume that all matches occur between
pairs of agents. However, there are natural applications (co-authorship models, club
formation), where a match is formed between three or more agents. It is not difficult
to add such multi-agent matches. Similarly, it is easy to add single-agent decisions
into the model. For example, the agent may have an opportunity to switch between
different matching markets and makes the choice that optimally balances the present
and future consequences of switching the markets. These modifications can be found
in earlier versions of the paper or available upon request from the author.
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The current model assumes that any two matched agents do not make any other
future decisions. That is not a good assumption for an extension of the marriage
model to fertility decision making. Another valuable extension would be to add an
opportunity to break off the match (i.e., divorce). We leave these extensions for future
work.

Appendix A. Existence

Proof. Let υmax = supt,x,a |υt (x, a)|. LetQmax = supt,xQt (x). Let Umax = 1
1−β (υmax + 1).

Let U = ∏
t∈N [0, Umax]X be the space of continuation payoff functions, Y = ∏

t∈N [0, Qmaxt]X×(X∪{∅})

be the space of masses, and Σ = ∏
t∈N [0, Umax]X×X be the space of strategies. The three

spaces are compact under the Tychonoff product topology.
We construct a continuous mapping F from U ×Y ×Σ into itself, with the property

that its fixed point is an equilibrium. For each (U, µ, σ), let

UF
t (x, a) := υt (x, a) + β

∑
x′
Pt (x′|x, a)Ut+1 (x;σ) ,

rFt (x, y) :=
qt
(
x, y;µXt

)
µXt (x) e−σt(y,x).

Then,

|Ut (x, a)| ≤ υmax + βUmax = Umax − 1,

for each x and a, and both Ut (., .) and rt (., .) are continuous in (U, µ, σ). Let

(Fσ)t (x, y) = max
(
UF
t (x, ∅)− UF

t (x, y) , 0
)
≤ Umax,

which is continuous in UF
t , and, indirectly, in (U, µ, σ). Let �
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FUt (x;σ) :=UF
t (x, ∅) +

∑
y∈X

rFt (x, y) e−Fσt(x,y)
[
UF
t (x, ∅)− UF

t (x, y) + (Fσ)t (x, y) + 1
]

=
∑
y∈X

rFt (x, y) e−Fσt(x,y)
[
max

(
UF
t (x, ∅) , UF

t (x, y)
)

+ 1
]

+
1−

∑
y∈X

rFt (x, y) e−σt(x,y)

UF
t (x, ∅)

≤
∑
y∈X

rFt (x, y) e−Fσt(x,y) [Umax − 1 + 1] +
1−

∑
y∈X

rFt (x, y) e−Fσt(x,y)

Umax

≤Umax.

Clearly, FUt is continuous in rt, U
F
t , and Fσt, and, hence in (U, µ, σ). Finally, let

FµX0 (x) = Q0 (x) and by induction on t ≥ 0,

Fµt (x, y) :=
(
FµXt

)
(x) rFt (x, y) e−Fσt(x,y)

Fµt (x, ∅) := µX,Ft (x)−
∑
y

Fµt (x, y) , and

µX,Ft+1 (x) := Qt+1 (x) +
∑

y∈X,a∈X∪{∅}
FµXt (y, a)Pt (x|y, a) ,

Then,
∣∣∣µX,Ft (x)

∣∣∣ , |Fµt (x, a)| ≤ Qmaxt, and Fµt is continuous in rt, UF
t , and Fσt, and

hence in (U, µ, σ).
The Kakutani Fixed Point Theorem implies that the mapping F has a fixed point.

Appendix B. Equilibrium analysis

B.1. Proof of Lemma 1. To shorten the notation, we drop the reference to strategies.
Notice that

V 0
t (x, a) = υt (x, a) + β

∑
x′
Pt (x′|x, a)V 0

t (x, ∅) . (30)

Below, we write pt (x, y) = rt (x, y) e−σt(x,y) and pt (x, ∅) = 1 −∑y∈X pt (x, y) and, in
order to simply the notation, we take σt (x, ∅) = −1. (Note that σt (x, ∅) is a piece
of notation and not a strategy, as there is no threshold to “accept” a null match; in
particular, the notation, does not contradict equation (4).) Then, using (1) and (2), the
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present value of an agent with utility υ can be uniquely characterized by the equation:

Ut (x, a; υ) = υt (x, a) + β
∑
x′
Pt (x′|x, a)

∑
a′∈X{∅}

pt+1 (x′, a′) [Ut+1 (x′, a′; υ) + 1 + σt+1 (x′, a′)] .

Using (30), we obtain

Ut (x, a; υ)− V 0
t (x, ∅)

=Vt (x, a) + β
∑
x′
Pt (x′|x, a)

∑
a′∈X{∅}

pt+1 (x′, a′)
[
Ut+1 (x′, a′; υ)− V 0

t+1 (x′, ∅) + 1 + σt+1 (x′, a′)
]
.

It follows that Ut (x, a; υ) − V 0
t (x, ∅) is the present value of an agent with utility V

who uses strategy σ:

Ut (x, a;V ) = Ut (x, a; υ)− V 0
t (x, ∅) .

The Lemma follows.

B.2. Proof of Theorem 3. Let µ be the masses that are induced by σ, i.e., that
satisfy (7a)-(7c). Let πt,x0 be the agent’s probability distributions that are induced
by strategy σ given offer rates r for an agent who is born in period t with type x0

in the sense defined at the beginning of Section 4.1. In particular, πt,x0
t (x0) = 1, and

πt,x0
s (x, a) = 0 for each s < t, x, and a.
Because the best response behavior is uniquely determined by the agent’s current

type of the agent and the calendar time, it must be that for each s ≥ t, each x0, x ∈ X,
each a ∈ A,

πt,x0
s (x, a)
πt,x0
s (x)

= µs (x, a)
µs (x) .

Using (7c), it follows that

µs =
∑
t≤s,x

Qt (x0) πt,x0
s .
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By formula (16), we have

∑
t,x

βtQt (x)Ut (x;σ, r)

=
∑
t,x0

Qt (x0)
∑
s≥t

βs
∑
x,y∈X

(
Vs (x, y) + 1− log π

t,x0
s (x, y)
πt,x0
s (x)

+ log rs (x, y)
)
πt,x0
s (x, y)

=
∑
t,x0

Qt (x0)
∑
s≥t

βs
∑
x,y∈X

(
Vs (x, y) + 1− log µ (x, y)

µs (x) + log rs (x, y)
)
πt,x0
s (x, y)

=
∑
s

βs
∑
x,y∈X

(
Vs (x, y) + 1− log µ (x, y)

µs (x) + log rs (x, y)
) ∑

t≤s,x0

Qt (x0)πt,x0
s (x, y)


=
∑
s

βs
∑
x,y∈X

(
Vs (x, y) + 1− log µ (x, y)

µs (x) + log rs (x, y)
)
µs (x, y) .

Further, using the definition of acceptance rates (6) as well as (7a), we obtain that,
for each t, and each x, y ∈ X,

log rt (x, y) + log rt (y, x)

= log qt (x, y, µt)− log µt (x)− σt (y, x) + log qt (y, x, µt)− log µt (y)− σt (x, y)

= log µt (x, y) + log qt (x, y, µt)− log µt (x)− log µt (y) .

Because in equilibrium µt (x, y) = µt (y, x), we have

log rt (x, y)µt (x, y) + log rt (y, x)µt (y, x) =µt (x, y) log µt (x, y) + µt (x, y) log qt (x, y, µt)

− µt (x, y) log µt (x)− µt (y, x) log µt (y) .

After multiplying by βt, and taking the sum over all x, y ∈ X, and t, we have

2
∑
t,x,y

βt log rt (x, y)µt (x, y)

=
∑
t,x,y

βt (log µt (x, y) + log qt (x, y)− log µt (x)− log µt (y))µt (x, y) .
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Thus,

∑
t,x

βtQt (x)U (σ, x;F (.;σ, µ))

=
∑
t

βt
∑
x,y∈X

(
Vt (x, y) + 1− log µt (x, y)

µt (x) + 1
2 log µt (x, y) + 1

2 log qt (x, y;µt)− log µt (x)
)
µs (x, y)

=
∑
t

βt
∑
x,y∈X

(
Vt (x, y) + 1− 1

2 log µt (x, y) + 1
2 log qt (x, y;µt)

)
µs (x, y) .

B.3. Proof of Theorem 4. Formula (16) and the first part of the proof of Theorem 3
imply that, if mass µ∗ is an interior equilibrium mass, then there are acceptance rates
r∗ that satisfy (6) for µ∗ instead of µ, and such that

µ∗ ∈ arg max
µ st. eq. (7b),(7c)

(31)

∑
s

∑
x,y∈X

βs
(
Vs (x, y) + 1− log µs (x, y)

µs (x) + log r∗s (x, y)
)
µs (x, y) .

Additionally, if µ∗ is an interior equilibrium, then it satisfies (19). The latter can be
added as a constraint to the optimization problem:

µ∗ ∈ arg max
µ st. eq. (7b),(7c), and (19)

(32)

∑
s

∑
x,y∈X

βs
(
Vs (x, y) + 1− log µs (x, y)

µs (x) + log r∗s (x, y)
)
µs (x, y) .

As in the proof of Theorem 3, for each µ that satisfies (19), we have

∑
t,x,y

βt log rt (x, y)µt (x, y)

=1
2
∑
t,x,y

βt (log µ∗t (x, y) + log qt (x, y;µ∗)− log µ∗t (x)− log µ∗t (y))µt (x, y)

=
∑
t,x,y

βt
1
2 log µ∗t (x, y)µt (x, y) ,

where the last equality comes from the assumption that qt (x, y;µ∗) = q0
t (x, y)µ∗t (x)µ∗t (y).
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Hence,

µ∗ ∈ arg max
µ st. eq. (7c), and (19) hold

(33)

∑
s

∑
x,y∈X

βs
(
Vs (x, y) + 1− log µs (x, y) + log µs (x) + 1

2 log µ∗s (x, y)
)
µs (x, y)

= arg max
µ st. eq. (7c), and (19) hold

W (µ)− 1
21 · µ+ V (µ;µ∗) ,

where

V (µ;µ∗)

: =
∑
s

∑
x,y∈X

βs
1
2 (1 + (log µ∗s (x, y)− log µs (x, y)) + log qt (x, y;µ)− 2 log µs (x))µs (x, y)

=
∑
s

∑
x,y∈X

βs
1
2 (1 + (log µ∗s (x, y)− log µs (x, y)))µs (x, y) ,

where, in the last equality, we used the balance identities, and the assumption that
qt (x, y;µ) = q0

t (x, y)µt (x)µt (y).
Function V (µ;µ∗) is concave with a unique maximum at µ = µ∗. (To see that, take

f (x) = x (log x0 + 1− log x), and notice that it is a concave function with the first
derivative equal to f ′ (x) = log x0 − log x.). It follows that any optimal solution to the
problem (33) must be a critical point of

W (µ)− 1
21 · µ st. (7c), and (19).

(Note that it is possible that µ is a not necessarily a maximum if function W (µ) is not
concave in the neighborhood of µ∗.)

To prove the converse, trace back each of the above assertions from the end to
the beginning. The inequality (20) together with the equilibrium characterization
(10) implies that the acceptance thresholds are strictly positive and the equilibrium
strategies are interior.

Appendix C. Transferable utility

C.1. Proof of Theorem 5.
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C.1.1. Best responses. We start with describing the (interior) best response behavior.
Let Ut (x) denote the t-period continuation value of agent x.

Suppose that agents x and y meet with x playing the role of the employer. The
employer’s best response is to accept if the payoff shock plus the continuation payoff
minus the demand is larger than the continuation payoff after not accepting the action,

Ut (x, y)− d+ ε ≥ Ut (x, ∅) .

It follows that the payoff shock must be larger than the threshold

σt (x, y, d) = d+ Ut (x, ∅)− Ut (x, y)︸ ︷︷ ︸,
σ0
t (x,y)

(34)

where σ0
t (x, y) is a convenient notation. The probability that the employer accepts the

action is equal to

e−σt(x,y,d) = e−de−σ0
t (x,y). (35)

The expected payoff of the employee is equal to

e−de−σ0
t (x,y) (Ut (y, x) + d) +

(
1− e−de−σ0

t (x,y)
)

(Ut (y, ∅))

=Ut (y, ∅) + e−de−σ0
t (x,y)

(
d− σ0

t (y, x)
)
.

In the interior case, the expected payoff is maximized by

dt (y, x) = σ0
t (y, x) + 1.

Notice that if two agents x and y meet, the probability that the match is formed,
computed before the employer is chosen, is equal to

pt (x, y) e−σt(x,y,dt(y,x)) + pt (y, x) e−σt(y,x,dt(y,x)) = e−1−σ0
t (x,y)−σ0

t (y,x),

and it does not depend on p.

C.1.2. Proof of the Theorem. Suppose that µ is an interior TU equilibrium together
with strategies σ, d. Suppose that σ0 is defined as in equation (34). We are going to
show that µ and σ0 form an interior (NTU) equilibrium of the model with parameters
υ and ρNTU . Notice that equation (22) becomes

µt (x, y) = qt (x, y;µ) e−1−σ0
t (x,y)−σ0

t (y,x)

= qNTUt (x, y;µ) e−σ0
t (x,y)−σ0

t (y,x).
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Thus, µ satisfies equations (7a) and, hence, the condition (b) of Definition 1.
Next, we show that the continuation payoffs in the two models are identical. If so,

then the definition of σ0 in equation (34) and property (8) show that σ0 is the best
response in the NTU model. Because the mass densities and systematic utility are the
same in the two models, it is enough to show that the expected payoff from shocks in
the NTU model are equal to the payoffs from demands and shocks in the TU model.
Indeed, if x is an employer meeting with y, her expected net payoff shock conditional
on accepting the action is equal to the (gross) expected payoff shock conditional on
acceptance minus the demands

E
(
ε|ε ≥ σ0

t (x, y) + dt (y, x)
)
− dt (y, x) = σ0

t (x, y) + 1.

The expected conditional instantaneous payoff of employee y is equal to her demand
dt (y, x) = σ0

t (y, x) + 1. In both cases, the expected payoff conditional on acceptance
is equal to the same value as the conditional expectation of the payoff shock given that
the action is accepted in the NTU model. The result follows.

C.2. Proof of Theorem 6. Suppose that (µt, σt, Ut) is an interior TUNB-equilibrium
with systematic utility υt. For each a ∈ X ∪ {∅}, define

UNTU
t (x, a) = Ut (x, a) + µ̃NBt (x)− µ̃t (x) and UNTU

t (x) = Ut (x) .

Then, we check that
(
µt, σt, U

NTU
t

)
is an interior (NTU) equilibrium with utilities υNTUt

(i.e., the tuple satisfies equations (1), (2), (4) and the masses evolve according to (6)
and (7a)-(7c). The reverse direction is analogous.

Appendix D. Dynamic marriage matching

D.1. Stationary equilibrium. Here, we develop notation and derive some equations
and bounds that hold in a (not necessarily interior) stationary equilibrium of a dynamic
marriage matching model. Let

Vmax = max
x,y

V (x, y) , Vmin = min
x,y

V (x, y) ,

∆V =Vmax − Vmin,

qmin = min
m,f

q0 (m, f) > 0, qmax = max
m,f

q0 (m, f) .
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Let µ (., .) , r (., .) , U (.) be the stationary equilibrium objects. Recall that

µ̃ (x) =
∑
y∈X

r (x, y) e−σ(x,y) = 1
µ (x)

∑
y

µ (x, y)

is the probability with which agent x finds a match in any given period.
The steady state version of flow equation (7c) implies that

µ (x) = Q (x) + δ

µ (x)−
∑

x∈X,y∈X
µ (x, y)


= Q (x) + δ (1− µ̃ (x))µ (x) ,

or
Q (x) = (1− δ (1− µ̃ (x)))µ (x) . (36)

In particular, µ (x) ≥ Q (x) for each x. Using equation (36), we can derive a formula
for the mass of formed matches in a given period as∑

x,y

µ (x, y) =
∑
x

µ (x) µ̃ (x) =
∑
x

Q (x)
1− δ + δµ̃ (x) µ̃ (x) =

∑
x

1
1−δ
δµ̃(x) + 1

Q (x) . (37)

Let
π (x) = (1− δ)µ (x)

Q (x) = 1−
∑
y µ (x, y)
Q (x) (38)

be the probability that type x agent dies before finding a match. Then, using (36), we
have

µ̃ (x) = 1− δ
δ

(
1

π (x) − 1
)

and µ (x)
Q (x) = π (x)

1− δ . (39)

In any stationary equilibrium, equation (1) implies that U (x, ∅) = βδU (x). Using
(2) and (4), we obtain

U (x) = 1
1− βδ

∑
y∈X

r (x, y) e−σ(x,y) [1 + max (V (x, y)− βδU (x) , 0)] . (40)

Then, (40) leads to bounds
1

1− βδ µ̃ (x) ≤ U (x) ≤ 1
1− βδ µ̃ (x) (1 + Vmax) . (41)

The best response equation (4) implies that for each x, y, y′,

U (x)− Vmax ≤ σ (x, y) ≤ U (x)− Vmin. (42)

D.2. Proof of Proposition 1.
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D.2.1. Probability bounds. Next, we show that the probabilities of finding a match
cannot differ too much between agents on the same side of the market. Let

µ̃M = min
m∈M

µ̃ (m) , µ̃F = min
f∈F

µ̃ (f) .

Lemma 2. There exists constant C (that does not depend on β and δ) such that for
any m and f ,

µ̃ (m) < Cµ̃M and µ̃ (f) < Cµ̃F .

Proof. Take m0 ∈ arg maxm∈M U (m). Then, for each male m, we have

µ̃ (m) =
∑
f

q0 (m, f)µ (f) e−σ(m,f)−σ(f,m)

≤
∑
y

qmaxµ (f) e−U(m)−U(f)+2Vmax

= e2(Vmax−Vmin)eU(m0)−U(m)∑
f

qmaxµ (f) e−(U(m0)−Vmin)−(U(f)−Vmin)

≤ e2∆V
∑
y

qmaxµ (f) e−σ(m0,f)−σ(f,m0)

≤ e2∆V
qmax

qmin
µ̃ (m0) .

The first inequality comes from (42). The second inequality is a consequence of (42)
as well as the fact that U (m0) ≤ U (m) for each m.

An analogous argument holds for female types. �

Lemma 3. We have
µ̃M ≤ Cµ̃F . (43)

Proof. Using Lemma 2, the number of formed matches (37) can be bounded by

QM
1

1 + 1−δ
δµ̃M

≤
∑
x,y

µ (x, y) ≤ QF
1

1 + 1−δ
δCµ̃F

.

The claim follows from the two inequalities and the fact that QM ≥ QF . �

Lemma 4. For each A > 0, if 1− βδ is sufficiently small, then µ̃F (1− βδ)−1 ≥ A.

Proof. Suppose that µ̃F (1− βδ)−1 < A. Then, (43) and Lemma 2 imply that for each
type x, µ̃ (x) (1− βδ)−1 ≤ C2A. The second inequality in (41) implies further that

U (f) ≤ C2A (1 + Vmax) =: Umax (A) .
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Further, bounds (42) imply that for each y, σ (x, y) ≤ Umax (A) − Vmin =: σmax (A).
Then, for each female,

µ̃ (f) =
∑
m

q0 (m, f)µ (m) e−σ(m,f)e−σ(f,m) ≥
∑
m

qminQ (m) e−2σmax(A) ≥ qminQMe
−2σmax(A).

It follows that
A (1− βδ) ≥ µ̃F ≥ qminQMe

−2σmax(A).

Together with A (1− βδ) ≥ µ̃F , we obtain that

1− βδ ≥ 1
A
qminQMe

−2σmax(A).

�

D.2.2. Payoff bound. We have the following useful payoff bounds. Recall that π (x) is
the probability of dying single (39).

Lemma 5. In any stationary equilibrium of the dynamic matching model, for each
type x, U (x) ≤ max

(
Vmax,

1−π(x)
π(x)

)
.

Proof. The expected continuation value is not higher than the probability of finding
a match plus the systematic utility from the match plus the (conditional) expected
payoff shock. Hence,

U (x) ≤ (1− π (x)) max
y

(V (x, y) + σ (x, y) + 1) ≤ (1− π (x)) (max (U (x) , Vmax) + 1) .

If U (x) ≥ Vmax, then U (x) ≤ (1− π (x))U (x)+(1− π (x)), which implies that U (x) ≤
1−π(x)
π(x) . �

Lemma 6. Suppose that markets are imbalanced: QM > QF . Then, there is a constant
U0 such that for each m, U (m) ≤ U0.

Proof. Because in a stationary equilibrium, it must be that∑
m,f

µ (m, f) ≤ QF ,

there is a type m0 such that a (m0) =
∑

f
µ(m0,f)
Q(m0) ≤ QF

QM
. By Lemma 5, U (m0) ≤

max
(
Vmax,

QF
QM−QF

)
. By an application of bounds (41) and Lemma 2, we obtain for
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each male type m,

U (m) ≤ 1
1− βδVmaxµ̃ (m) ≤ VmaxC

1
1− βδ µ̃ (m0)

≤ VmaxCU (m0)

≤ VmaxC max
(
Vmax,

QM

QF −QM

)
=: U0.

�

D.2.3. Proof of Proposition 1. By Lemma 4, for arbitrary ε > 0, if 1−βδ is sufficiently
small, then µ̃F (1− βδ)−1 > 1

ε
. If ε−1 > Vmax, then (41) implies that U (f, ∅) =

βδU (f) ≥ Vmax. In such a case, equilibrium strategies of all female types are interior.
If the markets are balanced, an analogous argument implies that male strategies

are interior. If the markets are imbalanced, then the male’s utility from the match is
negative by assumption. Because the continuation is always positive (as any male can
always reject any offer), male strategies must be interior.

Finally, notice that the number of matches formed by female f in each period is
bounded from below by

Q (f)
1 + 1−δ

δµ̃(f)
≥ Q (f)

1 + 1−βδ
δµ̃F

≥ Q (f)
1 + 1

δ
ε
↗ Q (f) ,

where the convergence holds as 1− βδ → 0.

D.3. Proof of Proposition 2.

D.3.1. Matching function. Suppose that µ is a distribution of masses in an interior
stationary equilibrium. Substituting (8) into the evolution equations (7a) yields for
each m, f

log µ (m, f) =W (m, f) + log q (m, f ;µ)− U (m, ∅)− U (f, ∅)

=W (m, f) + log q0 (m, f)Q (m)Q (f) + log µ (m)
Q (m) + log µ (f)

Q (f)
− βδU (m)− βδU (f) .
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Because the equilibrium is interior, (40) implies that U (x) = 1
1−βδ µ̃ (x) = 1

δ
1−δ

1−βδ

(
1

π(x) − 1
)
.

Together with (39), we obtain a version of the matching function:

log µ (m, f) =ΛW (m, f) + log q0 (m, f)Q (m)Q (f)− 2 log (1− δ) (44)

− γβ,δ (π (x))− γβ,δ (π (y)) ,

where
γβ,δ (π) := β (1− δ)

1− βδ

( 1
π
− 1

)
− log π ≥ 0 for each π ≤ 1.

D.3.2. TU problem. LetM0 be the space of positive measures over M × F such that
for each x, ∑y µ (x, y) ≤ Q (x). LetM⊆M0 be the subspace of measures µ such that∑

m

µ (m, f) = Q (f) for each f, and∑
f

µ (m, f) ≤ Q (m) for each m.

Let

M∗ = arg max
µ∈M

∑
W (m, f)µ (m, f) .

Notice thatM0,M, andM∗ are compact. A standard argument implies the following:

Lemma 7. For any µ ∈M\M∗, there is a sequence m0, f0, , ..., fn,mn+1 such that

µ (ml, fl) > 0 for each l ≤ n, (45)

∆W =
∑
l

W (ml+1, fl)−
∑
l

W (ml, fl) > 0,

and, either (a) mn+1 = m0 or (b) mn+1 6= m0 and ∑f µ (mn+1, f) < Q (mn+1).

Proof. We include the proof for the sake of completeness. By the Kuhn-Tucker con-
ditions, there are λ (f) and λ (m) ≥ 0 such that µ∗ ∈ M∗ if and only if for each
m, f :

w (m, f) := W (m, f)− λ (f)− λ (m) ≤ 0 with equality if µ∗ (m, f) > 0,

and λ (m) > 0 only if ∑f µ (m, f) = Q (m).
Fix µ∗ ∈ M∗ and µ ∈ M\M∗. Consider a directed graph, where there is an arrow

from m to f if and only if µ (m, f) > µ∗ (m, f) and an arrow from f to m if and only
if µ (m, f) < µ∗ (m, f). It is easy to see that �

• for each f , f has outgoing arrows if and only if it has incoming arrows,
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• if m has only incoming arrows, then ∑f µ (m, f) < Q (m), and
• if m has only outgoing arrows, then ∑f µ

∗ (m, f) < Q (m).
Moreover, there is at least one arrow from m to f such that w (m, f) < 0. Using these
properties, we can find a chain m0, f0, , ..., fn,mn+1 such that

• µ (ml+1, fl) < µ∗ (ml+1, fl),
• µ (ml, fl) > µ∗ (ml, fl),
• for at least one l∗, w (ml∗ , fl∗) < 0, and µ (ml∗ , fl∗) > 0 = µ∗ (ml∗ , fl∗), and
• either (a)mn+1 = m0 or (b)mn+1 6= m0,

∑
f µ
∗ (m0, f) < Q (m0), and∑f µ (mn+1, f) <

Q (mn+1).
Notice that µ∗ (ml+1, fl) > 0 for each l, which implies that∑

l

w (ml+1, fl) = 0 > w (ml∗ , fl∗) +
∑
l 6=l∗

w (ml, fl) .

However,

0 <
∑
l

w (ml+1, fl)−
∑
l

w (ml, fl) = ∆W + λ (m0)− λ (mn+1) ≤ ∆W ,

where the last inequality comes from the fact that λ (m0) = 0 and λ (mn+1)≥ 0.

D.3.3. Proof of Proposition 2. Let MΛ,β,δ ⊆ M0 be the set of positive measures
in the stationary equilibria of a model with parameters ΛV (., .) , β, and δ. Each
such set is closed and contained in a compact set, and hence compact. Let MΛ =
lim supβ,δ,→1MΛ,β,δ.

6 LetMeq = lim supΛ→∞MΛ.
By Proposition 1, Meq ⊆ M. Suppose that there is µ ∈ Meq such that µ /∈ M∗.

Find a sequence µΛ ∈ MΛ such that µΛ → µ. Find µΛ,β,δ ∈ MΛ,βδ such that µΛ,βδ →
µΛ. Find a sequence m0, ...,mn+1 with properties as in Lemma 7. Using the matching
function (44), we obtain

log
(∏

l µΛ,β,δ (ml+1, fl)∏
l µΛ,β,δ (ml, fl)

)
=Λ∆W +

(
log q0 (mn+1, f0)Q (mn+1)

q0 (m0, fn)Q (m0)

)
− γβ,δ (π (ml+1;µΛ,β,δ)) + γβ,δ (π (m0;µΛ,β,δ)) .

Ifm0 = mn+1, then the last two terms cancel out. Ifm0 6= mn+1, then
∑
f µ (mn+1, f) <

Q (mn+1), which implies that π (ml+1) > 0. Because γβ,δ (π (ml+1;µΛ,β,δ)) ≥ 0, there
6For a sequence of sets Aε ⊆ A0, we define lim supε→0 Aε as the set of all limit points of convergent

sequences an ∈ Aεn , where εn → 0.



46 MARCIN PĘSKI

exists a bound

lim
Λ→∞

lim
β,δ→1

[−γβ,δ (π (ml+1;µΛ,β,δ)) + γβ,δ (π (m0;µΛ,β,δ))]

≥ lim
Λ→∞

lim
β,δ→1

[−γβ,δ (π (ml+1;µΛ,β,δ))] = −γβ,δ (π (ml+1)) <∞.

Thus, in both cases, we have

lim
Λ→∞

lim
β,δ→1

1
Λ log

(∏
l µΛ,β,δ (ml, fl+1)∏
l µΛ,β,δ (ml, fl)

)
≥ ∆W > 0.

Because of (45),

lim
Λ→∞

lim
β,δ→1

log
(∏

l

µΛ,β,δ (ml, fl)
)

=
∑
l

log µ (ml, fl) > −∞.

The two inequalities together imply that

lim
Λ→∞

lim
β,δ→1

log
(∏

l

µΛ,β,δ (ml, fl+1)
)
→∞,

which contradicts the fact that in a stationary equilibrium, for each l,

µΛ,β,δ (ml, fl+1) ≤ Q (f) .

D.4. Proof of Proposition 3. Let Ut (x, t) be the period t continuation value of the
type x agent who is still looking at the end of period t. In an interior equilibrium, the
best response thresholds are equal to

σ (x, y, t) = Ut (x)− υ (x, y) . (46)

If µ is an equilibrium mass, then equations (7a) imply that for each y and i,

µt (x, y) = e−σt(x,y)e−σt(x,y)µXt (x)µXt (y) 1
µ0
t

= µ0
t e−Ut(y)µXt (y) e−Ut(x)µXt (x) ef(x,y)

= ct (y) e−Ut(x)µXt (x) ef(x,y),

where ct (y) is defined though the last equality. It follows that, for each x < x′ and
each y < y′ ,

µ̂ (y′|x, t)
µ̂ (y|x, t) = ef(x,y′)−f(x,y) c (y′, t)

c (y, t) < ef(x′,y′)−f(x′,y) c (y′, t)
c (y, t) = µ̂ (y′|x′, t)

µ̂ (y|x′, t) .

Thus, the conditional distributions are ordered by the Monotone Likelihood Ratio
Property, which implies first-order stochastic dominance.
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